Avertissement

Ce document contient l'essentiel d'une présentation effectuée lors de la 11ème Conférence Internationale sur l'Analyse et l'Optimisation des Systèmes, 15–17 juin 1994 à Sophia-Antipolis (actes publiés dans la série Lectures Notes on Control and Information Systems, Vol. 199, G. Cohen et J.-P. Quadrat (Eds.), Springer-Verlag).

Il a été ensuite légèrement remanié et complété à l'occasion d'une nouvelle présentation au groupe de travail "Algèbres tropicales et applications aux systèmes à événements discrets et à la commande optimale" commun au GdR/PRC AMI et Automatique réuni les 6–7 juin 1996 à Paris.

Guy Cohen, 7 juin 1996

Dioids and Discrete Event Systems

Guy Cohen

Centre Automatique et Systèmes École des Mines de Paris and INRIA-Rocquencourt France

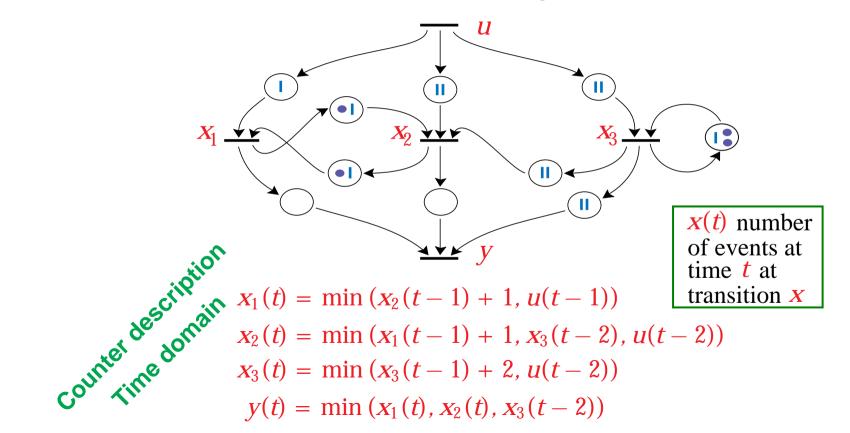
Contributed by the Max Plus working group INRIA Jean-Pierre Quadrat, Stéphane Gaubert, Michel Viot, Marianne Akian, Ramine Nikoukhah, Pierre Moller, Didier Dubois... Where the Max-Plus or the Min-Plus Algebra May Pop Up

