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1. Introduction to CiudadSim

The Traffic Network toolbox of Scilab called CiudadSim is intended to
study the assignment problem in traffic networks that is to compute the traf-
fic on the links of a Network knowing the transportation demands for some
couple of origine and destination of the given network. For that CiudadSim
adds dedicated functions and data structures to Scilab. It use Scigraph (a
toolbox of Scilab) to visualize and edit the network.

CiudadSim is a contribution of Scilab which is free and available at www-
rocq.inria.fr/scilab/CiudadSim. It needs :
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• Scilab available at
www-rocq.inria.fr/scilab/,

• Scigraph a Scilab toolbox for visualizing graph available at
ftp.inria.fr/INRIA/Projects/Meta2/Scilab/contrib/SCIGRAPH/

• MaxPlus a Scilab toolbox for max plus arithmetic available at
ftp.inria.fr/INRIA/Projects/Meta2/Scilab/contrib/MAXPLUS/

CiudadSim can be decomposed schematically in two parts.
• A database called %net which contains all the given data – geo-

graphic definition of the network, – travel demands (commodities),
– travelling time as functions of congestion (link performance func-
tions). It contains also all the computed data – the aggregated
and diasaggregated (with respect to the commodities) flows on the
links, – the times spent on each link at equilibrium. The function
TrafficExample builds the database for some examples. The func-
tion ShowNet visualizes the net in an editable window. It is possible
to edit the database using the menus of this visualizing window.

• A Scilab function TraffigAssig able to compute traffic assignments
(Wardrop equilibrium, logit and probit equilibrium) using various
algorithms. The results are written in some fields of %net. The
assignment obtained can be visualized using ShowNet. The widths
of the links indicate their degrees of congestion.

2. The database %net

A traffic network has three well distinguished parts. The nodes, the links
and the demands. The data set for each of those parts will be as well
different. For example for the nodes we will only need there coordinates
but for the links we will need together with their head and tail nodes, the
corresponding link performance functions. We will consider the O-D pairs
together with the corresponding travelling demands as arcs directed from
the origin to the destination with the demand as associated weight.

All this data are collected in a Scilab typed list called %net which play
the role of a geographic database. It is defined by
%net=tlist([’net’,’gp’,’nodes’,’links’,’demands’],gp,nodes,links,
demands)
where:

• gp : is a tlist containing the general properties of the net,
• nodes : is a tlist containing the nodes parameters,
• links : is a tlist containing the links parameters,
• demands : is a tlist containing the demands parameters.

The exhaustive list of the fields is given in the manual section below at
the Netlist subsection. Let us make some remarks on some non trivial fields.

The link performance function of each link is a function of the flow f on
the link described by two fields :

• %net.gp.lpf model which is a number corresponding to a model of
congestion among :
(1) t (f) = t0 + m

c f + m max (0, f − c)β

(2) t (f) = t0 exp
(

f
c − 1

)
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(3) t (f) = t0 2( f
c
−1)

(4) t (f) = t0

(
1 + 0.15×

(
f
c

)m)
(5) t (f) = t0 + log

(
c

c−f

)
(6) t (f) = β − c t0−β

f−c

(7) t (f) = t0 + c f + m fβ

• %net.links.lpf data which contains for each links the values of
the four parameters t0, c, m, β appearing in the definitions of the
link performance function choosen. Where – t0 is the free-flow travel
time, which is a measure of the travel time at zero flow, – c is the
practical capacity of the link, which is a measure of the quantity
from which the travel time will increase very rapidly.
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Figure 1. Example of Link Performane function

It is possible to plot the link performance funtion using dlpf (draw link
performance functions) for example :

lpp=[1 0 1 2; 0.5 0 0.5 4]’;
dlpf(0,0.1,2,lpp,6);

The method to compute the assignment is given in the field algorithm of
%net.gp the default one is the DSD described below. The main results of the
assignment are stored in the fields %net.links.flow and %net.links.time.

The function TrafficExample gives a way to build some predefined data-
base. For example to build the regional network of Chicago we use the in-
struction %net=TrafficExample(’Chicago’). Then %net is visualized by
the instruction ShowNet() which show the following graph in an editable
graphic window of Scilab.

3. Traffic Assignment

3.1. Wardrop Equilibrium. Given a transportation network G = (N ,A)
and a set D of transportation demands from p ∈ N to q ∈ N the traffic
assignment problem consists in determining the flows fa on the arcs a ∈ A
of the network when the times ta spent on the arcs a are given functions
of the flows fa. These flows are defined as solution of equilibrium. We can
distinguish the deterministic equilibriums from the stochastic ones.
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Figure 2. Chicago Net

In the deterministic case two important equilibriums have been defined.
The system equilibrium where the flow are determined as minimizing the
total time spent by all the users of the network. The user equilibrium, called
sometimes Wardrop equilbrium where each user minimizes its time spent in
the network; that has for consequence that at the equilibrium we have : for
all pair of nodes p and q in the network, the time spent on all the actually
used routes from p to q are the same and is smaller than the time spent on
the unused routes.

Denoting by C the set of origin-destination pairs, Rpq the set of routes
from p to q, dpq the demand from p to q, fr the route flow on the route
r ∈ Rpq , Fa the arc flow on a ∈ A, tr the travelling time on the route
r ∈ Rpq, t∗pq the smallest travelling time of the routes in Rpq, the Wardrop
Equilibrium is defined precisely by the following equations

fr(tr − t∗pq) = 0 , tr − t∗pq ≥ 0 , f ≥ 0 ,

t∗ ≥ 0 ,
∑

r∈Rpq

fr = dpq , ∀r ∈ Rpq, ∀pq ∈ C .
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This system of equations is the optimality condition of two optimization
prolems, the nodes-arcs and the arcs-routes variational formulation. The
nodes-arcs variational formulation of the Wardrop Equilibrium is :

min
f

∑
a

∫ Fa

0
ta(q) dq, Af•pq = dpq, f ≥ 0 .

where A is the m×n incidence matrix nodes-arcs associated to the network,
fa

pq is the flow on the arc a of the commodity pq, Fa =
∑

pq fa
pq is the total

flow on the arc a and ta(q) denotes the time spent on the arc if the total
flow on this arc is q.

The arcs-routes variational formulation of the Wardrop Equilibrium

min
f

∑
a

∫ Fa

0
ta(q)dq , Fa =

∑
r∈Ra

fr

∑
r∈Rpq

fr = dpq , f ≥ 0 ,

where Ra denotes the set of all the routes of the network using the arc a.
The main drawback of this Wardrop equilibrium is that each traveler

is supposed to have a perfect information on the total network. In more
realistic formulations the user minimizes the perceived travel time. This
perceived travel time is the effective travel time with an additive error. If
the probabilistic distribution of the errors is supposed to be known we can
define stochastic equilibriums.

3.2. Logit Assignment. At least two kind of stochastic equilibrium has
been studied intensively in the literature according to the distribution of
the error in the perceived travel time. In the probit assignment problem the
error is supposed to be Gaussian. But, because N{X > x} for N a Gaussian
law, is not known explicitely the computation of probit assignment is difficult
and is done by Monte Carlo methods. When the distribution of the error
is a Gumbel distribution G{X < x} = e−e−µx

the probability to choose a
route r ∈ Rpq can be computed explicitly. It is given by

(1) ∀r ∈ Rpq P{r} =
e−µtr∑

r∈Rpq
e−µtr

,

where tr denotes the time spent on the route r. This assignment is called
logit assignment. The only interest of the Gumbel distribution comes from
the facility to compute the probability of the maximum of two independent
random variables and from its shape close to the normal law distribution.

Another, more interesting justification of the logit assignment comes from
that it is the only distribution satisfying the efficiency principe [12] that is :
“an event of flows on the available road having a smaller average time than
another one has a greater probability to appear”. In [12] other equivalent
properties of the logit distribution (which is in fact the Gibbs distribution
of mechanical satistics). In particular it minimizes the entropy among all
the flow distributions having the same average time. The free parameter
µ is a degree of stochasticity. Its inverse is the temperature in statistical
mechanics.
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The first difficulty appearing with computing logit assignment is that, as
soon as it exists a circuit in the graph, it will exists a pair pq such that
the number of routes in Rpq is infinite and therefore it may be difficult to
compute the logit distribution(1). Dial [4] propose to consider only efficient
paths r that are paths such that the time from pi to q is decreasing with the
nodes pi met along the path r = pp1p2 · · · q that is tpi···q < tpi+1···q forall i in
the path and from p to pi are increasing. Then denoting Gpq = (N ,Apq) the
new graph obtained by eliminating the arcs for which this increasing and
decreasing property is not satisfied and Opq [resp. Dpq thecorrespondant
incidence node-arc-origine [resp. node-arc-destination] matrix we can define
the transition weight matrix

W pq = OpqT (Dpq)′ ,

where T is diagonal matrix Taa = e−µta , a ∈ Apq , We have

W pq
ij = Taa, ∀a ∈ Apq .

It exists a node numbering such that the matrices W pq are strictly upper
diagonal and therefore they are nilpotent. Thus (W pq)∗ exists where N∗ =∑∞

i=0 N i. Then the logit assignment on efficient path is given by :

(2) Fij =
∑
pq∈D

dpq(W pq)∗piW
pq
ij (W pq)∗jq/(W pq)∗pq .

Indeed
• (W pq)∗pq is the total weight of all the efficient path from p to q,
• (W pq)∗piW

pq
ij (W pq)∗jq is the total weight of the efficient paths that use

the arc ij,
• (W pq)∗piW

pq
ij (W pq)∗jq/(W pq)∗pq is the probability for a path from p to

q to use the arc ij for the logit distribution on the efficient paths.
In fact, Dial in [4] does not give the formula (2) but an algorithm in two

phases to compute the contribution of one demand to the flow on an arc.
Mainly in the first phase he computes (W pq)∗piW

pq
ij in the second phase he

computes (W pq)∗jq/(W pq)∗pq from which it deduces the flow. Moreover the
exact weights used by Dial are not the ones given here but the weights e−µτij

with τij defined by (5).
A first improvement, given in [8], consists in considering as efficient paths

the paths which have an increasing time from the origin and not restricting
them to have also a decreasing time to the destination. With this new
definition of efficient paths we build new graphs Gp = (N ,Ap), incidence
matrices Op, Dp transition weight matrix W p. The corresponding flow has
a formula analogous to (2) but now can be written

(3) Fij =
∑
p∈N

(W p)∗piW
p
ij(W

p)∗j.D
p

with

Dp
q =

{
dpq/(W p)∗pq if pq ∈ D
0 else

.

