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Where the Max-Plus or the Min-Plus Algebra May Pop Up

Dioid Theory

Descriptions of Timed Event Graphs

A Quick Review of Some System-Theoretic Results

for Timed Event Graphs



y

u

x1 x2 x3

x1(t) = min (x2(t− 1) + 1, u(t− 1))
x2(t) = min (x1(t− 1) + 1, x3(t− 2), u(t− 2))
x3(t) = min (x3(t− 1) + 2, u(t− 2))
y(t) = min (x1(t), x2(t), x3(t− 2))
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u.t/ is the cumulated flow from time 0
to t with u.0/ D 0

the funnel limits the flow to 1 l./s.

the long pipe introduces a delay of 2 s.

y.t/ is the volume of the tank at t
with y.0/ D 3 l.

A continuous (linear?) system

y(t) ≤ min(u(t− 2) + 3, y(t− 1) + 1)

y(t) = inf
τ∈R

(
h(t− τ) + u(τ)

)
with h(t) =

3 for t ≤ 2 ;

1 + t otherwise.

y(t) = ª
∫

τ∈R
h(t− τ)⊗ u(τ)



    

An event graph analogue

y(t) ≤ min(u(t− 2) + 3; y(t− 1) + 1)

u

x

y



if u(·) 7→ y(·) and v(·) 7→ z(·),

then min (u(·), v(·)) 7→ min (y(·), z(·)) 
 (pointwise min)

and a + u(·) 7→ a + y(·) for an

Min-plus linear systems can be combined

y constant a

Min-Plus Linearity

serially           (inf-convolution)
in parallel       (pointwise min)
in feedback    (‘star’ operation)



      

Dynamic Programming: a Linear Process

Optimal control problem

min
T−1∑
t=0

c(u(t)) + `(x(T )) s.t. x(t + 1) = x(t)− u(t) ; x(0) = »

The corresponding dynamic programming equation reads

V (x; t) = inf
y

(
c(x− y) + V (y; t + 1)

)
= ª

∫
y

c(x− y)V (y; t + 1)

V (x; T ) = `(x)

Hence, the Bellman function V appears as the result of the iterated

inf-convolution of the ‘initial’ value ` by the ‘kernel’ c. As such,

V is a min-plus linear function of `.



Asymptotic

Relevance

Exponentials

For letf

If

then

f

: R → R+

, 

c : f → lim sup
x→+∞

log(f(x))/x∑
i∈I

αi exp(aix) αi ∈ R+, ai ∈ R=

c(f) = max
i∈I

ai

c(f + g) = max(c(f), c(g))

c(f × g) = c(f) + c(g)

asymptotic Bode plots

large deviations in probability theory



Convexity

Polynomial in one variable x with coefficients in

p(x) =
⊕

i
aix

i

xi x⊗ · · ·

·

⊗ x x + · · ·+ x == = i× x

p(x) = max
i

(i× x + ai)

As a numerical function, p( ) is piecewise linear

nondecreasing.

Since

then

convex

Rational functions are differences of the previous

Rmax

convex functions.

1⊕ x⊕ x2

22(x⊕ 0)◦/(x⊕ 1)
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Dioid: Set D endowed with two operations denoted ⊕ and ⊗

Associativity of addition (a⊕ b)⊕ c = a⊕ (b⊕ c)

Commutativity of addition a⊕ b = b⊕ a

Associativity of multiplication (a⊗ b)⊗ c = a⊗ (b⊗ c)

Distributivity of multiplication w.r.t. addition

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b)

Existence of a zero element " a⊕ " = a

Absorbing zero element a⊗ " = "⊗ a = "

Existence of an identity element e a⊗ e = e⊗ a = a

Idempotency of addition a⊕ a = a



     

"

a

Suppose

Symmetry?

that a has an opposite element b such that

then

thus

hence

a⊕ a⊕ b = a

⊕ b = a

= a

a⊕ b = "



      

D is said commutative if⊗ is commutative.

D is said complete if it is closed for all infinite sums

and if⊗ is distributive with respect to infinite sums. 