Dioid Theory

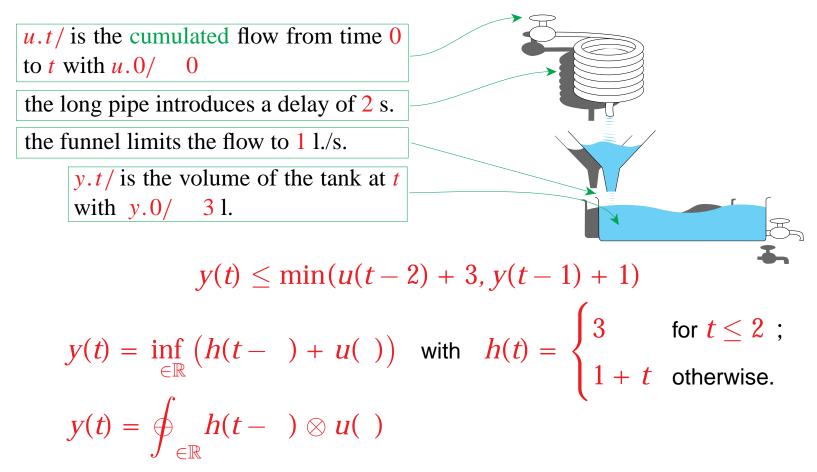
Descriptions of Timed Event Graphs

A Quick Review of Some System-Theoretic Results for Timed Event Graphs

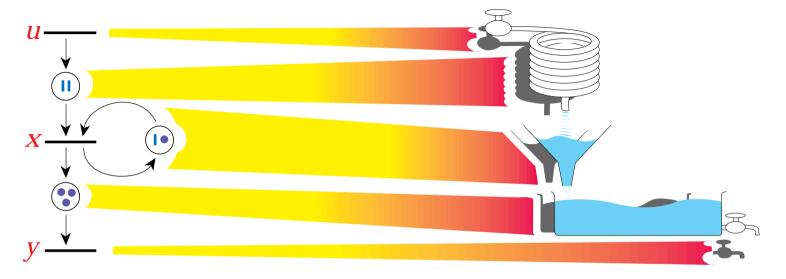
Timed Event Graphs



A continuous (linear?) system



An event graph analogue



$y(t) \leq \min(u(t-2) + 3; y(t-1) + 1)$

Min-Plus Linearity

$$\begin{array}{ll} \text{if} & u(\cdot) \mapsto y(\cdot) & \text{and} & v(\cdot) \mapsto z(\cdot), \\ \\ \text{then} & \min\left(u(\cdot), v(\cdot)\right) \mapsto \min\left(y(\cdot), z(\cdot)\right) \ \text{(pointwise min)} \\ \\ \text{and} & a + u(\cdot) \mapsto a + y(\cdot) & \text{for any constant } a \end{array}$$

Min-plus linear systems can be combined

serially (inf-convolution)in parallel (pointwise min)in feedback ('star' operation)

Dynamic Programming: a Linear Process

Optimal control problem

$\min \sum_{t=0}^{T-1} c(u(t)) + (x(T)) \quad \text{s.t.} \quad x(t+1) = x(t) - u(t) \quad ; \quad x(0) = w$

The corresponding dynamic programming equation reads

$$V(x;t) = \inf_{y} (c(x-y) + V(y;t+1)) = \oint_{y} c(x-y) V(y;t+1)$$
$$V(x;T) = (x)$$

Hence, the Bellman function V appears as the result of the iterated inf-convolution of the 'initial' value `by the 'kernel' *c*. As such,

V is a min-plus linear function of $\hat{}$.

Asymptotic Exponentials

For $f : \mathbb{R} \to \overline{\mathbb{R}}^+$ let $c : f \to \limsup_{x \to +\infty} \log(f(x))/x$ If $f = \sum_{i \in I} i \exp(a_i x)$, $i \in \mathbb{R}^+$, $a_i \in \overline{\mathbb{R}}$ then $c(f) = \max_{i \in I} a_i$

$$c(f + g) = \max(c(f), c(g))$$
$$c(f \times g) = c(f) + c(g)$$

asymptotic Bode plots

large deviations in probability theory

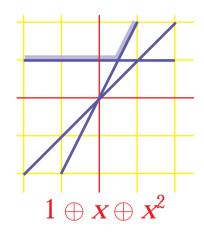
Relevance

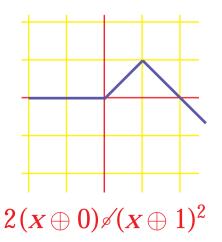
Convexity

Polynomial in one variable X with coefficients in \mathbb{R}_{max}

 $p(x) = \bigoplus_{i} a_{i} x^{i}$ Since $x^{i} = x \otimes \cdots \otimes x = x + \cdots + x = i \times x$ then $p(x) = \max_{i} (i \times x + a_{i})$ As a numerical function, $p(\cdot)$ is piecewise linear convex nondecreasing.

Rational functions are differences of the previous convex functions.