This formula shows that by this way the complexity can be reduce of one
order in the size of the problem.



8 P. LOTITO, E. MANCINELLI, J.P. QUADRAT AND L. WYNTER

Another improvement proposed by Bell [1] is to consider all the paths,
not only efficient paths, by remarking that we have not to enumerate all the
paths but to be able to compute star of matrices. But W ∗ = (I −W )−1 is
well defined as soon as the spectral radius of W , denoted ρ(W ), is smaller
than 1. Moreover with this point of view it is not necessary to compute the
minimal time from the origine to each node to define the transition weight
matrix associated to efficient paths. Therefore, we have, denoting by W the
transition weight matrix for the original graph G :

(4) Fij =
∑
p∈N

(I −W )−1
pi Wij(I −W )−1

j. Dp

with

Dp
q =

{
dpq/(I −W )−1

pq if pq ∈ D
0 else

.

With this point of view we must choose µ large enough such that ρ(W ) < 1
(this is always possible because the entries of W are positive and go to zero
when µ goes to +∞).

We can avoid this last difficulty by building a Markov chain on G de-
pending of a parameter µ whose trajectories converge to the minimal time
trajectories when µ goes to +∞. Let us consider the transition matrices

M q
ij = e−µτij/

∑
j

e−µτij ,

with

(5) τij = tij + t∗iq − t∗jq ,

where t∗iq denotes the minimal time to go from i to q. This give a logit
type probability to deviate from the optimal trajectory. Therefore here
we consider a multidecision process where at each step we have to choose
between trajectories composed of an arbitary admissible link followed by an
optimal route to node q. Based on this type of decision the flows on arcs
can be computed explicitely. We have

(6) Fij =
∑

q

Dq(I −M \q)−1M [qM q
ij ,

where Dq is the row-vector of the demand from any node to q, M \q denotes
the matrix obtained by skipping column an row q in matrix M q and M [q

the column-vector obtained by extracting column q of M q and skiping entry
q.

3.3. Stochastic Equilibrium : MSA, LogitNE, MSASUE. In the previous
section about stochastic assignment we have supposed implicitely that the
travelling time does not depend on the flow. If it is not the case we have to
solve an implicit equation. For example in the third case, given the function
ta(Fa) for a ∈ A we have to solve the equation

(7) F = F(F )
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with

[F(F )]ij =
∑
p∈N

(I −W (F ))−1
pi W (F )ij(I −W (F ))−1

j. Dp(F ) ,

where W (F ) is the weight transition matrix which depend on the flows.
This equilibrium admits an arc-route variational formulation :

(8) min
f

∑
r

fr log(fr) +
∑

a

∫ Fa

0
ta(q) ,

under the constraints :

Fa =
∑
r∈Ra

fr,
∑

r∈Rpq

fr = dpq, f ≥ 0 .

The fixed point algorithm

Fn+1 = anFn + (1− an)F(Fn) ,

with typically an = (n− 1)/n, is used to solve (7). The convergence of this
method can be derived from the variational formulation. Indeed F(Fn) is
the solution of

min
f

∑
r

fr log(fr) +
∑

a

ta(Fn
a )(Fa − Fn

a ) ,

which is a partially linearized version of problem (8). Then using the con-
vexity of this last problem F(Fn) − Fn is a descent direction of problem
(8). The divergent series method is used because it is difficult to compute
the value of the criterium indeed it needs the evaluation of the flows on all
the routes (which may be in infinite number).

3.4. Assignment in CiudadSim. The assignment is done by the instruc-
tion TrafficAssig() see, in the manual the TrafficAssig section be-
low, the exhaustive list of algorithms and methods of assignment avail-
able. The default algorithm is the ’DSD’ which is a newton method to
compute a Wardrop equilibrium. We can change the algorithm by chang-
ing %net.gp.algorithm. If we choose a logit algorithm we have to specify
the level of stochasticity by changing the default value of %net.gp.theta.
A discussion and comparison of the respective interests of the algorithm is
done in the section “Numerical Experiments”.

4. Assignment Examples

To see the exhaustive list of examples available look at the section Traffic-
Example of the manual. In the following is given only a sampling of the
possibility. Typically to make an assignment for an existing example we
have to write the following instructions in the Scilab window :

%net=TrafficExample(’Example’)
TrafficAssig()
ShowNet()

where ’Example’ is the name of an available example. If a new example has
to be entered the best is to build %net with MakeNet. It is also possible to
edit a new net with the Scigraph window.
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4.1. Regular City. The instruction

%net=TrafficExample(’Regular City’,hs,vs,nd)

generates a regular city whose graph is a hs x vs grid. The link travel time
functions data is the same for all links and is defined by the parameters
t0=ca=ma=ba=1 and the link performance model 3 therefore link perfor-
mance function is c = t0(1 + 0.15f).

It is possible to generate 4 different types of Regular City depending on
parameter nd.

(1) nd=[ ] The net has all possible O-D pairs all of them with demand
value equal to 1. The first picture in figure (3) is shown using the

Figure 3. Non-assigned and Assigned Regular City Net
TrafficExample(’Regular City’,4,4)

function ShowLinks because there are to many demands.
(2) nd=1 There is only one O-D pair joining the most distant nodes with

demand equal to 1.

Figure 4. Non-assigned and Assigned Regular City Net
TrafficExample(’Regular City’,6,9,1)

(3) 0<nd<1 The parameter nd represents the density of O-D pairs present
in the net and the demand is equal to 1.

(4) 1<nd There are nd random demands generated with value uniformly
distributed between 0 and 15.

4.2. Sioux Falls Net. It is an example with 24 nodes 72 links and 528
demands with link performance function of the form c = t0 + maf

4 with t0
between 0.02 and 0.1 and ma between 10−8 and 2× 10−5.

4.3. Steenbrink Net. The SteenBrink example can be found in: Steen-
brink P.A., Optimization of Transport Networks, John Wiley & Sons, Lon-
don, 1974. It is an example with 9 nodes 36 links and 12 demands with link
performance function of the form c = t0 +maf with t0 between 0 and 1 and
ma between 3× 10−4 and 2× 10−3.
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Figure 5. Non-assigned and Assigned Regular City Net
TrafficExample(’Regular City’,4,5,0.09)

Figure 6. Non-assigned and Assigned Regular City Net
TrafficExample(’Regular City’,5,6,15)

Figure 7. Non-assigned and Assigned Sioux Falls Net
TrafficExample(’Sioux Falls’)

Figure 8. Non-assigned and Assigned Steenbrink Net
TrafficExample(’Steenbrink’)

5. Algorithms

Let us describe briefly the algorithm used to compute Wardrop algo-
rithm which have been implemented. Logit assignment correspond to ex-
plicit formula given in the section “Traffic Assignment” the corresponding
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equilibrium uses a method of successive average described in the subsection
“Stochastic Equilibrium” the corresponding algorithm are implemented in
the functions

• MSA method of successive average in deterministic case,
• LogitNE method of successive average in logit case,
• MSASUE method of successive average in probit case.

5.1. All or Nothing algorithm : AON. When the times spends on the
arcs do not depend of the flows on the arcs, the problem may be reduced to
compute the routes with smallest the travel time from each pair pq in C.

5.2. Incremental Loading Heuristic : IA. The demand is splitted in a
sum of elementary demands. Each elementary demand is assigned using the
AON algorithm after a fresh evaluation of the travelling time based on the
previous loadings.

The assignment obtained by this method does not correspond in general
to a Wardrop Equilibrium.

5.3. Newton Method for the arcs-nodes variational formulation :
WardropN, (’NwtArc’). Using the nodes-arcs formulation, introducing the
dual variable V associated to the conservation law written AF = D, and
denoting 1/2F ′RF the quadratic criterium to be minimized, we obtain the
optimality conditions :

AR−1 max(A′V, 0) = D , F = R−1 max(A′V, 0) .

As soon as the network is strongly connected the first equation defines V up
to a constant. It can be computed efficiently by a Newton method which is
not globally convergent. F is unique and may be deduced from V using the
second equation.

Using relaxation algorithm this method had been adapted for general
costs to the multicommodity case.

It seems to be efficient when the number of commodities is not very large
and when the flow depending part of the travel time dominates its fixed
part.

5.4. Frank-Wolfe algorithm : FW. The nodes-arcs formulation is used.
The current assignment is improved according to :

• Given the flows Fa, the travel times ta(Fa) are computed and a AON
assignment F ′ is done.

• The new assignment becomes λF + (1− λ)F ′ :

min
1≥λ≥0

(∑
a

ca

(
λFa + (1− λ)F ′

a

))
, ca(Fa) =

∫ Fa

0
ta(q) dq .

It is the most common used algorithm. It may be slow because it is a
first order method but it is not very memory consuming therefore it can be
applied to large networks.
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5.5. Disaggregated Simplicial Decomposition : DSD. This algorithm
have been proposed by Larsson-Patriksson [6].

The nodes-routes formulation is used.

• At starting time, all the demand of a commodity is assigned to only
one route by an AON algorithm.

• At each iteration, for all commodity, the shortest route (based on
the current flow) is added to a set of memorized routes.

• The improved assignment is obtained by optimizing the flow on the
memorized routes by a diagonalized Newton method.

Using the variables λpqr which gives the proportion of the demand as-
signed to the route r for the commodity pq we have

fr = λpqr dpq .

the arc flow on a is :
Fa =

∑
pq

dpq

∑
r∈Ra

pq

λpqr .

The cost function becomes :

T (λ) =
∑
a∈A

ca

∑
pq

dpq

∑
r∈Ra

pq

λpqr

 .

To compute the descent direction µ a second order approximation of the
cost T is made:

T (µ) ≈ T (λ) + DT (λ) (µ− λ) + (µ− λ)′ D2T (λ) (µ− λ) ,

where

[DT (λ)]pqr = dpq

∑
a∈r

c′a (Fa) , [D2T (λ)]pqr,p′q′r′ = dpq dp′q′
∑

a∈r∩r′

c′′a (Fa) .

