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Abstract. Exotic semirings such as the “(max,+) semiring” (R ∪
{−∞},max,+), or the “tropical semiring”(N ∪ {+∞},min,+), have been
invented and reinvented many times since the late fifties, in relation with various
fields: performance evaluation of manufacturing systems and discrete event system
theory; graph theory (path algebra) and Markov decision processes, Hamilton-
Jacobi theory; asymptotic analysis (low temperature asymptotics in statistical
physics, large deviations, WKB method); language theory (automata with multi-
plicities).
Despite this apparent profusion, there is a small set of common, non-naive, basic
results and problems, in general not known outside the(max,+) community,
which seem to be useful in most applications. The aim of this short survey paper
is to present what we believe to be the minimal core of(max,+) results, and
to illustrate these results by typical applications, at the frontier of language the-
ory, control, and operations research (performance evaluation of discrete event
systems, analysis of Markov decision processes with average cost).
Basic techniques include: solving all kinds of systems of linear equations, some-
times with exotic symmetrization and determinant techniques; using the(max,+)
Perron-Frobenius theory to study the dynamics of(max,+) linear maps. We point
out some open problems and current developments.

1 Introduction: the (max,+) and tropical semirings

The “max-algebra” or “(max,+) semiring”Rmax, is the setR∪{−∞}, equipped with
max as addition, and+ as multiplication. It is traditional to use the notation⊕ for
max (2 ⊕ 3 = 3), and⊗ for + (1 ⊗ 1 = 2). We denote1 by 0 the zeroelement for
⊕ (such that0 ⊕ a = a, here0 = −∞) and by1 the unit element for⊗ (such that
1⊗ a = a⊗ 1 = a, here1 = 0). This structure satisfies all the semiring axioms, i.e.⊕
is associative, commutative, with zero element,⊗ is associative, has a unit, distributes
over⊕, and zero is absorbing (all the ring axioms are satisfied, except that⊕ need not
be a group law). This semiring iscommutative(a⊗ b = b⊗a), idempotent(a⊕a = a),

? Max Plus is a collective name for a working group on(,+) algebra, at INRIA Rocquencourt,
comprising currently: Marianne Akian, Guy Cohen, S.G., Jean-Pierre Quadrat and Michel Viot.

1 The notation for the zero and unit is one of the disputed questions of the community. The
symbolsε for zero, ande for the unit, often used in the literature, are very distinctive and well
suited to handwritten computations. But it is difficult to renounce to the traditional use ofε
in Analysis. The notation0,1 used by the Idempotent Analysis school has the advantage of
making formulæ closer to their usual analogues.
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and non zero elements have an inverse for⊗ (we callsemifieldsthe semirings that satisfy
this property). The termdioid is sometimes used for anidempotentsemiring.

Using the new symbols⊕ and⊗ instead of the familiarmax and+ notation is the
price to pay to easily handle all the familiar algebraic constructions. For instance, we
will write, in the (max,+) semiring:

ab = a⊗ b, an = a⊗ · · · ⊗ a (n times), 23 = 6 ,
√

3 = 1.5 ,[
2 0
4 0

] [
10
103

]
=
[

2⊗ 10⊕ 0⊗ 103
4⊗ 10⊕ 0⊗ 103

]
=
[
103
14

]
,

(3⊕ x)2 = (3⊕ x)(3⊕ x) = 6⊕ 3x⊕ x2 = 6⊕ x2 (= max(6, 2× x)) .

We will systematically use the standard algebraic notions (matrices, vectors, linear
operators, semimodules — i.e. modules over a semiring—, formal polynomials and
polynomial functions, formal series) in the context of the(max,+) semiring, often
without explicit mention. Essentially all the standard notions of algebra have obvious
semiring analogues, provided they do not appeal to the invertibility of addition.

There are several useful variants of the(max,+) semiring, displayed in Table 1.
In the sequel, we will have to consider various semirings, and will universally use the

Rmax (R ∪ {−∞},max,+) (max,+) semiring

max algebra

idempotent semifield

Rmax (R ∪ {±∞},max,+) completed

(max,+) semiring

−∞+ (+∞) = −∞,

for 0⊗ a = 0

Rmax,× (R+,max,×) (max,×) semiring isomorphic toRmax (x 7→ log x)

Rmin (R ∪ {+∞},min,+) (min,+) semiring isomorphic toRmax (x 7→ −x)

Nmin (N ∪ {+∞},min,+) tropical semiring (famous in Language Theory)

Rmax,min (R ∪ {±∞},max,min) bottleneck algebra not dealt with here

B ({false, true}, or, and) Boolean semiring isomorphic to({0,1},⊕,⊗),

for any of the above semirings

Rh (R ∪ {−∞},⊕h,+)

a⊕h b = h log(ea/h + eb/h)

Maslov semirings isomorphic to(R+,+,×)

limh→0+ Rh = R0 = Rmax

Table 1.The family of(max,+) and tropical semirings. . .

notation⊕,⊗,0,1 with a context dependent meaning (e.g.⊕ = max in Rmax but
⊕ = min in Rmin, 0 = −∞ in Rmax but0 = +∞ in Rmin).

The fact that⊕ is idempotent instead of being invertible (Rh is an exception, for
h 6= 0), is the main original feature of these “exotic” algebras, which makes them so
different from the more familiar ring and field structures. In fact the idempotence and
cancellativity axioms are exclusive: if for alla, b, c, (a ⊕ b = a ⊕ c ⇒ b = c) and
a⊕ a = a, we geta = 0, for all a (simplify a⊕ a = a⊕ 0).

This paper is not a survey in the usual sense. There exist several comprehensive books
and excellent survey articles on the subject, each one having its own bias and motivations.
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Applications of(max,+) algebras are too vast (they range from asymptotic methods to
decidability problems), techniques are too various (from graph theory to measure theory
and large deviations) to be surveyed in a paper of this format. But there is a small common
set of useful basic results, applications and problems, that we try to spotlight here. We
aim neither at completeness, nor at originality. But we wish to give an honest idea of
the services that one should expect from(max,+) techniques. The interested reader is
referred to the books [15,44,10,2,31], to the survey papers listed in the bibliography,
and to the recent collection of articles [24] for an up-to-date account of the maxplusian
results and motivations. Bibliographical and historical comments are at the end of the
paper.

2 Seven good reasons to use the(max,+) semiring

2.1 An Algebra for Optimal Control

A standard problem of calculus of variations, which appears in Mechanics (least action
principle) and Optimal Control, is the following. Given a LagrangianL and suitable
boundary conditions (e.g.q(0), q(T ) fixed), compute

inf
q(·)

∫ T

0

L(q, q̇)dt . (1)

This problem is intrinsically(min,+) linear. To see this, consider the (slightly more
general) discrete variant, withsup rather thaninf,

ξ(n) = x, ξ(k) = f(ξ(k − 1), u(k)), k = n+ 1, . . . , N, (2a)

JNn (x, u) =
N∑

k=n+1

c(ξ(k − 1), u(k)) + Φ(ξ(N)) , (2b)

V Nn (x) = sup
u
JNn (x, u) , (2c)

where thesup is taken over all sequences ofcontrolsu(k), k = n+ 1, · · · , N, selected
in a finiteset of controlsU , ξ(k), for k = n, . . . , N , belongs to a finite setX of states, x
is a distinguishedinitial state,f : X×U → X is thedynamics, c : X×U → R∪{−∞}
is theinstantaneous reward, andΦ : X → R∪{−∞} is thefinal reward(the−∞ value
can be used to code forbidden final states or transitions). These data form a deterministic
Markov Decision Process(MDP) with additive reward.