Where the Max-Plus or the Min-Plus Algebra May Pop Up

Dioid Theory

Descriptions of Timed Event Graphs

A Quick Review of Some System-Theoretic Results for Timed Event Graphs **Dioid:** Set \mathfrak{D} endowed with two operations denoted \oplus and \otimes $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ Associativity of addition $a \oplus b = b \oplus a$ COMMUTATIVITY OF ADDITION ASSOCIATIVITY OF MULTIPLICATION $(a \otimes b) \otimes c = a \otimes (b \otimes c)$ DISTRIBUTIVITY OF MULTIPLICATION W.R.T. ADDITION $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$ $c \otimes (a \oplus b) = (c \otimes a) \oplus (c \otimes b)$ EXISTENCE OF A ZERO ELEMENT " $a \oplus " = a$ $a \otimes " = " \otimes a = "$ Absorbing zero element EXISTENCE OF AN IDENTITY ELEMENT $e \qquad a \otimes e = e \otimes a = a$ **IDEMPOTENCY OF ADDITION** $a \oplus a = a$

Symmetry?

Suppose that a has an opposite element b such that

$$a \oplus b = "$$

then	$a \oplus a \oplus b = a$
hence	$a \oplus b = a$
thus	"= a

Commutative dioid

Complete dioid

 \top (sum of all elements of \mathfrak{D}) absorbing for addition

 $\top \otimes$ " = "

Order Structure

Theorem $\{a = a \oplus b\} \Leftrightarrow \{\exists c : a = b \oplus c\}$ $(a \succeq b \text{ if } a = a \oplus b) \text{ defines a (partial) order relation compatible with addition and multiplication, i.e. if <math>a \succeq b$, then, for all $c, a \oplus c \succeq b \oplus c$ and $ac \succeq bc$ (and $ca \succeq cb$). For any two elements a and b in $\mathfrak{D}, a \oplus b$ is their least upper bound.

A dioid is a sup-semilattice having a 'bottom' element $\$. If the dioid is complete, this sup-semilattice can be completed to a lattice by the following classical construction of the greatest lower bound $a \wedge b$

$$a \wedge b = \oint_{\substack{x \leq a \\ x \leq b}} x$$

Archimedian dioid

 $\forall a \neq "$; $\forall b$; $\exists c$ and d: $ac \succeq b$ and $da \succeq b$

Theorem In a complete Archimedian dioid, \top is absorbing for \otimes

Distributive dioid

 \mathfrak{D} is complete and, for all subsets \mathfrak{C} of \mathfrak{D} ,

$$\left(\bigwedge_{c\in\mathbb{C}}c\right)\oplus a=\bigwedge_{c\in\mathbb{C}}(c\oplus a)\;\;;\;\;\left(\bigoplus_{c\in\mathbb{C}}c\right)\wedge a=\bigoplus_{c\in\mathbb{C}}(c\wedge a)$$

 \oplus and \wedge do not play symmetric roles since distributivity of \otimes with respect to \wedge is not always granted

 $\mathbb{R}_{\max} = (\mathbb{R} \cup \{-\infty\}, \max, +) (\mathbb{Z}_{\max}, \mathbb{Q}_{\max}, \tilde{E})$ $\mathbb{R}_{\min} = (\mathbb{R} \cup \{+\infty\}, \min, +)$ isomorphic to \mathbb{R}_{\max} by $x \mapsto -x$ \mathbb{R}_{\max} isomorphic to $(\mathbb{R}^+, \max, \times)$ by $x \mapsto \exp(x)$ $(\overline{\mathbb{R}}, \max, \min)$ Boole algebra ($\{, e\}, \max, \min$) $\left(2^{\mathbb{R}^2},\cup,+
ight)$ $(\{(-\infty, x]\}, \cup, +)$ isomorphic to \mathbb{R}_{\max} by the bijection $\mathbb{R} \to 2^{\mathbb{R}} : x \mapsto \begin{cases} \varnothing & \text{if } x = \\ (-\infty, x] & \text{otherwise} \end{cases}$

Properties

 \mathbb{R}_{max} not complete, $\overline{\mathbb{R}}_{max}$, $\overline{\mathbb{Z}}_{max}$ complete, $\overline{\mathbb{Q}}_{max}$ not complete!