Then the new assignment is obtained by optimizing the quadratic diago-
nal approximation of the cost, that is taking only the diagonal part of the
Hessian :

[D2T (λ)]pqr,pqr = d2
pq

∑
a∈r

c′′a (Fa) .

and solving the linear search :

min
ρ≥0

T (λ + ρµ) ,

where λ denotes the current assigment.

6. Numerical Experiments

All the implementations of the algorithms for this study where on a Pen-
tium III 448.623 MHz computer with 384 MB of internal memory and a
7.4 GB hard disk. The algorithm were tested on networks known from the
literature and over regular network of different sizes. In the tables time is
expressed in seconds.
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6.1. Deterministic Case. All the numerical examples shown here have
some common properties. The best values for the objective function are
reached with the DSD algorithm and at the same time it is the most memory
demanding algorithm because it is a route-based algorithm and in each step
it is store route information using the back node arrays generated in the
shortest path procedure. The CPU time required depends on the considered
example.

The first example is the Steenbrink network. We observe here that DSD is
the most performat algorithm, it arrives to a better value of the cost function
in a time which is largely smaller than the time needed by the other three
algorithms.

Table 1. Steenbrink, nodes=9, links=36, demands=12

Algorithm Iter Time Cost Mem. used Rel. Gap
DSD 5 0.29 1.6957675e+04 2.7e+03 8.245e-05
FW 4325 38.75 1.6958960e+04 2.6e+04 9.995e-05
MSA 4494 19.89 1.6959068e+04 2.2e+04 9.853e-05

NwtArc 30 13.80 1.6957675e+04 2.1e+03 6.475e-05

The second example is the well known numerical example of Sioux Falls.
In this case it is not possible to apply the NwtArc algorithm. Here again
DSD is the best algorithm taking into account computation time and accu-
racy, but it is also the most memory demanding algorithm because it is a
route-based algorithm and in each step it is store route information using
the back node arrays generated in the shortest path procedure.

Table 2. Sioux Falls, nodes=24, links=72, demands=528

Algorithm Iter Time Cost Mem. used Rel. Gap
DSD 10 1.58 4.2313361e+01 6.3e+04 7.656e-05
FW 1789 23.48 4.2316005e+01 1.4e+04 9.999e-05
MSA 13933 181.24 4.2317409e+01 7.1e+04 9.999e-05

The following problem is a slightly different version of Chicago Sketch.

Table 3. Chicago, nodes=546, links=2176, demands=93135

Algorithm Iter Time Cost Mem. used Rel. Gap
DSD 3 127.40 1.6753004e+07 4.7e+06 5.499e-04
FW 33 153.40 1.6753136e+07 4.9e+05 5.781e-04
MSA 137 408.09 1.6757105e+07 1.9e+05 5.489e-04

We can see in the following example the performance of the 4 available
algorithms to make the assignment in the case of few OD pairs. In the
first table the difference between the values of the cost function for each
algorithm are smaller than 1.7e− 5 but the difference in the computational
times is significant.

The algorithm ’NwtArc’, is the most performance one in the case of a
unique OD pair but it becomes less efficient increasing the demand number
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Table 4. Regular City, nodes: 225, links:420, demands:1

Algorithm Iter Time Cost Mem. used Rel. Gap
DSD 28 3.14 2.854915580e+01 1.4e+04 1.353e-04
FW 220 12.55 2.854917233e+01 3.7e+03 5.011e-05
MSA 258 2.86 2.854916956e+01 3.4e+03 9.140e-05

NwtArc 3 0.63 2.854917270e+01 9.3e+03 2.395e-08

as we can see in the following table. The computation are made in a 10×10
regular network.

Table 5. Performance of the NwtArc algorithm

Demand Algo Step Time Cost Memory Relative
Number Used Gap

1 DSD 11 0.59 1.8470456e+01 5.1e+03 6.567e-05
NwtArc 2 0.24 1.8470467e+01 4.6e+03 1.917e-06

2 DSD 14 0.92 3.7870531e+01 5.6e+03 5.010e-05
NwtArc 6 0.71 3.7870529e+01 4.8e+03 8.141e-05

10 DSD 12 1.27 1.6139485e+02 1.4e+04 4.777e-05
NwtArc 8 4.49 1.6139488e+02 5.7e+03 8.415e-05

100 DSD 13 5.56 2.1215788e+03 7.2e+04 5.197e-05
NwtArc 15 97.33 2.1215787e+03 1.6e+04 3.331e-04

900 DSD 15 27.12 6.403253421e+04 2.9e+05 5.112e-04
NwtArc 15 1105.02 6.403153657e+04 1.0e+05 2.870e-04

1000 DSD 15 31.61 7.607687457e+04 3.2e+05 8.147e-04
NwtArc 15

To illustrate the performance of the DSD algorithm compared to FW and
MSA algorithm, we present results of the algorithms applied to a regular
8×8 network, whose sizes are: 64 nodes, 112 links, and 4032 OD pairs. The
following problem is a 8× 8 regular network. .

Table 6. Regular, nodes=64, links=112, demands=4032

Algorithm Iter Time Cost Mem. used Rel. Gap
DSD 6 135.67 5.0910377e+05 3.02e+05 1.2e-05
FW 3000 158.14 5.0911997e+05 2.7e+04 5.3e-05
MSA 3000 136.28 5.0912299e+05 2.4e+04 5.1e-05

In figure (9), the logarithm of the relative error obtained for each algo-
rithm are plotted again the CPU time also in logarithmic scale. The relative
errors are computed with reference to the best value found for the cost func-
tion with the DSD algorithm with a precision of 10−9. The appearance of
figure (9) is the expected one, since FW and MSA are both first order algo-
rithms so they have a similar behavior decreasing like 1/t while the second
order algorithm, DSD, decrease as a power of 1/t.
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Figure 9. log(Rel. error) vs log(time) for the FW, MSA
and DSD algorithms

6.2. Stochastic Case. For the case of stochastic assignment, we present
here some results concerning the relation between the different type of logit
algorithms. We consider the example of a 6 × 6 regular network with all
possible OD pairs. In table (7) we show the results for the computation of
the stochastic equilibrium. If parameter µ is very large, the perception error

Table 7. Stochastic Equilibrium: logit type algorithm comparison

Algorithm Iter Time Cost Mem used Error
Logit DE 147 41.27 6.2391744e+04 1.2e+05 9.922e-04
Logit BE 147 1.67 6.2391775e+04 1.2e+05 9.923e-04
Logit MDE 132 36.41 6.2390267e+04 1.2e+05 9.921e-04
Logit MBE 132 34.52 6.2390281e+04 1.2e+05 9.921e-04

is small and users will tend to select the minimum measure travel-time path,
if µ is small the share of flow on all paths will be equal. We can see this in
figure (10) where the computation were made with a logit-dial algorithm .
The left graphic represents the flow assignment obtained with a µ = 1e + 3,
this flow distribution is the same that is found using the AON algorithm.
The graphic in the right is obtained with µ = 1e − 3, all efficient path are
used and the flow is uniformly distributed among those paths.

In next example we consider a regular city with a unique demand, in this
case all the possible paths joining the origin and destination nodes have
the same cost. If we performe an assignment using the AON algorithm, all
the demand flow is assigned to one path. In the other hand if a logit-type
algorithm is used all the path of equal cost are used.

Finally we present the results of computing the stochastic equilibrium for
a large value of parameter µ with the method of successive average and a bell-
type logit, the obtained flow distribution is very similar to the distribution
obtained by a deterministic assignment performed with the DSD algorithm.
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Figure 10. Logit assignment with µ = 1e + 3 and µ = 1e− 3

Figure 11. AON and Logit assignment in a regular network

The maximum difference flow value is of the same order than the required
precision (See figure 12).

Algorithm Iter Time Cost Mem used Error
Logit BE 147 1.67 6.2391775e+04 1.2e+05 9.923e-04
DSD 3 2.08 6.2379125e+04 5.6e+04 3.666e-05

Table 8. Stochastic and deterministic equilibriums

7. CiudadSim Manual

We give here by alphabetic order all the function and data structures of
CiudadSim. All this documentation is available inline in ascii (by the help
of scilab) and html form in the directory man of CiudadSim.

It is useful also to make hierarchy in these functions. The high level ones
that a user has to know to make an assignment and the low level used by
the high level and useful for developpers

The high level functions and data structures are
• Netlist contains a complete description of the structure of the data-

base.
• TrafficExample to build some example of database.
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161.5 6.5e−03

Figure 12. Stochastic equilibrium assignment and differ-
ence with a deterministic equilibrium assignment

• AddLinks, AddNodes, AddDemands to edit by Scilab programming
the database.

• TrafficAssig to compute the assignment with various algorithms
for various modelling.

• ShowNet, ShowLinks, ShowDemands to visualize the datas or the
assignment.

• ExportMI, MI2Scilab to export a net to Mapinfo and to import a
net from Mapinfo.

All the other functions are low level ones defining assignment algorithms,
facilities or useful intermediary computations.