The functionV Nn (·), which represents the optimal reward from timen to timeN ,
as a function of the starting point, is called thevaluefunction. It satisfies the backward
dynamic programming equation

V NN = Φ, V Nk (x) = max
u∈U

{
c(x, u) + V Nk+1(f(x, u))

}
. (3)

Introducing thetransition matrixA ∈ (Rmax)X×X ,

Ax,y = sup
u∈U, f(x,u)=y

c(x, u), (4)

(the supremum over an empty set is−∞), we obtain:
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Fact 1 (Deterministic MDP = (max,+)-linear dynamics). The value func-
tion V Nk of a finite deterministic Markov decision process with additive reward is given
by the(max,+) linear dynamics:

V NN = Φ, V Nk = AV Nk+1. (5)

The interpretation in terms of paths is elementary. If we must end at nodej, we take
Φ = 1j (the vector with all entries0 except thej-th equal to1), Then, the value function
V N0 (i) = (AN )ij is the maximal (additive) weight of a path of lengthN , from i to j, in
the graph canonically associated2 with A.

Example 1 (Taxicab).Consider a taxicab which operates between 3 cities and one airport,
as shown in Fig. 1. At each state, the taxi driver has to choose his next destination, with
deterministic fares shown on the graph (for simplicity, we assume that the demand is
deterministic, and that the driver can choose the destination). The taxi driver considers
maximizing his reward overN journeys. The(max,+) matrix associated with this MDP
is displayed in Fig. 1.

5 $

city 1

4$

airport

4 $

6 $

4$

3 $

1 $

7$

3$
city 32$

A =


c1 a c2 c3

c1 5 4 0 7
a 4 0 6 3
c2 0 4 1 0
c3 0 0 0 2


city 2

Fig. 1.Taxicab Deterministic MDP and its matrix

Let us consider the optimization of the average reward:

χ(x) = sup
u

lim sup
N→∞

1
N
JN0 (x, u) . (6)

Here, thesup is taken over infinite sequences of controlsu(1), u(2), . . . and the trajectory
(2a) is defined fork = 0, 1, . . . . We expectJN0 to grow (or to decrease) linearly, as a
function of the horizonN . Thus,χ(x) represents the optimal average reward (per time
unit), starting fromx. Assuming that thesup andlim sup commute in (6), we get:

χ(x) = lim sup
N→∞

1N × (ANΦ)x (7)

(this is an hybrid formula,ANΦ is in the(max,+) semiring ,1/N×(·) is in the conven-
tional algebra). To evaluate (7), let us assume that the matrixA admits aneigenvectorv

2 With aX ×X matrixA we associate the weighted (directed) graph, with set of nodesX, and
an arc(x, y) with weightAx,y wheneverAx,y 6= 0.
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in the(max,+) semiring:

Av = λv, i.e. max
j
{Aij + vj} = λi + vi (8)

(the eigenvectorv must be nonidentically0,λ ∈ Rmax is the eigenvalue). Let us assume
thatv andΦ have only finite entries. Then, there exist two finite constantsµ, ν such that
ν + v ≤ Φ ≤ µ + v. In (max,+) notation,νv ≤ Φ ≤ µv. ThenνλNv = νANv ≤
ANΦ ≤ µANv = µλNv, or with the conventional notation:

ν +Nλ+ v ≤ ANΦ ≤ µ+Nλ+ v. (9)

We easily deduce from (9) the following.

Fact 2 (“Eigenelements = Optimal Reward and Policy”). If the final
reward Φ is finite, and if A has a finite eigenvector with eigenvalueλ, the optimal
average rewardχ(x) is a constant (independent of the starting pointx), equal to the
eigenvalueλ. An optimal control is obtained by playing in statei any u such that
c(i, u) = Aij andf(i, u) = j, wherej is in thearg maxof (8) at statei.

The existence of a finite eigenvector is characterized in Theorems 11 and 15 below.
We will not discuss here the extension of these results to the infinite dimensional

case (e.g. (1)), which is one of the major themes of Idempotent Analysis [31]. Let us just
mention that all the results presented here admit or should admit infinite dimensional
generalizations, presumably up to important technical difficulties.

There is another much simpler extension, to the (discrete) semi-Markov case, which
is worth being mentioned. Let us equip the above MDP with an additional mapτ :
X × U → R+ \ {0}; τ(x(k − 1), u(k)) represents the physical time elapsed between
decisionk and decisionk + 1, when controlu(k) is chosen. This is very natural in
most applications (for the taxicab example, the times of the different possible journeys
in general differ). The optimal average reward per time unit now writes:

χ(x) = sup
u

lim sup
N→∞

∑N
k=1 c(x(k − 1), u(k)) + Φ(x(N))∑N

k=1 τ(x(k − 1), u(k))
. (10)

Of course, the specializationτ ≡ 1 gives the original problem (6). Let us defineTij =
{τ(i, u) | f(i, u) = j}, and fort ∈ Tij ,

At,i,j = sup
u∈U,f(i,u)=j,τ(i,u)=t

c(i, u) . (11)

Arguing as in the Markov case, it is not too difficult to show the following.

Fact 3 (Generalized Spectral Problem for Semi-Markov Pro-

cesses). If the generalized spectral problem

max
j

max
t∈Tij
{At,i,j − λt+ vj} = vi (12)

has a finite solutionv, and ifΦ is finite, then the optimal average reward isχ(x) = λ,
for all x. An optimal control is obtained by playing anyu in thearg maxof (11), with
j, t in thearg maxof (12), when in statei.
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Algebraically, (12) is nothing but a generalized spectral problem. Indeed, with an obvious
definition of the matricesAt, we can write:⊕

t∈T

λ−tAtv = v , whereT =
⋃
i,j

Tij . (13)

2.2 An Algebra for Asymptotics

In Statistical Physics, one looks at the asymptotics when the temperatureh tends to zero
of the spectrum oftransfer matrices, which have the form

Ah = (exp(h−1Aij))1≤i,j≤n .

The real parametersAij represent potential terms plus interaction energy terms (when
two adjacent sites are in statesi andj, respectively). The Perron eigenvalue3 ρ(Ah)
determines the free energy per siteλh = h log ρ(Ah). Clearly,λh is an eigenvalue of
A in the semiringRh, defined in Table 1. Letρmax(A) denote the maximal(max,+)
eigenvalue ofA. Sincelimh→0+ Rh = R0 = Rmax, the following result is natural.

Fact 4 (Perron Frobenius Asymptotics). The asymptotic growth rate of the
Perron eigenvalue ofAh is equal to the maximal(max,+) eigenvalue of the matrixA:

lim
h→0+

h log ρ(Ah) = ρmax(A) . (14)

This follows easily from the(max,+) spectral inequalities (24),(25) below. The nor-
malized Perron eigenvectorvh of Ah also satisfies

lim
h→0+

h log(vh)i = ui ,

whereu is a special(max,+) eigenvector ofA which has been characterized recently
by Akian, Bapat, and Gaubert [1]. Precise asymptotic expansions ofρ(Ah) as sum of
exponentials have been given, some of the terms having combinatorial interpretations.