 \mathbb{R}_{\min} order reversed with respect to natural order

 $(\mathbb{R}^+, \max, \times)$ more convenient than \mathbb{R}_{\max} to make drawings $(\overline{\mathbb{R}}, \max, \min)$ not Archimedian

Boole algebra : you practiced dioids before you knew them!

 $(2^{\mathbb{R}^2}, \cup, +)$ partially ordered order is given by inclusion lower bound is given by intersection multiplication does not distribute with respect to lower bound

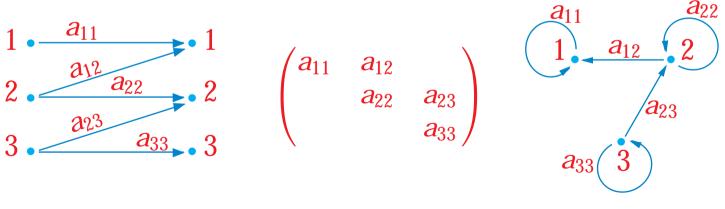
Matrix Dioids

 $\mathfrak{D}^{n \times n}$: square $n \times n$ matrices with entries in \mathfrak{D}

with sum and product of matrices defined conventionally

 $\mathfrak{D}^{n \times n}$ not commutative, partially ordered, complete if \mathfrak{D} is, distributive, not Archimedian

Graph-Theoretic Interpretation



transition graph

precedence graph

Polynomials and Power Series

 $\mathfrak{D}[z_1, \ldots, z_m]$ power series in z_1, \ldots, z_m with coefficients in \mathfrak{D} (complete) and with exponents in \mathbb{N} or in \mathbb{Z} $\mathfrak{D}[z_1, \ldots, z_m]$ subdioid of polynomials

Formal polynomials are not isomorphic to their associated numerical functions. 8 associates numerical functions with formal polynomials: homomorphism

(for pointwise \oplus and \otimes of numerical functions) but not isomorphism.

$$\{a(t)\}_{t\in\mathbb{Z}}$$
 in $\overline{\mathbb{R}}_{\min}$ *z*-transform $A = \bigoplus_{t\in\mathbb{Z}} a(t)z^{-t}$

associated numerical function

$$[\mathscr{E}(A)](x) = \bigoplus_{t \in \mathbb{Z}} a(t)x^{-t} = \inf_{t \in \mathbb{Z}} (a(t) - t \times x) = -\sup_{t \in \mathbb{Z}} (t \times x - a(t))$$

liscrete Fenchel transform of the mapping $t \mapsto a(t)$ (up to sign)

An important linear equation

 $x = Ax \oplus b$

Theorem In a complete dioid, the least solution is given by

 $x = A^* b$

where

$$A^* = \bigoplus_{p=0}^{+\infty} A^p$$
, $A^0 = e$

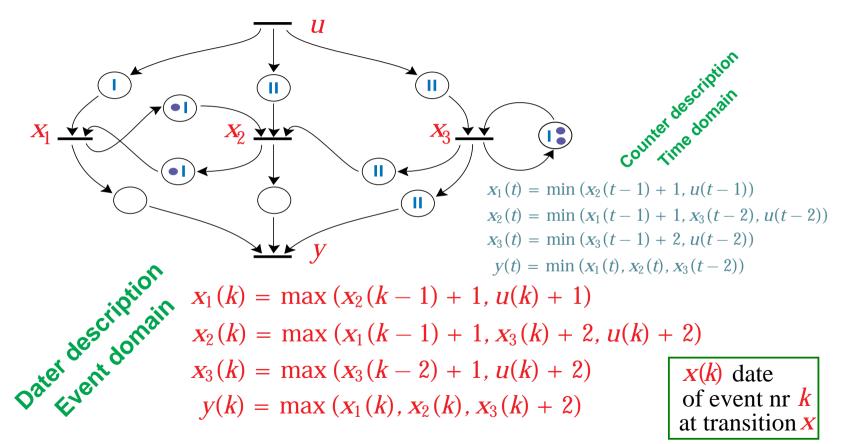
Where the Max-Plus or the Min-Plus Algebra May Pop Up

Dioid Theory

Descriptions of Timed Event Graphs

A Quick Review of Some System-Theoretic Results for Timed Event Graphs

Timed Event Graphs



A few words about residuation...