Commutative dioid

Complete dioid

> (sum of all elements of D) absorbing for addition

>⊗ " = "



Order Structure

Theorem {a = a⊕ b} {∃c : a = b⊕ c}
a (partial) order relationa º b

⇔
a = a⊕ b definesif( )

compatible with addition and multiplication,

i.e. if , then,a º b for all c, a⊕ c º b⊕ c and ac º bc (and ca º cb).

For any two elements a and b in D, a⊕ b is their least upper bound.

A dioid is a sup-semilattice having a ‘bottom’ element ε.

If the dioid is complete, this sup-semilattice can be completed to a lattice

by the following classical construction of the greatest lower bound a ∧ b

a ∧ b = ª
∫

x¹a
x¹b

x



        


 
Archimedian dioid



 
Distributive dioid


∀a 6= " ; ∀b ; ∃c and d : ac b and da b

Theorem In a complete Archimedian dioid,> is absorbing for ⊗

ºº

⊕ and ∧ do not play symmetric roles since distributivity of

∧with respect to⊗ is not always granted

is complete and, for all subsets C of DD ,(∧
c∈C

c

)
⊕ a =

∧
c∈C

(c⊕ a) ;

(⊕
c∈C

c

)
∧ a =

⊕
c∈C

(c ∧ a)



Rmax = (R ∪ {−∞}, , ,ÖÉÉ…max, +) ( Zmax Qmax )

Rmin = (R∪ {+∞}, min, +) isomorphic to Rmax by x 7→ −x

Rmax isomorphic to (R+, max,×) by x 7→ exp(x)(
R, max, min

)
Boole algebra ({ε, e}, max, min)(
2R2

,∪, +
)

({(−∞, x]} ,∪, +) isomorphic to Rmax by the bijection

R → 2R : x 7→

 if x = ε

(−∞, x] otherwise

E
xa

m
p

le
s



Rmax Rmax

Rmin

not complete, 

order reversed with respect to natural order

, 

Rmax to make drawings(R+, max,×) more convenient than

not Archimedian
(
R

Zmax complete, Qmax not complete!

, max, min
)

Boole algebra : you practiced dioids before you knew them!(
2R2

,∪, +
)

partially ordered

order is given by inclusion

lower bound is given by intersection

multiplication does not distribute with respect to

lower bound
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Matrix

Graph-Theoretic Interpretation

Dioids
Dn×n : square n

1

2

3

1

2

3

1

3

2

× n matrices with entries in D
with sum and product of matrices defined conventionally

Dn×n not commutative, partially ordered, complete if D is, distributive,

not

transition graph precedence graph

Archimedian

a11

a11

a12
a12

a11

a12 ε
ε a22

a22

a22 a23 a23
a23 εε a33

a33
a33





Polynomials and Power Series

power series in z1, . . . , zm with coefficients in (complete)D
and with exponents in N or in Z

D[[z1, . . . , zm]]

D[z1, . . . , zm] subdioid of polynomials

{a(t)}t∈Z in Rmin z-transform A =
⊕
t∈Z

a(t)z−t

associated numerical function

[E(A)] (x) =
⊕
t∈Z

a(t)x−t = inf
t∈Z

(a(t)− t× x) = − sup
t∈Z

(t× x− a(t))

discrete Fenchel transform of the mapping (up to sign)t 7→ a(t)

Formal polynomials are not isomorphic to their associated numerical functions.

E  associates numerical functions with formal polynomials: homomorphism

(for pointwise ⊕   and ⊗ of numerical functions) but not isomorphism.



A =
+∞⊕
p=0

Ap , A∗

∗

= e0

An important linear equation

x = Ax⊕ b

x = A b

Theorem In a complete dioid, the least solution

is given by

where
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Timed Event Graphs
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x1(k) = max (x2(k − 1) + 1, u(k) + 1)
x2(k) = max (x1(k − 1) + 1, x3(k) + 2, u(k) + 2)
x3(k) = max (x3(k − 2) + 1, u(k) + 2)
y(k) = max (x1(k), x2(k), x3(k) + 2)

x1(t) = min (x2(t− 1) + 1, u(t− 1))
x2(t) = min (x1(t− 1) + 1, x3(t− 2), u(t− 2))
x3(t) = min (x3(t− 1) + 2, u(t− 2))
y(t) = min (x1(t), x2(t), x3(t− 2))

Counte
r d

es
cr

ip
tio

n

Tim
e d

om
ain

x(k) date
of event nr

xat transition
k



Dater :k 7→ d(k) ∈ Z, where d(k) is the date at which the event numbered k occurs.