More generally,(max,+) algebra arises almost everywhere in asymptotic phenom-
ena. Often, the(max,+) algebra is involved in an elementary way (e.g. when computing
exponents of Puiseux expansions using the Newton Polygon). Less elementary applica-
tions are WKB type asymptotics (see [31]), which are related to Large Deviations (see
e.g. [17]).

2.3 An Algebra for Discrete Event Systems

The (max,+) algebra is popular in the Discrete Event Systems community, since
(max,+) linear dynamics correspond to a well identified subclass of Discrete Event
Systems, with only synchronization phenomena, called Timed Event Graphs. Indeed,
consider a system withn repetitive tasks. We assume that thek-th execution of taski
(firing of transitioni) has to waitτij time units for the(k − νij)-th execution of taskj.
E.g. tasks represent the processing of parts in a manufacturing system,νij represents an
initially available stock, andτij represents a production or transportation time.

3 The Perron eigenvalueρ(B) of a matrixB with nonnegative entries is the maximal eigenvalue
associated with a nonnegative eigenvector, which is equal to the spectral radius ofB.
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Fact 5 (Timed Event Graphs are (max,+) Linear Systems). The earliest
date of occurrence of an eventi in a Timed Event Graph,xi(k), satisfies

xi(k) = max
j

[τij + xj(k − νij)] . (15)

Eqn 15 coincides with the value iteration of the deterministic semi-Markov Decision
Process in§ 2.1, that we only wrote in the Markov version (3). Therefore, the asymptotic
behavior of (15) can be dealt with as in§2.1, using(max,+) spectral theory. In particular,
if the generalized spectral problemvi = maxj [τij−λνij+vj ] has a finite solution(λ, v),
thenλ = limk→∞ k−1×xi(k), for all i (λ is thecycle time, or inverse of theasymptotic
throughput). The study of the dynamics (15), and of its stochastic [2], and non-linear
extensions [11,23] (fluid Petri Nets, minmax functions), is the major theme of(max,+)
discrete event systems theory.

Another linear model is that ofheaps of pieces. LetR denote a set ofpositionsor
resources(sayR = {1, . . . , n}). A piece(or task) a is a rigid (possibly non connected)
block, represented geometrically by a set of occupied positions (or requested resources)
R(a) ⊂ R, a lower contour (starting time)̀(a) : R(a)→ R, an upper contour (release
time) h(a) : R(a) → R, such that∀a ∈ R(a), h(a) ≥ `(a). The piece corresponds
to the region of theR × R plane:Pa = {(r, y) ∈ R(a) × R | `(a)r ≤ y ≤ h(a)r},
which means that taska requires the set of resources (machines, processors, operators)
R(a), and that resourcer ∈ R(a) is used from timè (a)r to timeh(a)r. A piecePa
can be translated vertically of anyλ, which gives the new region defined by`′(a) =
λ + `(a), h′(a) = λ + h(a). We can execute a task earlier or later, but we cannot
change the differencesh(a)r − `(a)s which are invariants of the task. Aground or
initial condition is a row vectorg ∈ (Rmax)R. Resourcer becomes initially available at
time gr. If we dropk piecesa1 . . . ak, in this order, on the groundg (letting the pieces
fall down according to the gravity, forbidding horizontal translations, and rotations, as
in the famous Tetris game, see Fig 2), we obtain what we call aheap of pieces. The
upper contourx(w) of the heapw = a1 . . . ak is the row vector in(Rmax)R, whoser-th
component is equal to the position of the top of the highest piece occupying resourcer.
Theheightof the heap is by definitiony(w) = maxr∈R x(w)r. Physically,y(w) gives
themakespan(= completion time) of the sequence of tasksw, andx(w)r is the release
time of resourcer.

With each piecea within a set of piecesT , we associate the matrixM(a) ∈
(Rmax)R×R, M(a)r,s = h(a)s − `(a)r if r, s ∈ R(a), andM(a)r,r = 1 for diagonal
entries not inR(a) (other entries are0). The following result was found independently
by Gaubert and Mairesse (in [24]), and Brilman and Vincent [6].

Fact 6 (Tetris game is (max,+) linear). The upper contourx(w) and the
heighty(w) of the heap of piecesw = a1 . . . ak, piled up on the groundg, are given by
the(max,+) products:

x(w) = gM(a1) . . .M(ak), y(w) = x(w)1R,

(1X denotes the column vector indexed byX with entries1).

In algebraic terms, the height generating series
⊕

w∈T ∗ y(w)w is rational over the
(max,+) semiring (T ∗ is the free monoid onT , basic properties of rational series can be
found e.g. in [38]).
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b

c

a

a

a

c

b

a

R(c) = {2, 4}, `(c) = [·, 0, ·, 0], h(c) = [·, 2, ·, 2]

R(b) = {1, 2}, `(b) = [0, 0, ·, ·], h(b) = [2, 2, ·, ·]

R(a) = {1, 2, 3}, `(a) = [0, 0, 0, ·], h(a) = [1, 1, 3, ·]

Fig. 2.Heap of Pieces

Let us mention an open problem. If an infinite sequence of piecesa1a2 . . . ak . . .
is taken at random, say in an independent identically distributed way with the uniform
distribution onT , it is known [14,2] that there exists an asymptotic growth rateλ ∈ R+:

λ = lim
k→∞

1
k
y(a1 . . . ak) a.s. (16)

The effective computation of the constantλ (Lyapunov exponent) is one of the main
open problems in (max,+) algebra. The Lyapunov exponent problem is interesting for
general random matrices (not only for special matrices associated with pieces), but the
heap case (even with unit height,h(a) = 1 + `(a)) is typical and difficult enough to
begin with. Existing results on Lyapunov exponents can be found in [2]. See also the
paper of Gaujal and Jean-Marie in [24], and [6].

2.4 An Algebra for Decision

The “tropical” semiringNmin = (N ∪ {+∞},min,+), has been invented by Simon
[39] to solve the following classical problem posed by Brzozowski:is it decidable
whether a rational languageL has the Finite Power Property (FPP):∃m ∈ N, L∗ =
L0 ∪ L ∪ · · · ∪ Lm. The problem was solved independently by Simon and Hashiguchi.

Fact 7 (Simon). The FPP problem for rational languages reduces to the finiteness
problem for finitely generated semigroups of matrices with entries inNmin, which is
decidable.

Other (more difficult) decidable properties (with applications to the polynomial closure
and star height problems) are thefinite sectionproblem, which asks, given a finitely
generated semigroup of matricesS over the tropical semiring, whether the set of entries
in positioni, j, {sij | s ∈ S} is finite; and the more generallimitation problem, which
asks whether the set of coefficients of a rational series inNmin, with noncommuting in-
determinates, is finite. These decidability results due to Hashiguchi [25], Leung [29] and
Simon [40] use structural properties of long optimal words inNmin-automata (involv-
ing multiplicative rational expressions), and combinatorial arguments. By comparison
with basic Discrete Event System and Markov Decision applications, which essentially
involve semigroups with a single generator (S = {Ak | k ≥ 1}), these typically non-
commutative problems represent a major jump in difficulty. We refer the reader to the
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survey of Pin in [24], to [40,25,29], and to the references therein. However, essential in
the understanding of the noncommutative case is the one generator case, covered by the
(max,+) Perron-Frobenius theory detailed below.