Dater : $k \mapsto d(k) \in \mathbb{Z}$, where d(k) is the date at which the event numbered k occurs. Daters satisfy max-plus linear dynamic equations in the **event domain Counter**:inverse mapping $t \mapsto c(t) = k$ such that $d(k) \approx t$. $d(\cdot)$ is monotonic. Possible definitions:

 $c(t) = \sup\{k \mid d(k) \le t\}$ or $c(t) = \inf\{k \mid d(k) \ge t\}$.

Counters satisfy min-plus linear dynamic equations in the time domain

In lattice-ordered sets, **residuation theory** deals with the problem of finding the least upper bound of the subset $\{x \mid f(x) \leq y\}$ for a given *y* and/or the greatest lower bound of the subset $\{x \mid f(x) \geq y\}$ when *f* is isotone. Under a condition of 'lower semi-continuity' (or 'upper semi-continuity') of *f*, the former (or the latter) bound belongs to the corresponding subset and may be called a sub- (or sup-) solution.

- and -Transforms

-transform of daters x(k): $X() = \bigoplus x(k)^k$ in $\overline{\mathbb{Z}}_{\max}[]$ *k*∈ℤ -transform of counters x(t): $X() = \bigoplus x(t)^{t}$ in $\overline{\mathbb{Z}}_{\min}[]$ In $\overline{\mathbb{Z}}_{\max}[], (m \oplus p)^n = \max(m, p)^n$, hence, in $\overline{\mathbb{Z}}_{\min}[],$ it should be that $n(m \oplus p) = n^{\max(m,p)}$ In $\overline{\mathbb{Z}}_{\min}[]$, $(m \oplus p)^n = \min(m, p)^n$, hence, in $\overline{\mathbb{Z}}_{\max}[]$, it should be that $n(m \oplus p) = n^{\min(m,p)}$

These equalities of operators can be proved true by direct reasoning if applied to transforms of nondecreasing daters or counters.

In $\mathbb{B}[\![$, $\!]\!]$ the following congruence is considered

$$X($$
 , $)\equiv Y($, $)\iff \ \ ^{*}\left(\begin{array}{c} -1 \end{array}
ight) ^{*}X($, $)=\ \ \ ^{*}\left(\begin{array}{c} -1 \end{array}
ight) ^{*}Y($, $)$