7.1. AON All or Nothing traffic assignment algorithm.

CALLING SEQUENCE :

[F]=AON(net)
[F]=AON(net,t0)
[F]=AON(tl,hl,t0,nn,origins,td,hd,dd)

PARAMETERS :

net : a NetList,
t0 : row vector, the link travel time (if not given in net)
tl, hl : row vectors, tail and head nodes numbers of the links
nn : node number
origins : origins of the OD pairs
td, hd, dd : row vectors, tail and head nodes numbers of the demands,

and demands values
F : assigned flow

DESCRIPTION :

Assigns the flow with the All or Nothing algorithm. For each OD-pair it
looks for the minimum travel time path and assigns all the demand to this
path. The travel time of the links are given by t0 or by the corresponding
field in net net (net.links.t0). The non feasible OD pairs are ignored.
EXAMPLES :
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net=TrafficExample(’Small’);
F=AON(net)

See Also : AONd 19, IA 24, IAON 25, FW 23, CAPRES 21, TrafficAssig
43

7.2. AONd All or Nothing traffic assignment algorithm.

CALLING SEQUENCE :

[F,f]=AONd(net)
[F,f]=AONd(net,t0)
[F,f]=AONd(tl,hl,t0,nn,origins,td,hd,dd)

PARAMETERS :

net : a NetList,
t0 : row vector, the link travel time (if not given in net)
tl, hl : row vectors, tail and head nodes numbers of the links
nn : node number
origins : origins of the OD pairs
td, hd, dd : row vectors, tail and head nodes numbers of the demands,

and demands values
F : assigned flow
f : assigned flow disaggregated by commodity
DESCRIPTION :

Displays the non feasible OD pairs, if there are some. Those pairs are ig-
nored in the assignment. Assigns the flow with the All or Nothing algorithm.
For each OD-pair it looks for the minimum travel time path and assigns all
the demand to this path. The travel time of the links are given by t0 or by
the corresponding field in net (net.links.t0).
EXAMPLES :

%net=TrafficExample(’Nguyen Dupuis’);
// we can see the Net
ShowNet();
//we add a non feasible OD pair
%net=AddDemands(%net,8,1,10);
ShowNet()
[F,f]=AONd(%net);

See Also : AON 18, IA 24, IAON 25, FW 23, CAPRES 21, TrafficAssig
43

7.3. AddDemands Add demands to a net list.

CALLING SEQUENCE :

AddDemands(td,hd,demand)

PARAMETERS :

%net : global Netlist variable database
19
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td : row vector, tail nodes numbers of the added demands
hd : row vector, head nodes numbers of the added demands
demand : row vector, the values of the added demands

DESCRIPTION :

AddDemands adds demands to %net (the database).
EXAMPLES :

%net=TrafficExample(’Diamond’);
ShowNet()
// Add a new demand from node 3 to node 2 with value 10
// in the net
AddDemands(3,2,10);
// We can see the modifications with
ShowNet()

See Also : IntroTrfAsg 26, NetList 35, AddLinks 20, AddNodes 20,
MakeNet 34, ShowNet 42

7.4. AddLinks Add links to a net list.

CALLING SEQUENCE :

AddLinks(tl,hl,lpp)

PARAMETERS :

%net : The global Netlist variable database
tl : row vector, tail nodes numbers of the added links
hl : row vector, head nodes numbers of the added links
lpp : 4 x nl matrix, travel time function parameters, where nl is the number

of added links

DESCRIPTION :

AddLinks adds links to %net (the database).
EXAMPLES :

%net=TrafficExample(’Diamond’);
ShowNet()
// Add a new link from node 3 to node 4 with lpp=[0;0;1;1]
AddLinks(3,4,[0;0;1;1]);
// We can see the modifications with
ShowNet()

See Also : IntroTrfAsg 26, NetList 35, AddNodes 20, AddDemands
19, MakeNet 34, ShowNet 42

7.5. AddNodes Add nodes to a net list.

CALLING SEQUENCE :

AddDemands(nx,ny)

PARAMETERS :
20
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net : a Netlist
nx : row vector, x coordinates of the added nodes
ny : row vector, y coordinates of the added nodes

DESCRIPTION :

AddNodes adds nodes to %net (the database).
EXAMPLES :

%net=TrafficExample(’Diamond’);
ShowNet()
// Add 2 new nodes with coordinates x=[346,346] and y=[559,-50]
AddNodes([346,346],[559,-50]);
// We can see the modifications with
ShowNet()

See Also : IntroTrfAsg 26, NetList 35, AddDemands 19, AddLinks
20, MakeNet 34, ShowNet 42

7.6. CAPRES Capres traffic assignment algorithm.

CALLING SEQUENCE :

[f,ta]=CAPRES(net)

PARAMETERS :

f : assigned flow (disaggregated by commodity)
ta : times for the current assigned flow
net : a NetList

DESCRIPTION :

Assigns the flow with the CAPRES algorithm. As in the IAON successive
AON assignments are made, but the number of iterations is fixed to 4 and
instead of using the current travel times, the old travel times are combined
in the same way the flows are.
EXAMPLES :

net=TrafficExample(’Small’);
[f,t]=CAPRES(net);

See Also : AON 18, IAON 25, IA 24, FW 23, TrafficAssig 43

7.7. DSD Disaggregated Simplicial Decomposition algorithm.

CALLING SEQUENCE :

[F,ta,ben,f]=DSD(net,routemax,nFW,eps,list_eps,list_itemax)
[F,ta,f]=dsd(net,routemax,nFW,eps,list_eps,list_itemax)

PARAMETERS :

net : a NetList
routemax : maximum number of general iterations
nFW : number of Frank-Wolfe iterations
eps : general precision
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list eps : array of precisions, Newton method precision, auxiliar precision
and linear search precision

list itemax : array of maximum number of iterations, Newton iterations,
auxiliar iteration and linear search iteration

F : assigned flow
ta : link travel time for the assigned flow f
ben : nix5 matrix (ni number of performed global iterations) benchmark

information
f : assigned flow disaggregated by commodity

DESCRIPTION :

Assigns the flow with the disaggregated simplicial decomposition algorithm.
This algorithm generates at each iteration a new route for each commodity
using AON. The traffic is assigned minimizing the total cost over the gen-
erated routes using a Newton method. The version DSD shows performance
statistics. The version dsd is used mostly inside other algorithms and it
does not displays any information.

The matrix ben contains intermediary informations on the algorithm. For
each iteration it gives the iteration number, time spent, cost, memory used
and an convergence error evaluation.
EXAMPLES :

net=TrafficExample(’Steenbrink’);
// uses the example net Steenbrink
[F,ta,ben,f]=DSD(net,20,0,1e-4,[1e-6,1e-7,1e-8],[2,50,100]);

See Also : AON 18, IAON 25, CAPRES 21, FW 23, TrafficAssig 43

7.8. ExportMI Scilab to MapInfo interface.

CALLING SEQUENCE :

ok=ExportMI(net,name,nameout,disp_option)

PARAMETERS :

net: Scilab variable containing the network
name: the name of the MI source file without extension
nameout: the name of the MapInfo table where the results will be saved
disp option: displaying options.

DESCRIPTION :

This command is meant to display in MapInfo the results obtained for a
network already recovered from mapinfo. It uses an existant MI file named
name and creates two files : one .mif and one.mid.

To see them in MI , they must be imported (table/import), then the
values obtained in Scilab will be in the table associated with the file, and
the width of the arcs will be proportional to the chosen magnitude, flow or
time.

The displaying option is used to specify the magnitude shown in the arcs.
The values for disp option are the strings ’flow’ and ’time’.
EXAMPLE :
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// 1) Choose the example Versailles.
// This network comes from from a MapInfo file
%net=TrafficExample("Versailles");
// 2) Make an assignment
TrafficAssig()
// 3) Translate to mapinfo
ok=Scilab2MI(%net,CS_DIR+"/examples/SGL_Versailles_v",CS_DIR+..

"/examples/man_example")
// 4) Look the content of the variable CS_DIR
// (you need it in MapInfo)
// 5) Open MapInfo and import the tables man_example,
// look for it in CS_DIR then in examples

See Also : ImportMI 25

7.9. FW Frank-Wolfe traffic assignment algorithm.

CALLING SEQUENCE :

[F,ta,ben]=FW(net,kmax,tol)

PARAMETERS :

net : a NetList
kmax : maximum number of iterations
tol : precision
F : assigned flow
ta : link travel time for the assigned flow F
ben : nix5 matrix (ni number of performed iterations) benchmark informa-

tion

DESCRIPTION :

Assigns the flow with the Frank-Wolfe algorithm. After an initial AON as-
signment the link costs are updated and a new assignment is computed. The
new assignment is combined with the previous one in a way that minimizes
the global cost. The algorithm terminates when the number of iterations
kmax is reached or the change in link costs is less than tol. When they are
not given tol and kmax have the default values 1e-6 and 20.

The matrix ben contains intermediary informations on the algorithm. For
each iteration it gives the iteration number, time spent, cost, memory used
and an convergence error evaluation.
EXAMPLES :

net=TrafficExample(’Small’);
/// generates a network with 4 nodes, 9 arcs and 2 OD-pairs
[F,ta,ben]=FW(net);

See Also : AON 18, IAON 25, CAPRES 21, DSD 21, TrafficAssig 43
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7.10. Graph2Net Recovers the net from a graph.

CALLING SEQUENCE :

net=Graph2Net(g,nf)

PARAMETERS :

g : graph-list
nf : integer between 0 and 6, chooses the travel time formula
net : a NetList

DESCRIPTION :

Graph2Net recovers the NetList from a graph-list. In order to distinguish
the demands and links arcs, the following color conventions must be satisfied
in the graph:

• the links arcs must have color 1 (black),
• the demands arcs must have the color 6 (cyan).

After saving an edited traffic network (shown with ShowNet) in a sci-
graph window we get a graph-list that we can transform in a NetList with
Graph2Net.
EXAMPLES :

%net=TrafficExample(’Empty’);
ShowNet()
// Now you can edit in the scigraph window following the
// color conventions to distinguish the demands from
// the links and then save the graph.
g=load_graph(’name.graph’);
%net=Graph2Net(g); // By default nf=6
// You can check if the net is the same you saved.
ShowNet()

See Also : IntroTrfAsg 26, TrafficExample 45, ShowNet 42

7.11. IA Incremental traffic assignment algorithm.

CALLING SEQUENCE :

[f,ta]=IA(net,k)

PARAMETERS :

net : a NetList
k : number of iterations of the algorithm
f : assigned flow (disaggregated by commodity)
ta : row vector of reals, current time for the assigned flow f

DESCRIPTION :

Assigns the flow with the Incremental Assignment algorithm. Each origin-
destination flow is divided into k equal parts. Each part is assigned by AON.
The link costs are updated using the travel time functions of the assigned
flow f.
EXAMPLES :
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net=TrafficExample(’Small’);
[f,ta]=IA(net,10);

See Also : AON 18, IAON 25, CAPRES 21, FW 23, TrafficAssig 43

7.12. IAON Iterated All or Nothing traffic assignment
algorithm.

CALLING SEQUENCE :

[f,ta,ben]=IAON(net,k)

PARAMETERS :

net : a NetList
k : number of iterations of the algorithm
f : assigned flow (disaggregated by commodity)
ta : row vector of reals, current time for the assigned flow
ben : a kx5 matrix benchmark information

DESCRIPTION :

Assigns the flow with the Iterated All or Nothing heuristic. Starting with a
feasible flow assigned with AON the link costs are calculated with the travel
time functions. The AON assignment is made now with the computed costs
and then the costs are recomputed for the new assignment. This process is
repeated until there is no change in the re-calculated costs or the number of
iterations k is reached.