Let us point out an open problem. The semigroup oflinear projective mapsPZn×nmax

is the quotient of the semigroup of matricesZn×nmax by the proportionality relation:A ∼
B ⇔ ∃λ ∈ Z, A = λB (i.e.Aij = λ+Bij). We ask:can we decide whether a finitely
generated semigroup of linear projective maps is finite ?The motivation is the following.
If the image of a finitely generated semigroup with generatorsM(a) ∈ Zn×nmax , a ∈ Σ
by the canonical morphismZn×nmax → PZn×nmax is finite, then the Lyapunov exponent
λ = a.s. limk→∞ k−1 × ‖M(a1) . . .M(ak)‖ (same probabilistic assumptions as for
(16),‖A‖ = supij Aij , by definition) can be computed from a finite Markov Chain on
the associated projective linear semigroup [19,20].

3 Solving Linear Equations in the(max,+) Semiring

3.1 A hopeless algebra?

The general system ofn (max,+)-linear equations withp unknownsx1, . . . , xp writes:

Ax⊕ b = Cx⊕ d, A,C ∈ (Rmax)n×p, b, d ∈ (Rmax)n . (17)

Unlike in conventional algebra, a square linear system (n = p) is not generically solvable
(consider3x⊕2 = x⊕0, which has no solution, since for allx ∈ Rmax,max(3+x, 2) >
max(x, 0)).

There are several ways to make this hard reality more bearable. One is to give
general structural results. Another is to deal with natural subclasses of equations, whose
solutions can be obtained by efficient methods. TheinverseproblemAx = b can be
dealt with usingresiduation. ThespectralproblemAx = λx (λ scalar) is solved using
the(max,+) analogue of Perron-Frobenius theory. Thefixed pointproblemx = Ax⊕b
can be solved via rational methods familiar in language theory (introducing the “star”
operationA∗ = A0 ⊕A⊕A2 ⊕ · · · ). A last way, which has the seduction of forbidden
things, is to say: “certainly, the solution of3x ⊕ 2 = x ⊕ 0 is x = ª − 1. For if this
equation has no ordinary solution, the symmetrized equation (obtained by putting each
occurrence of the unknown in the other side of the equality)x′ ⊕ 2 = 3x′ ⊕ 0 has the
unique solutionx′ = −1. Thus,x = ª − 1 is the requested solution.” Whether or not
this argument is valid is the object ofsymmetrizationtheory.

All these approaches rely, in one way or another, on theorderstructure of idempotent
semirings that we next introduce.

3.2 Natural Order Structure of Idempotent Semirings

An idempotent semiringS can be equipped with the followingnaturalorder relation

a ¹ b ⇐⇒ a⊕ b = b. (18)

We will write a ≺ b whena ¹ b and a 6= b. The natural order endowsS with a
sup-semilattice structure, for whicha ⊕ b = a ∨ b = sup{a, b} (this is the least upper
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bound of the set{a, b}), and0 ¹ a, ∀a, b ∈ S (0 is thebottomelement). The semiring
laws preserve this order, i.e.∀a, b, c ∈ S, a ¹ b =⇒ a ⊕ c ¹ b ⊕ c, ac ¹ bc. For
the(max,+) semiringRmax, the natural order¹ coincides with the usual one. For the
(min,+) semiringRmin, the natural order is the opposite of the usual one.

Since addition coincides with the sup for the natural order, there is a simple way to
define infinite sums, in an idempotent semiring, setting

⊕
i∈I xi = sup{xi | i ∈ I},

for any possibly infinite (even non denumerable) family{xi}i∈I of elements ofS, when
the sup exists. We say that the idempotent semiringS is completeif any family has
a supremum, and if the product distributes over infinite sums. WhenS is complete,
(S,¹) becomes automatically a complete lattice, the greatest lower bound being equal
to
∧
i∈I xi = sup{y ∈ S | y ≤ xi, ∀i ∈ I}. The (max,+) semiringRmax is not

complete (a complete idempotent semiring must have a maximal element), but it can be
embedded in the complete semiringRmax.

3.3 SolvingAx = b using Residuation

In general,Ax = b has no solution4, butAx ¹ b always does (takex = 0). Thus,
a natural way of attackingAx = b is to relax the equality and study the set of its
subsolutions. This can be formalized in terms ofresiduation[5], a notion borrowed
from ordered sets theory. We say that a monotone mapf from an ordered setE to an
ordered setF is residuatedif for all y ∈ F , the set{x ∈ E | f(x) ≤ y} has a maximal
element, denotedf ](y). The monotone mapf ], calledresidualor residuated mapof
f , is characterized alternatively byf ◦ f ] ≤ Id, f ] ◦ f ≥ Id. An idempotent semiring
S is residuatedif the right and left multiplication mapsλa : x 7→ ax, ρa : x 7→ xa,
S → S, are residuated, for alla ∈ S. A completeidempotent semiring is automatically
residuated. We set

a\b def= λ]a(b) = max{x | ax ¹ b} , b/a
def= ρ]a(b) = max{x | xa ¹ b} .

In the completed(max,+) semiringRmax, a\b = b/a is equal tob− a whena 6= 0(=
−∞), and is equal to+∞ if a = 0. The residuated character is transfered from scalars
to matrices as follows.

Proposition 2 (Matrix residuation). Let S be a complete idempotent semiring. Let
A ∈ Sn×p. The mapλA : x 7→ Ax,Sp → Sn, is residuated. For anyy ∈ Sn,

A\y def= λ]A(y) is given by(A\y)i =
∧

1≤j≤nAji\yj .

In the case ofRmax, this reads:

(A\y)i = min
1≤j≤n

(−Aji + yj) , (19)

4 It is an elementary exercise to check that the mapx 7→ Ax, (Rmax)p → (Rmax)n, is surjective
(resp. injective) iff the matrixA contains a monomial submatrix of sizen (resp.p), a very
unlikely event — recall that a square matrixB is monomialif there is exactly one non zero
element in each row, and in each column, or (equivalently) if it is a product of a permutation
matrix and a diagonal matrix with non zero diagonal elements. This implies that a matrix has
a left or a right inverse iff it has a monomial submatrix of maximal size, which is the analogue
of a well known result for nonnegative matrices [4, Lemma 4.3].
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with the convention dual to that ofRmax, (+∞) + x = +∞, for anyx ∈ R ∪ {±∞}.
We recognize in (19) a matrix product in the semiringRmin = (R ∪ {±∞},min,+),
involving the transpose of the opposite ofA.

Corollary 3 (Solving Ax = y). LetS denote a complete idempotent semiring, and let
A ∈ Sn×p, y ∈ Sn. The equationAx = y has a solution iffA(A\y) = y.

Corollary 3 allows us to check the existence of a solutionx of Ax = y in timeO(np)
(scalar operations are counted for one time unit). In the(max,+) case, a refinement
(due to the total order) allows us to decide the existence of a solution by inspection of
the minimizing sets in (19), see [15,44].

3.4 Basis Theorem for Finitely Generated Semimodules overRmax

A finitely generated semimoduleV ⊂ (Rmax)n is the set of linear combinations of a
finite family {u1, . . . , up} of vectors of(Rmax)n:

V =
{ p⊕
i=1

λiui
∣∣λ1, . . . , λp ∈ Rmax

}
.