Daters satisfy max-plus linear dynamic equations in the event domain.

Counter :inverse mapping t 7→ c(t) = k such that d(k) ≈ t. d(·) is monotonic.

Possible definitions:

c(t) = sup{k | d(k) ≤ t} or c(t) = inf{k | d(k) ≥ t} .

Counters satisfy min-plus linear dynamic equations in the timedomain.

In lattice-ordered sets, residuation theory deals with the problem of finding the least

upper bound of the subset                               for a given y and/or the greatest lower

bound of the subset                               when f  is isotone.    Under a condition of

‘lower semi-continuity’ (or ‘upper semi-continuity’) of f, the former (or the latter) bound

belongs to the corresponding subset and may be called a sub- (or sup-) solution.

{x | f(x) ¹ y}
{x | f(x) º y}

A few words about residuation…



γ

γ- and δ-Transforms

γ-transform of daters x(k)

δ-transform of counters x(t)

X(γ) =
⊕
k∈Z

x(k)γk

X(δ) =

=

=

⊕
t∈Z

x(t)δt

in Zmax[[γ]]

in Zmin[[δ]]

:

:

In Zmax[[γ]]

Zmax[[γ]]

,

,

(m⊕ p) n max(m, p)γn, hence, in Zmin[[δ]], it should be that

, hence, in , it should be that

n(δm ⊕ δp) nδmax(m,p)

(In

These equalities of operators can be proved true by direct reasoning if applied
to transforms of nondecreasing daters or counters. 

Zmin[[δ]] m⊕ p)δn =

=

min(m, p)δn

n(γm ⊕ γp) nγmin(m,p)



#[[γ, δ]]
B[[γ, δ]]In                the following congruence is considered

X(γ, δ) ≡ Y (γ, δ) ⇐⇒ γ∗
(
δ−1)∗ X(γ, δ) = γ∗

(
δ−1)∗ Y (γ, δ)

γm

2

⊕ γp = γmin(m,p) δm ⊕ δp = δmax(m,p)
Practical rules

Geometric interpretation

B[[γ, δ]]  encodes collections of points in Z

 encodes collections of South-East cones#[[γ, δ]]
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X(°) =


" 1° "

1° " 2

" " 1°2

 X(°)⊕


1

2

2

 U(°)

X(–) =


" 1– "

1– " –2

" " 2–

 X(–)⊕


–

–2

–2

 U(–)

Y (°) =
(

e e 2
)

X(°)

Y (–) =
(

e e –2
)

X(–)
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X(γ, δ) =


ε γδ ε

γδ ε δ2

ε ε γ2δ

 X(γ, δ)⊕


δ

δ2

δ2

 U(γ, δ)

Y (γ, δ) =
(

e e δ2
)

X(γ, δ)

2D-Domain Description

X = AX ⊕BU Y = CX ⊕DU



Transfer

The meaning of selecting the least solution

Matrices

X = A∗BU Y = (CA∗B⊕D)U

H = CA∗B⊕D

since−∞

X = AX ⊕BU Y = CX ⊕DU

• transitions fire as soon as possible

Any other ‘initial conditions’ for tokens of the initial marking (sojourn times
elapsed prior to initial time) can be enforced by appending auxiliary input controls.

• the most favorable ‘initial conditions’ take place: all tokens of the initial
   marking are available  



    

y
y

u
u

x1

x1

x x2 x3

y

y

u

x

H = –4(°–)∗

H = –4
(
°2–2

)∗
y

u

x
y

x3

H = –5
(
e⊕ °2–(°–)∗

)
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Autonomous System

Asymptotic Behavior

Eig
Cyclicity 

envalue

x(k + 1) = Ax(k) in (dater equation)Zn
max

∃λ ∈ Q , ∃c ∈ N , ∃K ∈ Z : ∀k

∀i ,

> K , x(k + c) = λcx(k)

xi(k + c) = xi(k) + c× λ

λ  =   max = 
n⊕

j=1

(trace(Aj))1/j

x(k) =
⊕m
l=0

Alx(k − l)

c

We assume that the precedence graph G(A) is strongly connected

A ‘periodic’ regime is reached within a finite number of stages:

