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Abstract 

The report issued by  the Inquiry Board in charge 
of inspecting the Ariane 5 flight 501 failure concludes 
that causes of the failure are rooted into poor S/W En- 
gineering practice. From the failure scenario described 
in the Inquiry Board report, it is possible to infer what, 
in our view, are the real causes of the 501 failure. We 
develop arguments to demonstrate that the real causes 
of the 501 failure are neither S/W specification errors 
nor S/W design errors. Real causes of the failure are 
faults in the capture of the overall Ariane 5 applica- 
tion/environment requirements, and faults in the de- 
sign and the dimensioning of the Ariane 5 on-board 
computing system. These faults result from not fol- 
lowing a rigorous System Engineering approach, such 
as applying a proof-based System Engineering method. 
What is proof-based System Engineering for Computing 
Systems is also presented. 

1. Introduction 

On 4 June 1996, the maiden flight of the Ariane 5 
launcher ended in a failure, entailing a loss in the order 
of 1.9 Billion French Francs (- 0.36 Billion US $) and 
a 1-year delay for the Ariane 5 program. An Inquiry 
Board was asked to identify the causes of the failure. 
Conclusions of the Inquiry Board were issued on 19 
July 1996, as a public report [3]. The failure analysis 
given in this paper is based upon the Inquiry Board 
findings. Our conclusions deviate significantly from the 
Inquiry Board findings. Essentially, the Inquiry Board 
concludes that poor S/W Engineering practice is the 
culprit, whereas we argue the 501 failure results from 
poor System Engineering practice. 

This case study is believed to be particularly useful 
in illustrating the following facts : 
i) current industrial practice vis-a-vis System Engineer- 
ing for Computing Systems is much more empirical 

than current S/W Engineering practice, 
ii) confusion between System Engineering and S/W En- 
gineering should come to an end, 
iii) belief that S/W trustworthiness is the most impor- 
tant challenge faced by the Computing industry need 
be re-assessed, 
iv) the emergence of proof-based System Engineering 
methods for Computing Systems is one of the great 
challenges set to our profession for the coming years. 

The paper is structured as follows. Section 2 intro- 
duces our view of those phases of a computing system 
lifecycle that pertain to System Engineering. In Sec- 
tion 3, we investigate how some of these phases have 
been conducted in the case of Ariane 5 (according to 
the findings published by the Inquiry Board) and we 
identify what we believe are the real causes of the fail- 
ure. Conclusions are given in section 4. A detailed 
analysis of the 501 failure, as well as a critical appraisal 
of the Inquiry Board report, can be found in [6]. 

Disclaimer: This analysis is meant to - hopefully ~ 

help those partners in charge of and involved in the Ar- 
iane 5 program. System engineers cannot be “blamed” 
for not having applied a proof-based System Engineer- 
ing method, given that it is only recently that such 
methods have emerged. This analysis is also meant to 
- hopefully - explain why it is inappropriate to  “blame” 
S/W engineers. 

2. Prolegomena 

2.1. What is System Engineering for Computer- 
Based Systems ? 

Following the terminology and the definitions of the 
IEEE Computer Society, the Engineering of Computer- 
Based Systems (CBSs) is the engineering discipline 
which encompasses all the engineering disciplines in- 
volved in the lifecycle of CBSs, from the initial expres- 
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sion of end users/clients requirements up to the main- 
tenance and evolution of deployed CBSs. The Engi- 
neering of CBSs encompasses, e.g., Modeling, Human- 
System Interface Engineering, System Engineering, 
Electrical Engineering, S/W Engineering. 

System Engineering considers CBSs “in the large”. 
A Computing System (CS) is an essential subsystem 
of a CBS. Hence, System Engineering for CSs con- 
siders CSs “in the large” as well, in much the same 
way Civil Engineers consider bridges or dams “in the 
large”, drawing plans first, then checking they are cor- 
rect, before starting construction. System Engineering 
for CSs is concerned with, e.g., external event arrival 
models, architectures, protocols, algorithms, compu- 
tational models, failure models, redundant constructs, 
communications. 