In matrix terms,V can be identified to thecolumn spaceor imageof then × p matrix

A = [u1, . . . , up], V = ImA
def= {Ax | x ∈ (Rmax)p}. The row spaceof A is the

column space ofAT (the transpose ofA). The family{ui} is aweak basisof V if it is a
generating family, minimal for inclusion. The following result, due to Moller [33] and
Wagneur [42] (with variants) states that finitely generated subsemimodules of(Rmax)n

have (essentially) a unique weak basis.

Theorem 4 (Basis Theorem).A finitely generated semimoduleV ⊂ (Rmax)n has a
weak basis. Any two weak bases have the same number of generators. For any two
weak bases{u1, . . . , up}, {v1, . . . , vp}, there exist invertible scalarsλ1, . . . , λp and a
permutationσ of {1, . . . , p} such thatui = λivσ(i).

The cardinality of a weak basis is called theweak rankof the semimodule, denoted rkwV.
The weak column rank(resp. weak row rank) of the matrixA is the weak rank of its
column (resp. row) space. Unlike in usual algebra, the weak row rank in general differs
from the weak column rank (this is already the case for Boolean matrices). Theorem 4
holds more generally in any idempotent semiringS satisfying the following axioms:
(a º αa and a 6= 0) =⇒ 1 º α, (a = αa ⊕ b and α ≺ 1) =⇒ a = b.
The axioms needed to set up a general rank theory in idempotent semirings are not
currently understood. Unlike in vector spaces, there exist finitely generated semimodules
V ⊂ (Rmax)n of arbitrarily large weak rank, if the dimension of the ambient spacen
is at least3; and not all subsemimodules of(Rmax)n are finitely generated, even with
n = 2.

Example 5 (Cuninghame-Green [15],Th. 16.4).The weak column rank of the3×(i+1)
matrix

Ai =

0 0 . . . 0
0 1 . . . i
0 −1 . . . −i
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is equal toi+1 for all i ∈ N. This can be understood geometrically using a representation
due to Mairesse. We visualize the set of vectors with finite entries of a semimodule
V ⊂ (Rmax)3 by the subset ofR2, obtained by projectingV orthogonally, on any plane
orthogonal to(1, 1, 1). SinceV is invariant by multiplication by any scalarλ, i.e. by
the usual addition of the vector(λ, λ, λ), the semimoduleV is well determined by its
projection. We only loose the points with0 entries which are sent to some infinite end of
theR2 plane. The semimodules ImA1, ImA2, ImA3 are shown on Fig 3. The generators
are represented by bold points, and the semimodules by gray regions. The brokenline
between any two generatorsu, v represents Im[u, v]. This picture should make it clear
that a weak basis of a subsemimodule of(Rmax)3 may have as many generators as a
convex set ofR2 may have extremal points. The notion of weak rank is therefore a very
coarse one.

y

ImA1

z

ImA2

y
ImA3

z z

xxx
y

Fig. 3.An infinite ascending chain of semimodules of(Rmax)3 (see Ex. 5).

LetA ∈ (Rmax)n×p. A weak basis of the semimodule ImA can be computed by a greedy
algorithm. LetA[i] denote thei-th column ofA, and letA(i) denote then×(p−1) matrix
obtained by deleting columni. We say that columni ofA is redundantif A[i] ∈ ImA(i),
which can be checked by Corollary 3. ReplacingA byA(i) whenA[i] is redundant, we
do not change the semimodule ImA. Continuing this process, we terminate inO(np2)
time with a weak basis.

Application 6 (Controllability).The fact that ascending chains of semimodules need not
stationnarize yields pathological features in terms of Control. Consider the controlled
dynamical system:

x(0) = 0, x(k) = Ax(k − 1)⊕Bu(k), k = 1, 2, . . . (20)

whereA ∈ (Rmax)n×n, B ∈ (Rmax)n×q, andu(k) ∈ (Rmax)q, k = 1, 2, . . . is a
sequence of control vectors. Given a stateξ ∈ (Rmax)n, theaccessibilityproblem (in
time N ) asks whether there is a control sequenceu such thatx(N) = ξ. Clearly,ξ
is accessible in timeN iff it belongs to the image of thecontrollability matrix CN =
[B,AB, . . . , AN−1B]. Corollary 3 allows us to decide the accessibility ofξ. However,
unlike in conventional algebra (in which ImCN = Im Cn, for anyN ≥ n, thanks
to Cayley-Hamilton theorem), the semimodule of accessible states ImCN may grow
indefinitely asN →∞.
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3.5 SolvingAx = Bx by Elimination

The following theorem is due to Butkoviˇc and Heged¨us [9]. It was rediscovered in [18,
Chap. III].

Theorem 7 (Finiteness Theorem).LetA,B ∈ (Rmax)n×p. The setV of solutions of
the homogeneous systemAx = Bx is a finitely generated semimodule.

This is a consequence of the following universal elimination result.

Theorem 8 (Elimination of Equalities in Semirings). Let S denote an arbitrary
semiring. LetA,B ∈ Sn×p. If for any q ≥ 1 and any row vectorsa, b ∈ Sq,
the hyperplane{x ∈ Sq | ax = bx} is a finitely generated semimodule, then
V = {x ∈ Sp | Ax = Bx} is a finitely generated semimodule.

The fact that hyperplanes of(Rmax)q are finitely generated can be checked by elementary
means (but the number of generators can be of orderq2). Theorem 8 can be easily proved
by induction on the number of equations (see [9,18]). In theRmax case, the resulting
naive algorithm has a doubly exponential complexity. But it is possible to incorporate
the construction of weak bases in the algorithm, which much reduces the execution time.
The making (and complexity analysis) of efficient algorithms forAx = Bx is a major
open problem. When only a single solution is needed, the algorithm of Walkup and
Borriello (in [24]) seems faster, in practice.

There is a more geometrical way to understand the finiteness theorem. Consider
the following correspondence between semimodules of((Rmax)1×n)2 (couples of row
vectors) and(Rmax)n×1 (column vectors), respectively:

W ⊂ ((Rmax)1×n)2 −→ W> = {x ∈ (Rmax)n×1 | ax = bx, ∀(a, b) ∈ W} ,
V⊥ = {(a, b) ∈ ((Rmax)1×n)2 | ax = bx, ∀x ∈ V} ←− V ⊂ (Rmax)n×1 .

(21)

Theorem 7 states that ifW is a finitely generated semimodule (i.e. if all the row vectors
[a, b] belong to the row space of a matrix[A,B]) then, its orthogonalW> is finitely
generated. Conversely, ifV is finitely generated, so doesV⊥ (since the elements(a, b)
ofV⊥ are the solutions of a finite system of linear equations). The orthogonal semimodule
V⊥ is exactly the set oflinear equations(a, b) : ax = bx satisfied by all thex ∈ V.
Is a finitely generated subsemimoduleV ⊂ (Rmax)n×1 defined by its equations ? The
answer is positive [18, Chap. IV,1.2.2]:

Theorem 9 (Duality Theorem). For all finitely generated semimodulesV ⊂
(Rmax)n×1, (V⊥)> = V.

In general,(W>)⊥ ) W. The duality theorem is based on the following analogue of
the Hahn-Banach theorem, stated in [18]:if V ⊂ (Rmax)n×1 is a finitely generated
semimodule, andy 6∈ V, there exist(a, b) ∈ ((Rmax)1×n)2 such thatay 6= by and
ax = bx, ∀x ∈ V.