For systems in AR form
be replaced by ‘number of tokens’

, ‘number of arcs’ must

all circuits of G(A)

total of holding times
number of arcs

  λ unique eigenvalue of A: ∃x such that Ax = λx



Stability

Stabilizability by Dynamic Output Feedback

∀i , lim
k→∞

 xi(k)1/k

xi(k)/k

 = λ
tokens do not accumulate
indefinitely inside the graph 

TEG structurally controllable: every internal transition can be reached by a
directed path from at least one input transition 

TEG structurally observable:

Theorem

every internal transition is the origin of at least
one directed path to some output transition

A TEG which is structurally controllable and  observable can be
stabilized by dynamic output feedback without altering its open-loop
performance



   

y
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v

x1 x2 x3

H = –4(°–)∗

u = °4y v⊕



Frequency Responses

Analogues of sine functions

…are indeed eigenfunctions

,s Ls =
⊕

t≤s×k

γkδt

γaδb

average rate of 1/s events per unit of time

Example: L3/2 =

=

(e⊕ γδ)
(
γ2δ3

)∗ (
γ−2δ−3

)∗
∈ Q

LH s Ls

H(g, d) =

=

× ga

s

b+ × d

−g/dpick g  and d  in Z such that

find a  and  b  in N such that

Rule:



      

Rationality

Realizability

Periodicity

h ∈ #[[°; –]] is rational (and causal) if it belongs to the rational closure of

{"; e; °; –}

H ∈ (#[[°; –]])i×j
is realizable if C(°A1 ⊕ –A2)∗B where A1

and A2 are n× n matrices, C and B are n× j and i × n matrices

respectively, and every entry of these matrices is equal to either " or e.

h ∈ #[[°; –]] is periodic if there exist two polynomials p and q and a

monomial m (all causal) such that

H =

h = p⊕ qm∗.

Theorem For H ∈ (#[[°; –]])i×j
, the following three statements are

equivalent

(i) H is realizable;

(ii) H is rational;

(iii) H is periodic.



ν, τ, r, s are nonnegative integers,

p and q are polynomials in (γ, δ) with nonnegative exponents

with a degree in (γ, δ) less than or equal to (ν − 1, τ − 1), resp. (r − 1, s− 1)

h = p⊕ (γνδτ )q (γrδs)∗
Other definition of Periodicity

event domain k

p⊕ γνδτ(γrδs)∗q

deg(p) ≤ (ν − 1, τ − 1)
deg(q) ≤ (r − 1, s− 1)

r
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Co-State

State equations

equations

Given an output (dater) trajectory {y(k)}, find the latest (greatest) input trajectory

{u(k)} which yields an output trajectory less (earlier) than the given one.

Greatest U such that HU¹ Y :  solution U = H ◦\Y

x(k + 1) = Ax(k)⊕Bu(k) y(k) = Cx(k)

ξ(k) = (A ◦\ξ(k + 1)) ∧ (C ◦\y(k)) u(k) = B ◦\ξ(k)

(A ◦\b)i = min
k

(bk −Aki) with conventions
+∞− (+∞) = +∞
−∞)( − (−∞) = +∞

Note



Towards second-order theory 

ξi(k)− xi(k) ‘spare time’ or ‘margin’ available at transition xi

for firing number k

P (k) = ξ(k)◦/x(k) Riccati matrix ?

Differences between input and output daters (resp. counters)
of a place or a group of places evaluate the sojourn time of tokens
(resp. the accumulated stock of tokens):
algebraically, they behave as correlations.



Towards geometric theory 
In ordinary vector spaces with linear operators

x

In dioids, for nonlinear  

is the unique    
such that

under some conditions

under some conditions, for given    , there exists a unique  

U B→ C→Y

y ∈ imB such
).
that  x − y) ∈ ker C

C(y) = C(x)

 ( (projection of x onto imB
parallel

Example
to kerC

 

y = B(CB)−1Cx

y = B◦(C◦B)]◦C(x)
y ∈ imB

residuated operators, B =

 e
0.5 e

2 1

2 1

1


C =
(

e e e
e

)

X

x
y

z