We share the view that the essential goal of Sys- 
tem Engineering is, for any given project, to produce a 
global implementation specification of a CS, and to give 
predictions about the CS future global behavior, along 
with proofs that predicted global behavior matches the 
initial expression of end users/clients requirements. 

A final global implementation specification of a CS 
usually is modular, each module being known to be im- 
plementable (e.g., over commercial off-the-shelf tech- 
nology, or via specific H/W orland S/W develop- 
ments). However, System Engineering is not concerned 
with how to implement individual modules. System 
Engineering serves the purpose of splitting some pos- 
sibly complex initial problem into a number of simpler 
and independent sub-problems, in such a way that a 
solution is known to exist for every sub-problem, i.e. 
every specification arrived at  is implementable as a 
module (some combination of H/W, S/W and data). 

Solving the sub-problems - i.e. conducting a correct 
implementation of the modules specifications - is the 
province of Electrical Engineering, S/W Engineering, 
Device Interface Engineering, Optical Engineering, etc. 
Implementing a CS module involves specification and 
design work as well. The crucial observation is that 
the initial specification of a module cannot be guessed 
by those in charge of implementing it. Before decid- 
ing on how a module is going to be implemented, and 
then apply relevant Engineering methods (e.g., S/W 
Engineering), it must be the case that a complete and 
unambiguous specification of that module is available. 

Methods for System Engineering may be more or 
less “demanding” vis-&-vis formalization or proofs of 
correctness. For example, specifications may be ex- 
pressed in human language, in formalized notations, or 
may result from applying a formal method. In this pa- 
per, “specification” is used to refer to any complete and 
unambiguous statement of a Computer Science prob- 

lem and/or solution. 
There is growing evidence that System Engineering 

now is the “weakest” (i.e. the least rigorous) of all En- 
gineering disciplines involved with computing systems. 
Many of the setbacks experienced with projects that 
involve computing technology are due to poor System 
Engineering practice. We believe that time has come 
for the emergence of proof-based System Engineering 
for Computing Systems, this being one of the major 
objectives of the IEEE Computer Society’s Technical 
Committee on ECBS [9], as well as one of the goals 
pursued by INCOSE (Title of the 7th Annual Interna- 
tional Symposium in 1997 is ‘[Systems Engineering: A 
Necessary Science”). 

2.2. What is proof-based System Engineering for 
Computing Systems ? 

Notation < N , n  > is used in the sequel for refer- 
ring to problems and solutions, N being a set of prop- 
erties and n being a set of assumptions. Examples of 
properties are “task atomicity”, “timeliness”, “depend- 
ability”. Examples of assumptions are “task execute 
concurrently”, “aperiodic task activations”, “network 
crash failures”, “arbitrary processor failures”. 

SpECS is the acronym used to refer to proof-based 
System Engineering for Computing Systems. Desired 
global behavior of a CS, as it should be observed by 
the CS’ users and environment, is specified by the end 
client/user, via a requirements description (not a spec- 
ification). Requirements encompass application ser- 
vices as well as the application’s environment. Such 
a description can be viewed as comprising two sub- 
sets: one subset < R,w >, which describes unvalued 
or partially valued requirements (e.g., type of timeli- 
ness requirements is “latest deadlines for application 
tasks termination”, type of overall dependability re- 
quirement is “ultra-high availability” [a]), and another 
separate subset < O‘, w’ >, which provides valuations 
of those unvalued variables appearing in < 0,  w > (e.g., 
actual values of the latest deadlines for every applica- 
tion task, overall unavailability < lo-’). Availability 
of subset < O’,w’ > is not required to start designing 
a CS. 

cle. For the sake of conciseness, we will not present 
the phase concerned with how to cope with changes 
of user/client initial requirements after a CS has been 
fielded, or with technological upgrades (existing mod- 
ules replaced with newer modules). In fact, this phase 
builds upon the three phases examined below. 