Thekernelof a linear operatorC should be defined askerC = {(x, y) | Cx = Cy}.
When is the projector on the image of a linear operatorB, parallel tokerC, defined?
The answer is given in [12].
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3.6 Solvingx = Ax⊕ b using Rational Calculus

Let S denote a complete idempotent semiring, and letA ∈ Sn×n, b ∈ Sn. The least
solution ofx º Ax⊕ b isA∗b, where the star operation is given by:

A∗
def=
⊕
n∈N

An . (22)

Moreover,x = A∗b satisfies the equationx = Ax⊕ b. All this is most well known (see
e.g. [38]), and we will only insist on the features special to the(max,+) case. We can
interpretA∗ij as themaximal weightof a path fromi to j of any length, in the graph2

associated withA. We next characterize the convergence ofA∗ in (Rmax)n×n (A∗ is
a priori defined in(Rmax)n×n, but the+∞ value which breaks the semifield character
of Rmax is undesired in most applications). The following fact is standard (see e.g. [2,
Theorem 3.20]).

Proposition 10. LetA ∈ (Rmax)n×n. The entries ofA∗ belong toRmax iff there are
no circuits with positive weight in the graph2 ofA. Then,A∗ = A0 ⊕A⊕ · · · ⊕An−1.

The matrixA∗ can be computed in timeO(n3) using classical universal Gauss algorithms
(see e.g. [21]). Special algorithms exist for the(max,+) semiring. For instance, the
sequencex(k) = Ax(k − 1) ⊕ b, x(0) = 0 stationarizes before stepn (with x(n) =
x(n+1) = A∗b) iff A∗b is finite. This allows us to computeA∗b very simply. A complete
account of existing algorithms can be found in [21].

3.7 The(max,+) Perron-Frobenius Theory

The most ancient, most typical, and probably most useful(max,+) results are relative
to the spectral problemAx = λx. One might argue that 90% of current applications of
(max,+) algebra are based on a complete understanding of the spectral problem. The
theory is extremely similar to the well known Perron-Frobenius theory (see e.g. [4]).
The(max,+) case turns out to be very appealing, and slightly more complex than the
conventional one (which is not surprising, since the(max,+) spectral problem is a
somehow degenerate limit of the conventional one, see§2.2). The main discrepancy is
the existence of two graphs which rule the spectral elements ofA, the weighted graph
canonically2 associated with a matrixA, and one of its subgraphs, calledcritical graph.

First, let us import the notion ofirreducibility from the conventional Perron-
Frobenius theory. We say thati has accessto j if there is a path fromi to j in the
graph ofA, and we writei

∗→ j. Theclassesof A are the equivalence classes for the
relationiRj ⇔ (i ∗→ j andj

∗→ i). A matrix with a single class isirreducible. A class
C is upstreamC′ (equivalentlyC′ is downstreamC) if a node ofC has access to a node of
C′. Classes with no other downstream classes arefinal, classes with no other upstream
classes areinitial .

The following famous(max,+) result has been proved again and again, with various
degrees of generality and precision, see [37,41,15,44,22,2,31].
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Theorem 11 (“(max,+) Perron-Frobenius Theorem”). An irreducible matrixA ∈
(Rmax)n×n has a unique eigenvalue, equal to the maximal circuit mean ofA:

ρmax(A) =
n⊕
k=1

tr (Ak)
1
k = max

1≤k≤n
max
i1,... ,ik

Ai1i2 + · · ·+Aiki1
k

. (23)

We have the following refinements in terms of inequalities [18, Chap IV], [3].

Lemma 12 (“Collatz-Wielandt Properties”). For anyA ∈ (Rmax)n×n,

ρmax(A) = max{λ ∈ Rmax | ∃u ∈ (Rmax)n \ {0}, Au º λu} . (24)

Moreover, ifA is irreducible,

ρmax(A) = min{λ ∈ Rmax | ∃u ∈ (Rmax)n \ {0}, Au ¹ λu} . (25)

The characterization (25) implies in particular that, for an irreducible matrixA,ρmax(A)
is the optimal value of the linear program

minλ s.t. ∀i, j Aij + uj ≤ ui + λ .

This was already noticed by Cuninghame-Green [15]. The standard way to compute
the maximal circuit meanρmax(A) is to use Karp algorithm [27], which runs in time
O(n3). The specialization of Howard algorithm (see e.g. [35]) to deterministic Markov
Decision Processes with average reward, yields an algorithm whose average execution
time is in practice far below that of Karp algorithm, but no polynomial bound is known
for the execution time of Howard algorithm. Howard algorithm is also well adapted to
the semi-Markov variants (12).

Unlike in conventional Perron-Frobenius theory, an irreducible matrix may have
several (non proportional) eigenvectors. The characterization of the eigenspace uses the
notion ofcritical graph. An arc(i, j) iscritical if it belongs to a circuit(i1, . . . , ik) whose
mean weight attains themax in (23). Then, the nodesi, j arecritical. Critical nodes
and arcs form thecritical graph. A critical class is a strongly connected component
of the critical graph. LetCc1, . . . , Ccr denote the critical classes. Let̃A = ρ−1

max(A)A
(i.e. Ãij = −ρmax(A) + Aij). Using Proposition 10, the existence ofÃ∗ (def= (Ã)∗) is
guaranteed. Ifi is in a critical class, we call the columñA∗·,i of Ã∗ critical. The following
result can be found e.g. in [2,16].

Theorem 13 (Eigenspace).Let A ∈ (Rmax)n×n denote an irreducible matrix. The
critical columns ofÃ∗ span the eigenspace ofA. If we select only one column, arbitrarily,
per critical class, we obtain a weak basis of the eigenspace.

Thus, the cardinality of a weak basis is equal to the number of critical classes. For any
two i, j within the same critical class, the critical columnsÃ∗·,i andÃ∗·,j are proportional.

We next show how the eigenvalueρmax(A) and the eigenvectors determine the
asymptotic behavior ofAk ask →∞. Thecyclicityof a critical classCcs is by definition
thegcd of the lengths of its circuits. Thecyclicity c of A is the lcm of the cyclicities of
its critical classes. Let us pick arbitrarily an indexis within each critical classCcs , for
s = 1, . . . , r, and letvs, ws denote the column and row of indexis of Ã∗ (vs, ws are
right and left eigenvectors ofA, respectively). The following result follows from [2].
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Theorem 14 (Cyclicity). Let A ∈ (Rmax)n×n be an irreducible matrix. There is an
integerK0 such that

k ≥ K0 =⇒ Ak+c = ρmax(A)cAk , (26)

wherec is the cyclicity ofA. Moreover, ifc = 1,

k ≥ K0 =⇒ Ak = ρmax(A)kP, where P =
r⊕
s=1

vsws . (27)

The matrixP which satisfiesP 2 = P , AP = PA = ρmax(A)P is called thespec-
tral projector of A. The cyclicity theorem, which writesAk+c

ij = ρmax(A) × c + Akij
in conventional algebra, implies thatAkx grows ask × ρmax(A), independently of
x ∈ (Rmax)n, and that a periodic regime is attained in finite time. The limit behavior is
known a priori. Ultimately, the sequenceρmax(A)−kAk visits periodicallyc accumu-
lation points, which areQ,AQ, . . . , Ac−1Q, whereQ is the spectral projector ofAc.
The length of the transient behaviorK0 can be arbitrarily large. In terms of Markov
Decision, Theorem 14 says that optimal long trajectories stay almost all the time on the
critical graph (Turnpike theorem). Theorem 14 is illustrated in Fig. 4, which shows the
images of a cat (a region of theR2 plane) by the iterates ofA (A,A2, A3, etc.),B and
C, where

A =
[
0 0
0 2

]
, B =

[
2 0
0 2

]
, C =

[
0 2
2 0

]
. (28)

We haveρmax(A) = 2. SinceA has a unique critical circuit, the spectral projectorP is
rank one (its column and row spaces are lines). We find thatÃ2 = P : every point of the
plane is sent in at most two steps to the eigenliney = 2⊗x = 2 +x, then it is translated
by (2, 2) at each step. Similar interpretations exist forB andC.