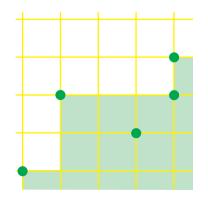
Practical rules

$$m \oplus p = \min(m,p)$$
 $m \oplus p = \max(m,p)$

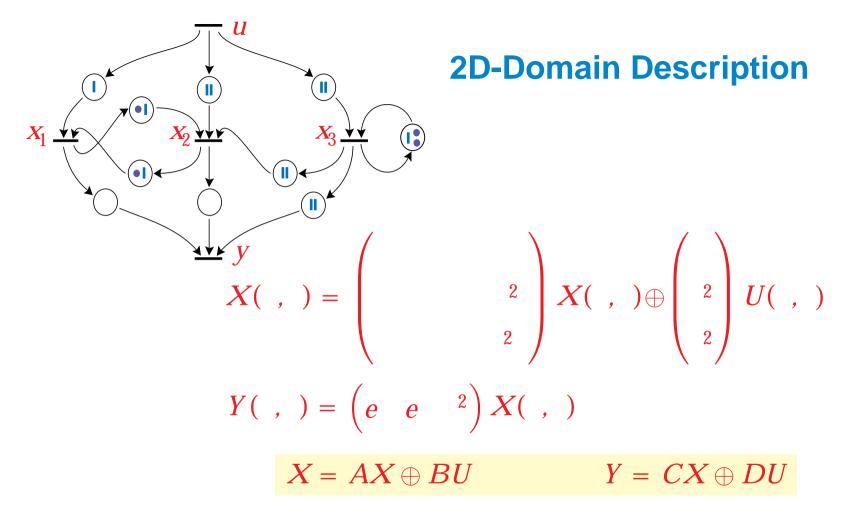
Geometric interpretation

$$\mathbb{B}\llbracket$$
 , $~
rbrace$ encodes collections of points in \mathbb{Z}^2

$\mathfrak{M}^{\mathfrak{a} \mathfrak{a}}_{\mathfrak{l} \mathfrak{a}}$, and a constant of south-East cones



$$X_{1} \underbrace{\underbrace{}}_{v} \underbrace{\underbrace{}}_{v} \underbrace{}_{v} \underbrace{}_{v}$$



Transfer Matrices

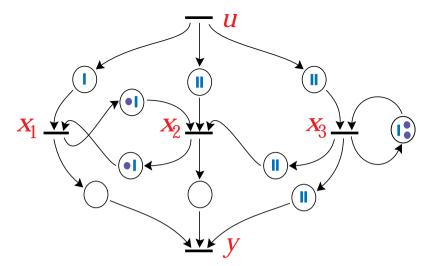
 $X = AX \oplus BU \qquad Y = CX \oplus DU$ $X = A^*BU \qquad Y = (CA^*B \oplus D)U$

 $H = CA^*B \oplus D$

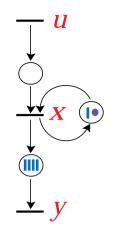
The meaning of selecting the least solution

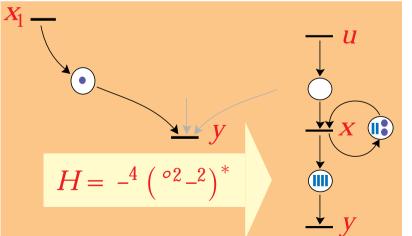
- transitions fire as soon as possible
- the most favorable 'initial conditions' take place: all tokens of the initial marking are available since $-\infty$

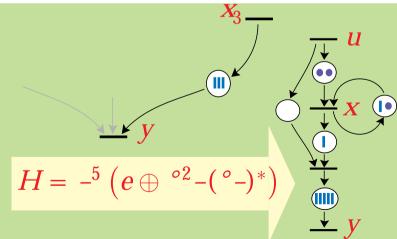
Any other 'initial conditions' for tokens of the initial marking (sojourn times elapsed prior to initial time) can be enforced by appending auxiliary input controls.



 $H = -4(°-)^*$







Where the Max-Plus or the Min-Plus Algebra May Pop Up

Dioid Theory

Descriptions of Timed Event Graphs

A Quick Review of Some System-Theoretic Results for Timed Event Graphs Autonomous System x(k + 1) = Ax(k) in \mathbb{Z}_{max}^{n} (dater equation) We assume that the precedence graph $\mathcal{C}(A)$ is strongly connected Asymptotic Behavior

A 'periodic' regime is reached within a finite number of stages:

 $\exists \in \mathbb{Q}, \exists c \in \mathbb{N}, \exists K \in \mathbb{Z} : \forall k > K, x(k+c) = {}^{c}x(k)$ $\forall i, x_i(k+c) = x_i(k) + c \times$