SpECS covers four important phases of a CS lifecy- 

Capture of initial requirements: is concerned 
with the translation of subset < R, w > (the application 
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problem), into a specification of the Computer Science 
problem “hidden within” < 0, w >, denoted < A, X >, 
which is also unvalued or only partially valued. Simi- 
larly, when available (see further), subset < Cl’, w f  > is 
translated into specification < @,cp >, a valuation of 
those unvalued variables appearing in < A,  X >. 

covers all the design stages 
needed to arrive at a modular (unvalued or partially 
valued) specification of a CS, the completion of each 
design stage being conditioned on fulfilling correctness 
proof obligations. For example, if “mutual exclusion” 
is a requirement at some design stage, then that design 
cannot be proven correct unless it includes a mutual ex- 
clusion algorithm that matches those assumptions con- 
sidered at  that stage. Similarly, if latest deadlines are 
to be met by task terminations, one fulfills a timeliness 
proof obligation by providing: (i) the specification of 
a scheduling algorithm, (ii) the expression of a com- 
putable function B(m, r), which is an upper bound on 
response times for any task ranked rth in module m’s 
waiting queue, r being shown to be the highest rank 
reachable by that task, (iii) computable feasibility con- 
ditions under which function B holds system-wide. 

By the virtue of the uninterrupted chain of proofs 
that designs are correct, final (unvalued or partially 
valued) specification of CS - the aggregation of all de- 
sign specifications, denoted < D, d >, provably solves 
problem < A,X >. 

0 System dimensioning: covers a single stage that 
has < @,cp > as an input. The output is a valuation 
of < D,d >, denoted < V,v >. In particular, set 
< V,w > is a valuation of those implementation vari- 
ables that appear in < D,d >, such as sizes of mem- 
ory banks, sizes of data structures, processors speeds, 
databuses throughputs, number of databuses, proces- 
sors redundancy degrees, total number of processors. 
Many different subsets < Qf,wf > (hence various sub- 
sets < @,cp >) may be contemplated by a client/user 
before a decision is made to field or to implement a CS. 

0 System design: 

Pair << D, d >, < V, v >> is a modular implementa- 
tion specification of a CS that provably solves problem 
<A,X>,<@,cp>>. 

In other words, capture of initial requirements and 
assumptions yields the expression of a generic problem 
in Computer Science. System design yields a generic 
solution of that generic problem. 

After this is done, the end user/client is free to di- 
mension his/her generic problem, as many times as de- 
sired. For each problem dimensioning, there exists a 
matching dimensioning of the generic solution (i.e., of 
the CS). The specification of the matching dimensioned 
solution is a complete implementation specification of 

a CS. S/W engineers, Electrical engineers, Optical en- 
gineers, Telecommunications engineers, etc. can then 
be put to work, in order to correctly implement the CS 
as specified. 

A major benefit of applying a SpECS method is de- 
sign reusability. Whenever a new application problem 
< 0 , w  >* is being considered, and captured as prob- 
lem < A,X >, which has been solved in the past with 
design < D, d >, that design comes for free. 

It is common practice to assign different pieces of an 
implementation specification to different teams (sub- 
contractors - competitors sometimes, in-house engi- 
neers). Another major benefit of applying n SpECS 
method is to get rid of three serious problems arising 
under current practice, which are as follows: 

* specifications of some (a  few, many) modules are 
missing, or are ambiguous, or are incomplete; imple- 
mentors of modules (H/W or/and S/W engineers) pro- 
ceed by guess-work, which results into errors tlhat, usu- 
ally, are not caught before the real system is put into 
operation, 

* verification that the set of concatenated modules 
“behaves correctly” indeed ~ the “system in1 egration 
phase” - is a combinatorial problem, 

verification is done via testing, within some limited 
time budget, which means that verification is almost 
always incomplete. 