The matrix ben contains intermediary informations on the algorithm. For
each iteration it gives the iteration number, time spent, cost, memory used
and an convergence error evaluation.
EXAMPLES :

net=TrafficExample(’Small’);
[f,ta,ben]=IAON(net,10)

See Also : AON 18, IA 24, FW 23, CAPRES 21, TrafficAssig 43

7.13. ImportMI MapInfo to scilab interface.

CALLING SEQUENCE :

[net,color,Bidir]=ImportMI(name)

PARAMETERS :

net : Netlist structure : the resulting network
color : a vector with the color of the links
Bidir : a sparse matrix

DESCRIPTION :

The purpose of the MapInfo interface is to facilitate the input of the geo-
graphical data into the CiudadSim Toolbox and to provide a nicer way of
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displaying the results obtained after the assignment. There are two com-
mands : ImportMI (to translate from MI to Scilalb) and ExportMI (to
translate from Scilab to MI).

The MapInfo files must created, for that do:
• In MapInfo, open the file MI empty.tab located in the directory ex-

amples of the MCiudadSim toolbox.
• Save it with another name to be able to modify it.
• Close the MapInfo table MI empty and open the one you created.
• Make the layer editable.
• Press the F key to enter in the fusion mode
• Draw the arcs as polylines.
• Export the table to obtain two files one .mif and other .mid .

Important Remarks :
(1) The extreme of the arcs will be considered as nodes so if you want

that two arcs share the same node is important to draw it like that.
That’s why the Fussion mode is important, when the pointer is over
an already defined node it will change into a cross.

(2) The style of the polyline is used to differentiate one-way and two-
ways links. The two-ways links can have any style but one-way links
must have style 2. Each two-way link in MapInfo corresponds to two
one-way links in Scilab. This correspondance is found in the sparse
matrix Bidir.

(3) The links can be given different colors, these colors will be in the
output as the vector color, it can be useful to differentiate subsets
of links.

EXAMPLES :

// MapInfo translation from the files
// - SGL_Versailles_v.mid
// - SGL_Versailles_v.mif
// Regular town example with four modes and two classes.
[%net,color,Bidir]=ImportMI(CS_DIR+..

"/examples/SGL_Versailles_v");
// Show the translated arcs in Scilab
ShowNet()

See Also : ExportMI 22

7.14. IntroTrfAsg Introduction to the Traffic Assignment
Toolbox.

DESCRIPTION :

The purpose of the toolbox is to solve traffic assignment problems. A good
reference is Michael Patriksson’s book “The Traffic Assignment Problem,
Models and Methods”.

To define the problem we need :
(1) The Traffic Network : an oriented graph G where nn nodes represent

places or cities, and na arcs represent links or roads.
26



LogitB CiudadSim Function

(2) The Link Performance Functions (also known as travel time func-
tions): the travel time as a function of the flow in the arc. Seven
formulae are used needing 4 parameters. Once a formula is chosen
for the whole network, the parameters are defined in a 4×na matrix.

(3) The Origin-Destination traffic demand pairs (OD-pairs also called
commodities) are given by an initial node, a final node and a flow.
The nd OD-pairs are defined by a 3×nd matrix.

All the data are stored in a scilab global variable %net which is a structure
called a NetList that plays the role of a geographic data basis which can
be visualized by ShowNet and edited inside “metanet” or “scigraph”. This
NetList is build by MakeNet.

The traffic assignment is computed by TrafficAssig. The results are
stored in the Geographic Data Basis and can be visualized with ShowNet.
See Also : NetList 35, MakeNet 34, ShowNet 42, TrafficAssig 43

7.15. LogitB Logit equilibrium ( Bell Method ).

CALLING SEQUENCE :

[F]=LogitB(A,D,theta)

PARAMETERS :

A : nxn nodesxnodes matrix of travel times
D : nxn nodesxnodes matrix of demand flows
theta : stochasticity parameter
F : nxn nodesxnodes assigned flow matrix

DESCRIPTION :

Compute the logit traffic assignment by the Bell method where all the
routes are considered and not only the efficient ones (see LogitD).

To each route r on the graph defined by the matrix A is associated a
weight e−θl with θ = theta where l denotes the the total travel time on the
route r. The flow for each demand defined by the matrix D is assigned on a
route proportionally to its weight.

The graph must be strongly connected. If it is not the case we can add ar-
tificial arcs with large travel time in such a way that the new graph becomes
strongly connected.

The variable theta must be large enough to insure that the weight of
routes with an infinite number of links are finite.
EXAMPLES :

// Graph generation (the graph must be stongly connected),
// n is the number of nodes, m the number of arcs.
n=10; m=40;
c1=m/(n*n);
A=sprand(n,n,c1)+diag(sparse(ones(n-1,1)),1);
A(n,1)=1;A=A-diag(diag(A));
// Demand generation, p is the number of demand.
p=30; c2=p/(n*n);D=sprand(n,n,c2);D=D-diag(diag(D));
//theta definition (almost determinsitic)
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theta=10;
// Flow calculation
FD=LogitB(A,D,theta)

See Also : LogitD 28, LogitMB 29, LogitMD 29, LogitN 30, LogitNE
31, TrafficAssig 43

7.16. LogitD Logit equilibrium ( Dial Method ).

CALLING SEQUENCE :

[F]=LogitD(A,D,theta)

PARAMETERS :

A : nxn nodesxnodes matrix of travel times
D : nxn nodesxnodes matrix of demand flows
theta : stochasticity parameter
F : nxn nodesxnodes assigned flow matrix

DESCRIPTION :

Compute the logit traffic assignment by the Dial method where efficient
routes are the ones which never go back towards the origin.

To each efficient route r on the graph defined by the matrix A is associated
a weight e−θl where l denotes the the total travel time on the route r.
The flow for each demand defined by the matrix D is assigned on a route
proportionally to its weight.

The graph must be strongly connected. If it is not the case we can add ar-
tificial arcs with large travel time in such a way that the new graph becomes
strongly connected.

EXAMPLES :

// Graph generation (the graph must be stongly connected),
// n is the number of nodes, m the number of arcs.
n=10; m=40;
c1=m/(n*n);
A=sprand(n,n,c1)+diag(sparse(ones(n-1,1)),1);
A(n,1)=1;A=A-diag(diag(A));
// Demand generation, p is the number of demand.
p=30; c2=p/(n*n);D=sprand(n,n,c2);D=D-diag(diag(D));
//theta definition (almost determinsitic)
theta=10
// Flow calculation
FD=LogitD(A,D,theta)

See Also : LogitB 27, LogitMB 29, LogitMD 29, LogitN 30, LogitNE
31, TrafficAssig 43
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7.17. LogitMB Logit equilibrium ( Markov Bell Method ).

CALLING SEQUENCE :

[F]=LogitMB(A,D,theta)

PARAMETERS :

A : nxn nodesxnodes matrix of travel times
D : nxn nodesxnodes matrix of demand flows
theta : stochasticity parameter
F : nxn nodesxnodes assigned flow matrix
DESCRIPTION :

Compute the logit traffic assignment by the Markov method where on each
road at each crossing we have to choose a link among the links leaving this
crossing including the ones coming back to the origin.

A Markov chain is defined by normalizing the following transition matrix
Wij = e−θ(Lj+Aij−Li) where Lj denotes the smallest traveling time from j
to the destination of the considered demand. The flow is assigned propor-
tionally to the probability to use an arc before reaching the destination of
the demand for the markov chain starting at the origin of the demand with
a probability 1.

The graph must be strongly connected. If it is not the case we can add ar-
tificial arcs with large travel time in such a way that the new graph becomes
strongly connected.
EXAMPLES :

// Graph generation (the graph must be stongly connected)
// n is the number of nodes, m the number of arcs
n=10; m=40;
c1=m/(n*n);
A=sprand(n,n,c1)+diag(sparse(ones(n-1,1)),1);
A(n,1)=1;A=A-diag(diag(A));
// Demand generation, p is the number of demand.
p=30;c2=p/(n*n);D=sprand(n,n,c2);D=D-diag(diag(D));
//theta definition (almost determinsitic)
theta=10
// Flow calculation
FD=LogitMB(A,D,theta)

See Also : LogitD 28, LogitB 27, LogitMD 29, LogitN 30, LogitNE
31, TrafficAssig 43

7.18. LogitMD Logit equilibrium ( Markov Dial Method ).

CALLING SEQUENCE :

[F]=LogitMB(A,D,theta)

PARAMETERS :

A : nxn nodesxnodes matrix of travel times
D : nxn nodesxnodes matrix of demand flows
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theta : stochasticity parameter
F : nxn nodesxnodes assigned flow matrix

DESCRIPTION :

Compute the logit traffic assignment by the Markov method where on each
road at each crossing we have to choose a link among the efficient links
leaving this crossing excluding the ones coming back to the origin.

A Markov chain is defined by normalizing the following transition matrix
Wij = e−θ(Lj+Aij−Li) where Lj denotes the smallest traveling time from j to
the destination of the considered demand defined only on the efficient links.
The flow is assigned

proportionally to the probability to use an arc before reaching the des-
tination of the demand for the markov chain starting at the origine of the
demand with a probability 1.

The graph must be strongly connected. If it is not the case we can add ar-
tificial arcs with large travel time in such a way that the new graph becomes
strongly connected.
EXAMPLES :

// Graph generation (the graph must be stongly connected)
// n is the number of nodes, m the number of arcs
n=10; m=40;
c1=m/(n*n);
A=sprand(n,n,c1)+diag(sparse(ones(n-1,1)),1);
A(n,1)=1;A=A-diag(diag(A));
// Demand generation, p is the number of demand.
p=30; c2=p/(n*n);D=sprand(n,n,c2);D=D-diag(diag(D));
//theta definition (almost determinsitic)
theta=10
// Flow calculation
FD=LogitMD(A,D,theta)

See Also : LogitD 28, LogitB 27, LogitMB 29, LogitN 30, LogitNE
31, TrafficAssig 43

7.19. LogitN Net Logit Assignment.

CALLING SEQUENCE :

LogitN(theta,method)

PARAMETERS :

theta : stochasticity parameter
method : macro among LogitB, LogitD, LogitMB, LogitMD
%net global variable NetList variable database

DESCRIPTION :

Compute the logit traffic assignment using a method among LogitB, LogitD,
LogitMB, LogitMD the travel time is taken in %net.links.time and the as-
signed fow is put in the field %net.links.flow of the variable %net which
is a NetList which must be declared global.
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EXAMPLES :

// Graph generation (the graph must be stongly connected)
%net=TrafficExample(’Steenbrink’);
//theta definition (almost deterministic)
theta=10;
// Flow calculation
LogitN(theta,LogitMB)
ShowNet()

See Also : LogitD 28, LogitB 27, LogitMB 29, LogitMD 29, LogitNE
31, TrafficAssig 43

7.20. LogitNE Net Logit Equilibrium.

CALLING SEQUENCE :

bench=LogitNE(theta,method,eps,Niter,Num)

PARAMETERS :

theta : stochasticity parameter
method : macro among LogitB, LogitD, LogitMB, LogitMD
eps : convergence error test
Niter : maximal number of iteration
Num : number of iteration already done
bench : niter x 5 matrix
%net : global NetList variable database

DESCRIPTION :

Compute the logit traffic equilibrium using a logit method among LogitB,
LogitD, LogitMB, LogitMD the travel time is taken in %net.links.time
and the assigned flow is put in the field %net.links.flow of the variable
%net which is a NetList which must be declared global.