A

A
A

B

B

C
ImB

C

ImA
ImC

C

Fig. 4.A cat in a(max,+) dynamics (see (28))

Let us now consider a reducible matrixA. Given a classC, we denote byρmax(C)
the(max,+) eigenvalue of the restriction of the matrixA to C. Thesupportof a vector
u is the set suppu = {i | ui 6= 0}. A set of nodesS is closedif j ∈ S, i ∗→ j implies
i ∈ S. We say that a classC ⊂ S is final inS if there is no other downstream class inS.
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Theorem 15 (Spectrum of reducible matrices).A matrixA ∈ (Rmax)n×n has an
eigenvector with supportS ⊂ {1, . . . , n} and eigenvalueλ iff S is closed,λ is equal to
ρmax(C) for any classC that is final inS, andλ º ρmax(C′) for any other classC′ in S.

The proof can be found in [43,18]. See also [3]. In particular, eigenvalues of initial
classes are automatically eigenvalues ofA. The maximal circuit meanρmax(A) (given
by (23)) is also automatically an eigenvalue ofA (but the associated eigenvector need
not be finite). A weak basis of the eigenspace is given in [18, Chap. IV,1.3.4].

Example 16 (Taxicab eigenproblem).The matrix of the taxicab MDP, shown in Fig 1, has
2 classes, namelyC1 = {c1, a, c2}, C2 = {c3}. Sinceρmax(C2) = 2 ≺ ρmax(C1) = 5,
there are no finite eigenvectors (which have supportS = C1∪C2). The only other closed
set isS = C1, which is initial. Thusρmax(A) = ρmax(C1) = 5 is the only eigenvalue of
A. LetA′ denote the restriction ofA toC1. There are two critical circuits(c1) and(a, c2),
and thus two critical classesCc1 = {c1}, Cc2 = {a, c2}. A weak basis of the eigenspace
of A′ is given by the columnsc1 and (e.g.)c2 of

(Ã′)∗ =


c1 a c2

c1 0 −1 0
a −1 0 1
c2 −2 −1 0


Completing these two columns by a0 in row 4, we obtain a basis of the eigenspace of
A. The non existence of a finite eigenvector is obvious in terms of control. If such an
eigenvector existed, by Fact 2, the optimal reward of the taxicab would be independent
of the starting point. But, if the taxi driver starts from City 3, he remains blocked there
with an income of2 $ per journey, whereas if he starts from any other node, he should
clearly either run indefinitely in City 1, either shuttle from the airport to City 2, with
an average income of5 $ per journey (these two policies can be obtained by applying
Fact 2 to the MDP restricted toC1, taking the two above eigenvectors).

The following extension to the reducible case of the cyclicity theorem is worth being
mentioned.

Theorem 17 (Cyclicity, reducible case).LetA ∈ (Rmax)n×n. There exist two integers
K0 andc ≥ 1, and a family of scalarsλijl ∈ Rmax, 1 ≤ i, j ≤ n, 0 ≤ l ≤ c− 1, such
that

k ≥ K0, k ≡ l mod c =⇒ Ak+c
ij = λcijlA

k
ij , (29)

Characterizations exist forc andλijl. The scalarsλijl are taken from the set of eigen-
values of the classes ofA. If i, j belong to the same classC, λijl = ρmax(C) for all l. If
i, j do not belong to the same class, the theorem implies that the sequence1

k ×Akij may
have distinct accumulation points, according to the congruence ofk moduloc (see [18,
Chap. VI,1.1.10]).

The cyclicity theorems for matrices are essentially equivalent to the characterization
of rational series in one indeterminate with coefficient inRmax, as a merge of ultimately
geometric series, see the paper of Gaubert in [13] and [28]. Transfer series and rational
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algebra techniques are particularly powerful for Discrete Event Systems. Timed Event
Graphs can be represented by a remarkable (quotient) semiring of series with Boolean
coefficients, in two commuting variables, calledMmax

min [[γ, δ]] (see [2, Chap. 5]). The
indeterminatesγ and δ have natural interpretations asshifts in dating and counting.
The complete behavior of the system can be represented by simple —often small—
commutative rational expressions [2],[18, Chap. VII–IX] (see also [28] in a more general
context).

3.8 Symmetrization of the(max,+) Semiring

Let us try to imitate the familiar construction ofZ fromN, for an arbitrary semiringS. We
build the set of couplesS2, equipped with (componentwise) sum(x′, x′′)⊕ (y′, y′′) =
(x′ ⊕ y′, x′′ ⊕ y′′), and product(x′, x′′)⊗ (y′, y′′) = (x′y′ ⊕ x′′y′′, x′y′′ ⊕ x′′y′). We
introduce thebalancerelation

(x′, x′′)∇(y′, y′′) ⇐⇒ x′ ⊕ y′′ = x′′ ⊕ y′ .

We haveZ = N2/∇, but for an idempotent semiringS, the procedure stops, since
∇ is not transitive (e.g.(1,0)∇(1,1)∇(0,1), but (1,0) 6 ∇(0,1)). If we renounce
to quotientS2, we may still manipulate couples, with theª operationª(x′, x′′) =
(x′′, x′). Indeed, sinceª satisfies the sign rulesªª x = x,ª(x⊕ y) = (ªx)⊕ (ªy),
ª(xy) = (ªx)y = x(ªy), and sincex∇y ⇐⇒ xª y∇0 (we setxª y def= x⊕ (ªy)),
it is not difficult to see thatall the familiar identities valid in rings admit analogues in
S2, replacing equalities by balances. For instance, ifS is commutative, we have for all
matrices (of compatible size) with entries inS2 (determinants are defined as usual, with
ª instead of−):

det(AB) ∇ detA detB, (30)

PA(A) ∇ 0 wherePA(λ) = det(Aª λId) (Cayley Hamilton). (31)

Eqn 30 can be written directly inS, introducing the positive and negative determi-
nants det+A =

⊕
σ even

⊗
1≤i≤nAiσ(i), det−A =

⊕
σ odd

⊗
1≤i≤nAiσ(i) (the sums

are taken over even and odd permutations of{1, . . . , n}, respectively). The balance
(30) is equivalent to the ordinary equality det+AB ⊕ det+A det−B ⊕ det−A det+B =
det−AB ⊕ det+A det+B ⊕ det−A det−B, but (30) is certainly more adapted to com-
putations. Such identities can be proved combinatorially (showing a bijection between
terms on both sides), or derived automatically from their ring analogues using a simple
argument due to Reutenauer and Straubing [36, Proof of Lemma 2] (see also thetransfer
principle in [18, Ch. I]).