Ariane 5 Flight 501 can in fact be seen as a - rather 
costly - continuation of an incomplete testing proce- 
dure. 

Under a SpECS approach it is proven beforehand 
that the reunion of solutions (of modules) is a global 
solution. Therefore, if every module is correctly im- 
plemented, there is no need to check their interactions. 
The “system integration phase” vanishes (from a the- 
oretical viewpoint) or is vastly simplified (from a prac- 
tical viewpoint). 

Theories and scientific disciplines/techniques that 
are relevant for SpECS approaches depend on the type 
of problem under consideration, as well as on the de- 
sign approach adopted to solve it. Critical applica- 
tions raise problems of deterministic nature (guaran- 
tees for extreme conditions are required). It is then 
appropriate, or even mandatory, to resort to determin- 
istic design approaches and solutions. Algorithms play 
an essential role w.r.t. generic solutions and correct- 
ness proofs (see [ 11, [7], [8] for examples). Serializabil- 
ity theory, Scheduling theory, Adversary Arguments, 
Proofs by contradiction, Worst-case Analysis, Analyt- 
ical Calculus, Matrix Calculus in (Max, +) Algebra, 
are examples of theories and techniques we have found 
to be useful for solving, with proofs, deterministic ap- 
plication/design problems. 
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A SpECS method has been developed within IN- 
RIA'S project REFLECS for addressing those System 
Engineering issues that arise with Real-time (R), Dis- 
tributed (D), Fault-tolerant (F) applications and sys- 
tems. That method (the TRDF method) has been ap- 
plied to four real problems/cases so far, the most dif- 
ficult one being a Modular Avionics problem [4]. It is 
currently being applied to solve a generic R/D/F prob- 
lem that arises with many critical applications (e.g., 
Air Traffic Control) and Defense applications. 

Analysis of major setbacks, such as project delays, 
or project cancellations, or operational failures, that 
occurred over the last ten years, reveals that the dom- 
inant cause of such setbacks is neither poor project 
management nor poor S/W Engineering practice, as is 
often believed, but lack of applying a SpECS method, 
which results into faulty capture of initial requirements, 
or system design faults, or system dimensioning faults, 
or any combination of the above. This is now illus- 
trated with the 501 failure. 

3. Autopsy of the 501 Failure 

3.1. The failure scenario 

The 501 failure scenario described in the Inquiry 
Board report is as follows. The launcher started to dis- 
integrate 39 seconds after lift-off, because of an angle 
of attack of more than 20 degrees, which was caused by 
full nozzle deflections of the solid boosters and the Vul- 
cain main engine. These deflections were commanded 
by the On-Board Computer (OBC) S/W, whose input 
is data transmitted by the active Inertial Reference 
System (SRI 2 ) .  Part of these data did not contain 
proper flight data, but showed a diagnostic bit pattern 
of the SRI 2 computer, which was interpreted as regular 
flight data by the OBC. Diagnostic was issued by the 
SRI 2 computer as a result of a S/W exception. The 
OBC could not switch to the backup SRI 1 because 
that computer had ceased functioning 72 ms earlier, 
for the same reason as SRI 2. 

The SRI S/W exception was raised during a conver- 
sion from a 64-bit floating point number F to a 16-bit 
signed integer number. F had a value greater than 
what can be represented by a 16-bit signed integer, 
which caused an Operand Error (data conversion - in 
Ada code - was not protected, for the reason that a 
maximum workload target of 80 % had been set for 
the SRI computer). More precisely, the Operand Er- 
ror was due to a high value of an alignment function 
result called BH, Horizontal Bias, related to the hori- 
zontal velocity of the launcher. The value of BH was 
much higher than expected because the early part of 

the trajectory of Ariane 5 differs from that of Ariane 4, 
which results in considerably higher horizontal velocity 
values. 