The equilibrium is computed by a divergent series method Fn+1 = Fn(1−
ρn) + ρnf where f is the new assigned flow computed with the travelling
time associated to the flow Fn, with ρn = 1/(n + 1).

If %net.gp.verbose=%T convergence informations are displayed. These
informations are returned by the function in the variable bench.

The matrix %net.gp.bench contains intermediary informations on the
algorithm. For each iteration it gives the iteration number, time spent,
cost, memory used and an convergence error evaluation.
EXAMPLES :

// Graph generation (the graph must be stongly connected)
%net=TrafficExample(’Steenbrink’);
//theta definition (almost deterministic)
theta=10
// Flow calculation
LogitNE(theta,LogitMD,1.e-6,30,0)
ShowNet()
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See Also : LogitD 28, LogitB 27, LogitMB 29, LogitMD 29, LogitN
30, LogitNELS 32, TrafficAssig 43

7.21. LogitNELS Net Logit Equilibrium (Linear Search).

CALLING SEQUENCE :

bench=LogitNELS(theta,method,eps,Niter)

PARAMETERS :

theta : stochasticity parameter
method : macro among LogitB, LogitD, LogitMB, LogitMD
eps : convergence error test
Niter : maximal number of iteration
bench : niter x 5 matrix
%net : global variable NetList
%VERBOSE : global boolean variable
% STACKSIZEREF : global integer variable

DESCRIPTION :

Compute the logit traffic equilibrium using a logit method among LogitB,
LogitD, LogitMB, LogitMD the travel time is taken in %net.links.time
and the assigned flow is put in the field %net.links.flow of the variable
%net which is a NetList which must be declared global.

The equilibrium is computed using a linear search based on the corre-
sponding deterministic criteria as approximated Lyapounov function. This
method is valid at least for large theta.

If %net.gp.verbose=%T convergence informations are displayed. These
informations are returned by the function in the variable %net.gp.bench.
EXAMPLES :

// Graph generation (the graph must be stongly connected)
%net=TrafficExample(’Steenbrink’);
//theta definition (almost deterministic)
theta=10
// Flow calculation
LogitNELS(theta,LogitMD,1.e-6,40);
ShowNet()

See Also : LogitD 28, LogitB 27, LogitMB 29, LogitMD 29, LogitN
30, LogitNE 31, TrafficAssig 43

7.22. MSA Method of successive averages.

CALLING SEQUENCE :

[f,ta,ben]=MSA(net,kmax,tol)

PARAMETERS :

net : a NetList
kmax : maximum number of iterations
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tol : precision
f : assigned flow
ta : link travel time for the assigned flow f
ben : a nix5 matrix (ni number of performed iterations) benchmark infor-

mation

DESCRIPTION :

Assigns the flow with a MSA heuristic. After an initial AON assignment the
links costs are updated and a new AON assignment is computed. The new
flow, fk+1 = (1−ρk)fk+ρkyk, where ρk = 1/k, is computed as a combination
of the previous flow fk and an AON assignment yk. This is repeated iteratively
until iteration kmax or until the precision tol is reached.

The matrix ben contains intermediary informations on the algorithm. For
each iteration it gives the iteration number, time spent, cost, memory used
and an convergence error evaluation.
EXAMPLES :

net=TrafficExample(’Steenbrink’);
[f,s,ben]=MSA(net,15,1e-3);

See Also : AON 18, IAON 25, CAPRES 21, FW 23, TrafficAssig 43

7.23. MSASUE MSA algorithm for Stochastic User
Equilibrium.

CALLING SEQUENCE :

[f,ta,ben]=MSASUE(net,beta,kmax,tol)

PARAMETERS :

net : a NetList
beta : variance of the perceived travel time over a road segment of unit

travel time
kmax : maximum number of iterations
tol : precision
f : assigned flow (disaggregated by commodity)
ta : link travel time for the assigned flow f
ben : a nix5 matrix (ni number of performed iterations) benchmark infor-

mation

DESCRIPTION :

Assigns the flow with a MSA heuristic using a Probit-based model in each
iteration. After an initial Probit assignment the links costs are updated and
a new Probit assignment is computed using flow dependent travel times. The
new flow, fk+1 = (1−1/k)fk +(1/k)yk, is computed as a combination of the
previous flow fk and a Probit assignment yk. This is repeated iteratively
until iteration kmax or until the precision tol is reached.

The matrix ben contains intermediary informations on the algorithm. For
each iteration it gives the iteration number, time spent, cost, memory used
and an convergence error evaluation.
EXAMPLES :
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net=TrafficExample(’Small’);
[f,s,ben]=MSASUE(net,1,15,1e-3);

See Also : Probit 38, MSA32, FW 23, DSD 21, TrafficAssig 43

7.24. MakeNet Makes a net list.

CALLING SEQUENCE :

net=MakeNet(nn,nx,ny,tl,hl,nf,lpp,td,hd,demand)

PARAMETERS :

nn : integer, the number of nodes in the net
nx : row vector, x coordinates of the nodes
ny : row vector, y coordinates of the nodes
tl : row vector, tail nodes numbers of the links
hl : row vector, head nodes numbers of the links
nf : integer between 0 and 6, travel time function formula
lpp : 4×nl matrix, travel time function parameters, where nl is the number

of links
td : row vector, tail nodes numbers of the demands (its size is the number

of commodities)
hd : row vector, head nodes numbers of the demands
demand : row vector, demand flows
net : a NetList

DESCRIPTION :

MakeNet makes a net list according to its arguments.
EXAMPLES :

// Coordinates for the nodes
nx=[500 10 500 900]
ny=[10 300 600 300]
// tail and head vectors for the links
tl=[1 2 3 1 1 3]
hl=[2 3 4 4 3 1]
// link-performance-function parameters
lpp=[1 1 1 1 1 1;1 3 5 2 7 1;1 2 1 2 1 2;2 2 2 2 2 2];
// Creation of the traffic net
%net=MakeNet(4,nx,ny,tl,hl,6,lpp,1,3,10);
// We can see it with
ShowNet()

See Also : NetList 35, ShowNet 42

7.25. Net2Par Parameters from net.

CALLING SEQUENCE :

[g,d,lpp,nf]=Net2Par(net)

PARAMETERS :
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net : a NetList
g : graph-list, graph of the network
d : 3 x nd matrix, tail, head and value of the demands
lpp : 4 x na matrix, data for the link performance functions
nf : integer between 0 and 6, travel time function formula

DESCRIPTION :

Net2Par recovers the data fields from a NetList.
EXAMPLES :

net=TrafficExample(’Sioux Falls’);
[g,d,lpp,nf]=Net2Par(net);

See Also : IntroTrfAsg 26, NetList 35, Par2Net 37, TrafficExample
45

7.26. NetList Traffic Assignment Geographic Data Base.

NETLIST :

All the data needed and obtained in a traffic assignment problem are stored
in a Scilab data structure that we call a NetList which is a typed list defined
by :
tlist([’net’,’gp’,’nodes’,’links’,’demands’],gp,nodes,links,..

demands)

where :
• gp : contains the general properties of the net,
• nodes : contains the nodes parameters
• links : contains the links parameters
• demands : contains the demands parameters

Each one of those elements is itself a typed list.
GP :

• node number : number of nodes in the network
• link number : number of links in the network
• demand number : number of demands (commodities)
• lpf model : integer between 0 and 6 which defines the form of the

link performance function.
• verbose (default %T): boolean when it is true information are given

during assignment algorithm
• algorithm (default ’DSD’): function name defining the algorithm

choosen for the assignment
• NodeDiameter (default 30) : integer used in the graph window for

displaying the network
• NodeBorder (default 1): integer giving thewidth of the circle border

of the node symbols
• FontSize (default 10): integer used in the graph window
• tolerance (default 1e-6): real giving the precision used in algo-

rithms
• theta (default 1): stochasticity parameter for Logit
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• Niter (default 200): integer giving maximal number of iteration
• N0 (default 0): integer giving starting number for Mean Average

Algorithm
• ShowDemands (default %T): boolean when it is true the demands are

shown by ShowNet
• Show (default ’flow’): one of the string ’flow’ ’cost’ or ’time’;

it is used in ShowNet to choose the shown link weights
• bench (default 0): is an array storing the intermediary results com-

puted by the algorithm when gp.verbose=%T this information is
shown also during the computation.

NODES :

• name : string row of node names
• x : real row of the node x-coordinates
• y : real row of the node y-coordinates

LINKS :

• name : string row vector of link names
• tail : integer row vector of tail node numbers of the links
• head : integer row vector of head node numbers of the links
• lpf data : array of 4 rows vectors giving the parameters of the lpf

function of the links
• flow : real row vector of the total flows of the links (0 by default)
• time : real row vector of the time spent in the links
• disaggregated flow : nd x na real matrix of the commodity flows

on the links

DEMANDS :

• name : string row vector of demand names
• tail : integer row vector of tail node numbers
• head : integer row vector of head node numbers
• demand : real row vector of demand flows

EXTRACTING AND INSERTING DATA FROM A NETLIST :

As they are typed lists it is always possible to access to any field using the
access functions, for example the x-coordinates of the nodes is net1.nodes.x
.