 $= \max_{\substack{\text{all circuits of } \mathcal{G}(A)}} \frac{\text{total of holding times}}{\text{number of arcs}} = \bigoplus_{j=1}^{n} (\text{trace}(A^{j}))^{1/j}$ For systems in AR form $x(k) = \bigoplus_{l=0}^{m} A_{l}x(k-l)$, 'number of arcs' must be replaced by 'number of tokens' **Eigenvalue** unique eigenvalue of A: $\exists x$ such that Ax = x**Cyclicity** *c* **Stability**

$$\forall i , \lim_{k \to \infty} \left\{ \begin{array}{c} x_i(k)^{1/k} \\ \\ x_i(k)/k \end{array} \right\} =$$

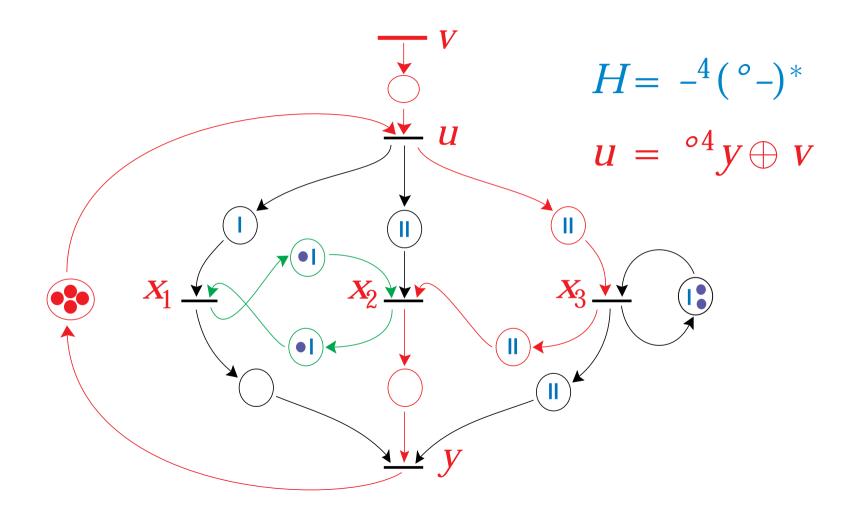
tokens do not accumulate indefinitely inside the graph

Stabilizability by Dynamic Output Feedback

TEG structurally controllable: every internal transition can be reached by a directed path from at least one input transition

TEG structurally observable: every internal transition is the origin of at least one directed path to some output transition

Theorem A TEG which is structurally controllable and observable can be stabilized by dynamic output feedback without altering its open-loop performance



Frequency Responses

Analogues of sine functions

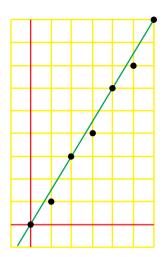
 $s \in \mathbb{Q}$, $L_s = \bigoplus_{t \leq s \times k} {k \ t}$

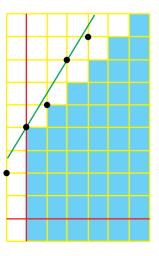
average rate of 1/s events per unit of time

Example:
$$L_{3/2} = (e \oplus) (\begin{array}{c} 2 & 3 \end{array})^* (\begin{array}{c} -2 & -3 \end{array})^*$$

... are indeed eigenfunctions

 $HL_{s} = {}^{a \ b}L_{s}$ Rule: pick *g* and *d* in \mathbb{Z} such that s = -g/dfind *a* and *b* in \mathbb{N} such that $H(g, d) = a \times g + b \times d$





Rationality $h \in \mathfrak{M}_{\mathfrak{iu}}^{\mathfrak{ax}}[\![\circ; -]\!]$ is rational (and causal) if it belongs to the rational closure of $\{ "; e; \circ; -\}$