But in theRmax case, one can do much better. Consider the following application of
the Cayley-Hamilton theorem:

A =
[
1 3
4 1

]
, A2 ª tr (A)A⊕ detA∇0, i.e A2 ⊕ 2Id = 1A⊕ 7Id .

Obviously, we may eliminate the2Id term which will never saturate the identity (since
2 < 7), and obtainA2 = 1A ⊕ 7Id. Thus, to some extent7 ª 2 = 7. This can be
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formalized by introducing the congruence of semiring:

(x′, x′′) R (y′, y′′)⇔ (x′ 6= x′′, y′ 6= y′′ andx′ ⊕ y′′ = x′′ ⊕ y′) or (x′, x′′) = (y′, y′′).

The operations⊕,ª,⊗ and the relation∇ are defined canonically on the quotient
semiring,Smax = R2

max/R, which is called thesymmetrized semiringof Rmax. This
symmetrization was invented independently by G. Heged¨us [26] and M. Plus [34].

In Smax, there are three kinds of equivalence classes; classes with an element of the
form (a,0), identified toa ∈ Rmax, and calledpositive, classes with an element of the
form (0, a) denotedªa, callednegative, classes with a single element(a, a), denoted
a• and calledbalanced, sincea•∇0 (for a = 0, the three above classes coincide, we
will consider0 as both a positive, negative, and balanced element).

We have the decomposition ofSmax in sets of positive, negative, and balanced
elements, respectively

Smax = S⊕max ∪ Sªmax ∪ S•max .

This should be compared withZ = Z+∪Z−∪{0}. For instance,3ª2 = 3, 2ª3 = ª3,
but3ª 3 = 3•. We say that an element issignedif it is positive or negative.

Obviously, if a systemAx = b has a solution, the balanceAx∇b has a solution.
Conversely ifAx∇b has a positive solutionx, and ifA, b are positive, it is not difficult
to see thatAx = b. It remains to solve systems of linear balances. The main difficulty
is that the balance relation is not transitive. As a result,x∇a andcx∇b do not imply
ca∇b. However, whenx is signed, the implication is true. This allows us to solve linear
systems of balances by elimination, when the unknowns are signed.

Theorem 18 (Cramer Formulæ).LetA ∈ (Smax)n×n, andb ∈ (Smax)n. Every signed
solution ofAx∇b satisfies the Cramer conditionDxi∇Di, whereD is the determinant
ofA andDi is thei-th Cramer determinant5. Conversely, ifDi is signed for alli, and
if D is signed and nonzero, thenx = (D−1Di)1≤i≤n is the unique signed solution.

The proof can be found in [34,2]. For the homogeneous system ofn linear equations
with n unknowns,Ax∇0 has a signed non zero solution iffdetA∇0 (see [34,18]),
which extends a result of Gondran and Minoux (see [22]).

Example 19.Let us solve the taxicab eigenproblemAx = 5x by elimination inSmax

(A is the matrix shown in Fig 1). We have

5•x1 ⊕ 4x2 ⊕ 7x4 ∇ 0 (32a)

4x1 ª 5x2 ⊕ 6x3 ⊕ 3x4 ∇ 0 (32b)

4x2 ª 5x3 ∇ 0 (32c)

ª5x4 ∇ 0 . (32d)

The only signed solution of (32d) isx4 = 0. By homogeneity, let us look for the solutions
such thatx3 = 0. Then, using (32c), we get4x2∇5x3 = 5. Since we search a positive

5 Obtained by replacing thei-th column ofA by b.
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x2, the balance can be replaced by an equality. Thusx2 = 1. It remains to rewrite
(32a),(32b):5•x1∇ ª 5, 4x1∇6•, which is true forx1 positive iff 0 ≤ x1 ≤ 2. The
two extremal values give (up to a proportionality factor) the basis eigenvectors already
computed in Ex. 19.

Determinants are not so easy to compute inSmax. Butkovič [8] showed that the com-
putation of the determinant of a matrix with positive entries is polynomially equivalent
(we have to solve an assignment problem) to the research of an even cycle in a (directed)
graph, a problem which is not known to be polynomial. We do not know a non naive
algorithm to compute the minor rank (=size of a maximal submatrix with unbalanced
determinant) of a matrix in(Rmax)n×p. The situation is extremely strange: we have
excellent polynomial iterative algorithms [34,18] to find a signed solution of the square
systemAx∇b whendetA 6= 0, but we do not have polynomial algorithms to decide
whetherAx∇0 has a signed non zero solution (such algorithms would allow us to com-
putedetA in polynomial time). Moreover, the theory partly collapses if one considers
rectangular systems instead of square ones. The conditions of compatibility ofAx∇0
whenA is rectangular cannot be expressed in terms of determinants [18, Chap. III, 4.2.6].

Historical and Bibliographical Notes

The(max,+) algebra is not classical yet, but many researchers have worked on it (we
counted at least 80), and it is difficult to make a short history without forgetting important
references. We will just mention here main sources of inspiration. The first use of the
(max,+) semiring can be traced back at least to the late fifties, and the theory grew in the
sixties, with works of Cuninghame-Green, Vorobyev, Romanovski˘ı, and more generally
of the Operations Research community (on path algebra). The first enterprise of system-
atic study of this algebra seems to be the seminal “Minimax algebra” of Cuninghame-
Green [15]. A chapter on dioids can be found in Gondran et Minoux [21]. The theory of
linear independence using bideterminants, which is the ancester of symmetrization, was
initiated by Gondran and Minoux (following Kuntzmann). See [22]. The last chapter of
“Operatorial Methods” of Maslov [32] inaugurated the(max,+) operator and measure
theory (motivated by semiclassical asymptotics). There is an “extremal algebra” tradi-
tion, mostly in East Europe, oriented towards algorithms and computational complexity.
Results in this spirit can be found in the book of U. Zimmermann [44]. This tradition has
been pursued, e.g. by Butkoviˇc [7]. The incline algebrasintroduced by Cao, Kim and
Roush [10] are idempotent semirings in whicha ⊕ ab = a. The tropical semiring was
invented by Simon [39]. A number of language and semigroup oriented contributions
are due to the tropical school (Simon, Hashiguchi, Mascle, Leung, Pin, Krob, Weber,
. . . ). See the survey of Pin in [24], [40,25,29,28], and the references therein. Since the
beginning of the eighties, Discrete Event Systems, which were previously considered
by distinct communities (queuing networks, scheduling,. . . ), have been gathered into
a common algebraic frame. “Synchronization and Linearity” by Baccelli, Cohen, Ols-
der, Quadrat [2] gives a comprehensive account of deterministic and stochastic (max,+)
linear discrete event systems, together with recent algebraic results (such as symmetriza-
tion). Another recent text is the collection of articles edited by Maslov and Samborski˘ı
[31] which is only the most visible part of the (considerable) work of the Idempotent



21

Analysis school. A theory of probabilities in(max,+) algebra motivated by dynamic
programming and large deviations, has been developed by Akian, Quadrat and Viot;
and by Del Moral and Salut (see [24]). Recently, the(max,+) semiring has attracted
attention from the linear algebra community (Bapat, Stanford, van den Driessche [3]).
A survey with a very complete bibliography is the article of Maslov and Litvinov in
[24]. Let us also mention the forthcoming book of Kolokoltsov and Maslov (an earlier
version is in Russian [30]). The collection of articles edited by Gunawardena [24] will
probably give the first fairly global overview of the different traditions on the subject.
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