LINK PERFORMANCE FUNCTION :
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It is possible to choose among different formulas for the link performance
functions with the value of lpf formula field of gp denoted here nf.

nf = 0 : c = t0 + ma/(caF ) + ma[max(0, F − ca)]ba , with ba ≥ 1

nf = 1 : c = t0e
(F/ca)−1, with ca > 0

nf = 2 : c = t02(F/ca)−1, with ca > 0

nf = 3 : c = t0[1 + 0.15(F/ca)ma ], with ma ≥ 1 and ca > 0

nf = 4 : c = t0 + log(ca)− log(ca − F ), with ca > 0

nf = 5 : c = ba − ca(t0 − ba)/(F − ca), with ca > 0

nf = 6 : c = t0 + caF + maF
ba , with ba > 1

where the t0, ca, ma, ba are the row vectors of the matrix net.links.lpf data

SHOWING THE NET :

When a net is shown, three types of arcs can be seen. The black, light-blue
and cyan.

(1) The black and light-blue arcs correspond to the roads.
• The light blue to those roads with zero flow.
• The black to those with a non zero flow.

(2) The cyan arcs correspond to the OD-traffic demand. These arcs go
from origin to destination.

See Also : IntroTrfAsg 26, MakeNet 34, ShowNet 42

7.27. Par2Net Net from parameters.

CALLING SEQUENCE :

net=Par2Net(g,d,lpp,nf)

PARAMETERS :

net : a NetList
g : graph-list, graph of the network
d : 3xnd matrix, tail, head and value of demands
lpp : 4xna matrix, data for the link performance functions
nf : integer between 0 and 6, travel time function formula

DESCRIPTION :

Par2Net Assembles the data fields in a net.
EXAMPLES :

net=TrafficExample(’Sioux Falls’);
[g,d,lpp,nf]=Net2Par(net);
net2=Par2Net(g,d,lpp,nf)

See Also : IntroTrfAsg 26, NetList 35, Net2Par 34, TrafficExample
45
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7.28. Probit Probit-based stochastic network assignment.

CALLING SEQUENCE :

[f,s,ben]=Probit(net,ta,beta,accuracy,kmax)

PARAMETERS :

net : a NetList
ta : link travel time
beta : variance of the perceived travel time over a road segment of unit

travel time
accuracy : precision
kmax : maximum number of iterations
f : assigned flow (disaggregated by commodity)
s : standard deviation for the assigned flow f

DESCRIPTION :

Assigns the flow with a Probit-based model. In this model the perceived
travel time along any given path is normally distributed with mean ta and
variance beta*ta. The algorithm use to make the assignment is base on a
Monte Carlo simulation of the perceived link travel times.
EXAMPLES :

net=TrafficExample(’Small’);
ta=net.links.lpf_data(1,:);
// uses the example net Small
[f,s,ben]=Probit(net,ta,0.1,0.001,7);

See Also : AON 18, IAON 25, CAPRES 21, FW 23, TrafficAssig 43

7.29. RandomNNet Random generation of traffic network
data.

CALLING SEQUENCE :

net=RandomNNet(nn,mna,var,nd,nf)

PARAMETERS :

nn : number of nodes
mna : mean value of the exterior degree of each node (numbers of leaving

arcs)
var : variance of the exterior degree of each node
nd : number of OD-pairs (origin-destination)
nf : model chosen for the computation of the travel time
net : resulting network

DESCRIPTION :

Generates randomly the data for the Traffic Assignment Problem. For each
node an exterior degree is chosen randomly with a normal distribution of
mean mna and variance var, then the successors are chosen without repeti-
tion. The value of nf indicates the formula chosen for the computation of
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the travel time, by default it is 6. This way of generating randomly the net
if very much slower than RandomNet.
EXAMPLES :

%net=RandomNNet(3,3,1,2);
// generates a network with 3 nodes,2 OD-pairs and form
// each node the number of leaving arcs is normally dis-
// tributed with mean 3 and var 1
ShowNet();

See Also : IntroTrfAsg 26, RandomNet 39, Regular 39, NetList 35,
ShowNet 42

7.30. RandomNet Random generation of traffic network
data.

CALLING SEQUENCE :

net=RandomNet(nn,na,nd,nf)

PARAMETERS :

nn : number of nodes
na : number of arcs
nd : number of OD-pairs (origin-destination)
nf : model chosen for the computation of the travel time
net : the resulting Netlist

DESCRIPTION :

Generates randomly a strongly connected network with nn nodes, (approxi-
mately) na links and (approximately) nd OD pairs. The value of nf indicates
the formula chosen for the computation of the travel time, by default it is
6.
EXAMPLES :

%net=RandomNet(3,5,2);
// generates a network with 3 nodes, 5 arcs and 2 OD-pairs
ShowNet();

See Also : IntroTrfAsg 26, RandomNNet 38, Regular 39, ShowNet 42

7.31. Regular Generation of regular city traffic network
data.

CALLING SEQUENCE :

net=Regular(hs,vs,nd)

PARAMETERS :

hs : integer number of horizontal streets
vs : integer number of vertical streets
nd : non-negative real parameter related to the OD-pairs (origin-destination)
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net : the resulting Netlist

DESCRIPTION :

Generates a NetList consisting in a regular city whose graph is a hs×vs
grid For the link travel time functions, the data is the same for all links and
given by t0=ca=ma, ba=1. The lpf model is 3. It is possible to generated
4 different types of Regular City depending on parameter nd:

• nd=[] : The net has all possible O-D pairs all of them with demand
equal to 1

• nd=1 : There is only one O-D pair joining the most distant nodes.
Demand’s value equal to 1.

• nd ∈ (0, 1) : The parameter nd represent the density of O-D pairs
present in the net. Demands value equal to 1.

• nd>1 : There are nd random demands generated. Demands value in
the interval [0, 15].

EXAMPLES :

%net=Regular(4,5);
// generates a network with 4 horizontal streets
// and 5 vertical streets,
// (20 nodes, 31 arcs) and all possible OD-pairs (343)
ShowNet();
%net=Regular(4,5,1);
// generates only one demand
ShowNet();
%net=Regular(4,5,0.5);
// generates randomly the OD-pairs with density 0.5
ShowNet();
%net=Regular(4,5,7);
// generates 7 random OD-pairs
ShowNet();

See Also : IntroTrfAsg 26, TrafficExample 45, ShowNet 42

7.32. ShowDemands Shows the demands of a net using
Metanet or Scigraph.

CALLING SEQUENCE :

ShowDemands()
ShowDemands(nodes,demands,dmin,dmax)

PARAMETERS :

%net : the global variable NetList database
nodes : string or row vector of integers (nodes)
demands : string or row vector of integers (demands)
dmin,dmax : reals, minimum and maximum demands

DESCRIPTION :

ShowDemands shows the demands of %net that have volumes between dmin
and dmax. All the demands are shown if nothing is indicated)
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EXAMPLES :

%net=TrafficExample(’Steenbrink’);
ShowDemands() // Shows the net
ShowDemands(’all’,’between’,100,200)
ShowDemands(’used’,’between’,100,200)
// Shows the net with the demands between 100 and 200,
// and the used nodes.
ShowDemands(’used’,[1 3 8 12],100,200)
// Shows the given demands with values between 100 and 200

See Also : ShowNet 42, ShowLinks 41, TrafficExample 45, TrafficAssig
43, IntroTrfAsg 26, NetList 35

7.33. ShowLinks Shows the links of a net using Metanet or
Scigraph.

CALLING SEQUENCE :

ShowLinks()
ShowLinks(nodes,arcs,fmin,fmax,tmin,tamx)
ShowLinks(nodes,arcs,fmin,fmax,tmin,tamx,d)

PARAMETERS :

%net : the global NetList varaiable database
nodes : string or row vector of integers (nodes)
arcs : string or row vector of integers (arcs)
fmin,fmax : reals, minimum and maximum flow
tmin,tmax : reals, minimum and maximum time
d : integer, a specific demand

DESCRIPTION :

Similar to ShowNet but it doesn’t show the demands, it only shows the links
of %net that verify the conditions given by the parameters (see ShowNet).
If a demand is indicated, then the flow shown is the corresponding to that
demand.
EXAMPLES :

%net=TrafficExample(’Steenbrink’);
%net.gp.algorithm=’AON’;
TrafficAssig();
ShowLinks() // Shows the net
ShowLinks(’used’,’between’,3000,6000,0,0,3)
// Shows the net with the flow corresponding to demand 3,
// the light blue arcs are not used by the commodity 3
// but by other commodities. The width corresponds to
// the flow of the commodity 3. The arcs not shown have
// total flow less than 3000 or greater than 6000.

See Also : ShowNet 42, ShowDemands 40, TrafficAssig 43, IntroTrfAsg
26, NetList 35
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7.34. ShowNet Show a net using Metanet or Scigraph.
CALLING SEQUENCE :

ShowNet()
ShowNet(nodes,arcs,fmin,fmax,tmin,tamx,demands,dmin,dmax)
ShowNet(nodes,arcs,fmin,fmax,tmin,tamx,demands,dmin,dmax,d)

PARAMETERS :

%net : the global NetList varaible database
nodes : string or row vector of integers (nodes)
arcs : string or row vector of integers (arcs)
fmin,fmax : reals, minimum and maximum flow
tmin,tmax : reals, minimum and maximum time
demands : string or row vector of integers (demands)
dmin,dmax : reals, minimum and maximum demand
d : integer, a demand number

DESCRIPTION :

ShowNet shows the state of the %net with the flow and the travel time if
they are already assigned. The conventions are that the non used arcs are
light blue, the used arcs are black with their width proportional to the flow.
The demands are magenta with their width proportional to the demand
flow. The orientation of the demand arcs is from origin to destination.

It is possible to give a list of nodes, arcs and demands to be shown or a
predefined string

• For the nodes the strings available are : ’all’ representing all the
nodes, and ’used’ representing the nodes used by some route.

• For the arcs the options are ’all’ or ’between’ in this case the flow
limits are the parameters fmin, fmax and the travel time limits are
tmin, tmax.

• For the demands the options are ’all’ or ’between’ in this case
the demand limits are dmin,dmax.