Realizability $H \in (\mathfrak{M}_{\mathfrak{u}\mathfrak{u}}[[\circ; -]])^{i \times j}$ is realizable if $H = C(\circ A_1 \oplus -A_2)^* B$ where A_1 and A_2 are $n \times n$ matrices, C and B are $n \times j$ and $i \times n$ matrices respectively, and every entry of these matrices is equal to either " or e. **Periodicity** $h \in \mathfrak{M}_{\mathfrak{u}\mathfrak{u}}[[\circ; -]]$ is periodic if there exist two polynomials p and q and a monomial m (all causal) such that $h = p \oplus qm^*$. **Theorem** For $H \in (\mathfrak{M}_{\mathfrak{u}\mathfrak{u}}[[\circ; -]])^{i \times j}$, the following three statements are equivalent

(i) H is realizable;

(ii) H is rational;

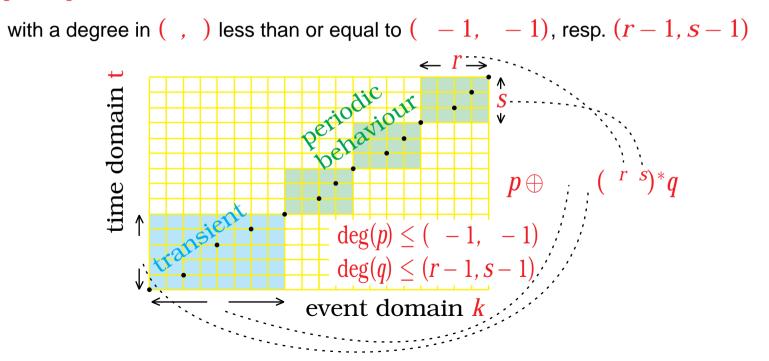
(iii) H is periodic.

Other definition of Periodicity

 $h = p \oplus () q (r^{s})^{*}$

, , *I*, *S* are nonnegative integers,

p and q are polynomials in (,) with nonnegative exponents



Given an output (dater) trajectory $\{y(k)\}$, find the latest (greatest) input trajectory $\{u(k)\}$ which yields an output trajectory less (earlier) than the given one.

Greatest U such that $HU \leq Y$: solution

State equations

 $x(k+1) = Ax(k) \oplus Bu(k)$

$U = H \diamond Y$

$$y(k) = Cx(k)$$

Co-State equations

 $(k) = (A \diamond (k+1)) \land (C \diamond y(k)) \qquad u(k) = B \diamond (k)$

Note

$$(A \land b)_i = \min_k (b_k - A_{ki})$$
 with conventions

 $+\infty - (+\infty) = +\infty$ $(-\infty) - (-\infty) = +\infty$

Towards second-order theory

 $x_i(k) - x_i(k)$ 'spare time' or 'margin' available at transition x_i for firing number k

 $P(k) = (k) \not < x(k)$ Riccati matrix ?

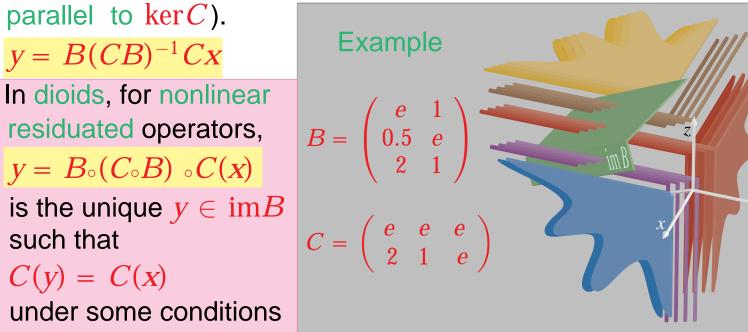
Differences between input and output daters (resp. counters) of a place or a group of places evaluate the sojourn time of tokens (resp. the accumulated stock of tokens): algebraically, they behave as correlations.

Towards geometric theory

In ordinary vector spaces with linear operators $\mathcal{U} \xrightarrow{B} \mathcal{X} \xrightarrow{C} \mathcal{Y}$

under some conditions, for given X, there exists a unique

 $y \in \operatorname{im} B$ such that $(x - y) \in \ker C$ (projection of x onto $\operatorname{im} B$



y