It is also possible to choose a demand in order to show the disaggregated
flow corresponding to a specific commodity. In this case the limits on the
flow given by fmin and fmax corresponds to the total flow but the width
and the colors of the arcs correspond to the disaggregated flow.
EXAMPLES :

%net=TrafficExample(’Steenbrink’);
%net.gp.algorithm=’DSDisaggregated’;
TrafficAssig();
ShowNet() // Shows the net
ShowNet(’used’,’between’,1000,2000,0,0,3,0,10000,3)
// Shows the net with the flow corresponding to demand 3,
// the light blue arcs are not used by the commodity 3
// but by other commodities. The width corresponds to
// the flow of the commodity 3. The arcs not shown have
// total flow less than 1000 or greater than 2000.

See Also : ShowLinks 41, ShowDemands 40, TrafficExample 45,
TrafficAssig 43, IntroTrfAsg 26, NetList 35
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7.35. TrafficAssig Traffic Assignment.

CALLING SEQUENCE :

TrafficAssig(p1,p2,p3)

PARAMETERS :

%net : : global NetList variable containing the Net database
%net.gp.algorithm : string to choose among ’AON’, ’CAPRES’, ’DSD’,

’FW’, ’IA’, ’IAON’, ’MSA’, ’Probit’, ’ProbitE’, ’LogitB’,
’LogitD’, ’LogitMB’, ’LogitMD’, ’LogitBE’, ’LogitDE’, ’LogitMBE’,
’LogitMDE’

p1,p2 p3 : different algorithms’ parameters to change the default ones
given in fields of %net.gp (see NetList).

DESCRIPTION :

Assigns the flow of the traffic network described by the NetList net using
the algorithm selected by algo with the parameters given by p1, p2 and p3
(default in %net.gp) :

• ’AON’ : All or nothing
• ’CAPRES’ : Capres algorithm
• ’DSD’ : Disaggregated simplicial decomposition (only total flow is-

computed). p1: iterations number, p2: precision
• ’DSDisaggregated’ : Disaggregated simplicial decomposition. p1:

iterations number, p2: precision
• ’FW’ : Frank-Wolfe algorithm. p1: iterations number, p2: precision
• ’IA’ : Incremental assignment. p1: iterations number
• ’IAON’ : Iterated all or nothing. p1: iterations number
• ’MSA’ : Method of successive averages. p1: iterations number, p2:

precision
• ’Probit’ : Probit assignment. p1: beta, p2: precision, p3: itera-

tions number
• ’ProbitE’ : MSA algorithm for the stochastic user equilibrium

(MSASUE). p1:beta,
p2: precision, p3: iterations number

• ’LogitB’ : Logit assignment (all paths used not only efficient ones
used)

• ’LogitD’ : Logit assignment (only efficient paths are used)
• ’LogitMB’ : Reiterated first step logit assignment (all paths used

not only efficient ones used)
• ’LogitMD’ : Reiterated first step logit assignment (only efficient

paths are used)
• ’LogitBE’ : Logit equilibrium assignment (all paths used not only

efficient ones used)
• ’LogitDE’ : Logit equilibrium assignment (only efficient paths are

used)
• ’LogitMBE’ : Reiterated first step logit equilibrium assignment (all-

paths used
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not only efficient ones used)
• ’LogitMDE’ : Reiterated first step logit equilibrium assignment

(only efficient paths are used)
• ’NwtArc’ : Newton method bsed on nodes-links formulation (useful

when there are a small number of demands)
The assigned flow, the current travel time and the disaggregated flow are

stored in %net.
It is correct that for some parameters and network some assignment meth-

ods does not succeed to give an assignment. In particular, for Logit method,
the effective domain of the stochasticity parameter is limited and depends
of the network. For some networks and some methods this domain may be
empty (for example LogitB with a zero travel time loop). For Logit method,
the stochasticity parameter must not be too large to avoid numerical diffi-
culties coming from the limited precision of the computation.
EXAMPLES :

//
// To load an editable traffic network graph
//
%net=TrafficExample(’Steenbrink’);
ShowNet();
//
// The black arcs are the roads and the cyan ones are the
// traffic OD demands. We can edit the net (see the net-edition
demo).
//
// To compute the traffic assignment with ’DSD’ algorithm
//
TrafficAssig();
ShowNet();
//
// To show the travel times select :
// GRAPH/Display arc names/Time
//
// It is possible to assign the flow using another algorithm
// for example the incremental assignment denoted ’IA’
//
%net.gp.algorithm=’IA’
%net.gp.Niter=50;
TrafficAssig();
ShowNet();
//
// For Logit assignment, the stochasticity parameter
// is in the field %net.gp.theta (default 1)
//
%net.gp.algorithm=’LogitMD’;
%net.gp.theta=3;
TrafficAssig();
ShowNet();
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See Also : AON 18, CAPRES 21, DSD 21, FW 23, IA 24, IAON 25,
MSA 32, Probit 38, LogitB 27, LogitD 28, LogitMB 29, LogitMD 29,
LogitN 30, LogitNE 31, LogitNELS 32, MSASUE 33, IntroTrfAsg 26,
NetList 35

7.36. TrafficExample Traffic network example.

CALLING SEQUENCE :

net=TrafficExample(’name’,p1,p2,p3,p4)

PARAMETERS :

net : NetList of the traffic network
name : string to choose among ’Braess’, ’Chicago’, ’Diamond’, ’Empty’,

’Nguyen Dupuis’, ’Normal Random City’, ’Random City’, ’Regular
City’, ’Sioux Falls’, ’Small’, ’Steenbrink’, ’Triangle’

p1, p2, p3, p4 : reals needed for examples for ’Regular City’, ’Random
City’ and ’Normal Random City’

DESCRIPTION :

Generates a net-list choosing among many traffic network examples:
• ’Braess’ : 4 nodes, 5 links and 1 demand. Linear travel time

functions.
• ’Chicago’ : 546 nodes, 2176 links and 93135 demands. Real large

example.
• ’Diamond’ : 8 nodes, 14 links and 1 demand, diamond shaped net-

work.
• ’Empty’ : 2 nodes and 1 link graph.
• ’Nguyen Dupuis’ : 13 nodes, 19 links and 4 demands network. Lin-

ear travel time functions.
• ’Normal Random City’ : generated using RandomNNet(p1,p2,p3,p4).
• ’Random City’ : generated using RandomNet(p1,p2,p3,p4).
• ’Regular City’ : generated using Regular(p1,p2,p3).
• ’Sioux Falls’ : 24 nodes, 76 links and 528 demands network.

Travel time functions of power 4.
• ’Small’ : 4 nodes, 9 links and 2 demands network. Quadratic

travel time functions.
• ’Steenbrink’ : 9 nodes, 36 links and 12 demands network. Linear

travel time functions.
• ’Triangle’ : 3 nodes and 6 links network

These examples can be used as starting point to make different networks.

EXAMPLES :

%net=TrafficExample(’Sioux Falls’);
ShowNet()

See Also : RandomNet 39, RandomNNet 38, Regular 39, NetList 35,
TrafficAssig 43
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7.37. WardropN Wardrop equilibrium ( Newton hybrid
method ).

CALLING SEQUENCE :

bench=WardropN(a,k,eps,niter)

PARAMETERS :

a : regularizing coefficient (small number)
k : reducing regularizing coefficient exponential rate (number < 1)
eps : precision of the convergence test (small number)
niter : maximal number of iterations
bench : niter x 5 matrix
%net : global variable NetList

DESCRIPTION :

Compute the Wardrop equilibrium of a transport assignment problem by
solving the following nodes-links variational formulation of the problem :

min
q

∑
l

Cl(fl), fl =
∑

i

qli, Hqi = di, 0 ≤ qli.

where :
• C(f) is a cost in the classes defined by the lpf function,
• H is is the incidence nodes-arcs matrix of the network,
• qli is the flow of the commodity i on the link l,

%net is the netlist containing all the information relative to the network
and the cost function used.

The method used is a decomposed newton method in the space (qi, vi) i =
1, p, where the vi denote the dual variables associated to the constraints
Hqi = di .

The variable a regularizes the matrices giving the potentials. At each
iteration a is reduced by a factor k. We can try first a small a and k = 1.

This method is useful mainly in the case of a small number of commodi-
ties.

The matrix bench contains intermediary informations on the algorithm.
For each iteration it gives the iteration number, time spent, cost, memory
used and an convergence error evaluation.
EXAMPLES :

// Definition of the Network
nw=4;
%net=TrafficExample(’Regular City’,nw,nw);
// Traffic Assignment
bench=WardropN(0.1,2,1.e-4,12);
// Visualization of the NET
ShowNet();

See Also : DSD 21, FW 23, Probit 38, MSASUE 33, LogitNE 31,
LogitNELS 32, TrafficAssig 43
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7.38. dlpf Plot the travel time functions.

CALLING SEQUENCE :

c=dlpf(f0,inc,f1,lpp,nf)

PARAMETERS :

f0 : minimal flow
inc : increment
f1 : maximal flow
lpp : matrix of travel time function parameters
nf : ttf formula
c : matrix of the computed costs

DESCRIPTION :

Plot the travel time functions for the given parameters (lpp) between the
minimal flow f0 and the maximal flow f1 using a step of inc and the formula
nf

EXAMPLES :

net=TrafficExample(’Small’);
[g,d,lpp]=Net2Par(net);
// To show the function with the different parameters
dlpf(0.1,.01,2,lpp,6);

See Also : IntroTrfAsg 26, TrafficExample 45, lpf 47

7.39. lpf Travel time functions.

CALLING SEQUENCE :

[ta,dta,cta]=lpf(F,lpp,nf)

PARAMETERS :

F : row vector of flows in each arc
lpp : parameters of the travel time functions (ttf) for each arc
nf : model for the ttf
ta : travel time of each arc for the given flow
dta : derivate of the ttf for the given arc flow
cta : integral of the ttf for the given arc flow

DESCRIPTION :

Computes the travel time of each arc for the given flow using the travel
time functions with parameters lpp and formula nf. Each colum of lpp
is of the form [t0; ca; ma; ba] where the coefficients t0 is the free-flow
travel time and ca the practical capacity of the link. Associated to the nf
number correspond a formula giving the travel time see NetList for the
precise definition of these formulas.
EXAMPLES :
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net=TrafficExample(’Small’);
[g,d,lpp,nf]=Net2Par(net);
F=rand(1,9);
[ta,dta,cta]=lpf(F,lpp,nf)
// shows the function with the different parameters
dlpf(0.1,.01,5,lpp,6);

See Also : IntroTrfAsg 26, TrafficExample 45, dlpf 47
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