The Operand Error occurred while running an align- 
ment function, which serves a particular purpose with 
Ariane 4 but is not required for Ariane 5. 

According to the Inquiry Board, causes of the 501 
failure are S/W specification and S/W design errors. 
We now present those System Engineering faults which, 
in our view, are the real causes of the 501 failure. 

3.2. Capture of initial requirements 

Under a SpECS approach, stating problem < A, X > 
involves establishing a specification of the following (in 
particular) : 
0 set of external events (modeling of the CS environ- 
ment), 
0 for every external event : 

that is activated, 
* list of every (possibly one) application-level task 

* arrival law (periodic, sporadic, aperiodic, arbi- 
trary), 
0 for every application-level task: 

* external variables shared by this task and the CS 
environment, as well as variables that depend on those 
external variables (rcl), 

* application-level conditions under which that task 
can run, be suspended, resumed, aborted (rca), 

* timeliness constraints (latest termination deadline, 
bounded termination jitter, etc.). 

3.2.1 Fact 

Horizontal Velocity is an external variable, shared by 
the environment and some of the SRI module tasks. 
Horizontal Velocity is used to compute the value of an 
integer variable called BH. This value, which is sent 
to the OBC modules, determines the nozzle deflections 
(solid boosters, Vulcain main engine). 

Fault RC1 (external variable): The need to split 
the initial application requirements into two subsets 
< a, w > and < R', w' > has not been identified. A for- 
tiori, the need to transform description < R,w > into 
specification < h,X > has not been identified either. 
Hence, problem < A,X > has not been stated. Conse- 
quently, external variables, such as Horizontal Velocity, 
and related variables, such as BH, have not all been 
listed explicitly (see rc1 above). 

This fault has resulted into system dimensioning 
fault DIMl. 
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3.2.2 Fact 

The alignment program was running after lift-off. The 
“exception condition” (BH overflow) was raised while 
running this program. It was later acknowledged that 
there is no need to keep this program running after 
lift-off in the case of Ariane 5. 

Fault RC2 (application task attribute): Had 
problem < h,X > been stated, the alignment task 
would have been listed, along with its attributes. In 
particular, the condition “alignment task should not 
be running after lift-off”, would have been explicitly 
specified (see rc2 above). Which has not been done. 

This fault has resulted into system design fault 
DES:, . It was simply impossible for those system en- 
gineers in charge of designing/selecting the SRI com- 
puter task scheduler, as well as eligibility scheduling 
rules, to “guess” that the alignment task should have 
been aborted right after lift-off. 

3.2.3 Fact 

Continuous correct SRI service is essential to a correct 
functioning of the launcher. This has not been the case. 

Fault RC3 (dependability property and as- 
sumptions): A specification of problem < A , >  > 
would have stated the following dependability property 
DEP and related assumptions: 

(DEP) for some SRI module failure model, SRI ser- 
vice is correctly and continuously delivered for the en- 
tire duration of a flight, with a probability at least 
equal to 1 - p. 

In other words, up to f SRI modules - out of n - 
“can” fail during a flight. Probability that more than 
f such failures can occur should be p at  most. 

Rather, it was implicitly assumed that SRI comput- 
ers (H/W only, unlike modules) would behave accord- 
ing to “crash-only” semantics. It was also implicitly 
assumed that 1 SRI module at most would fail. This 
has resulted into system design faults DESI, DE&, 
DES3 and DE&, as well as into system dimensioning 
fault DIM2. 

3.2.4 Summary 

Beyond the fact that, via the reading of the In- 
quiry Board report, it is possible to diagnose the 
three faults listed above, one may wonder whether 
the current Ariane 5 on-board CS is plagued with de- 
sign/dimensioning faults other than those identified in 
this paper, some of them being ascribable to RC faults 
other than RC1, RCB, RC3. Problem is that conclu- 
sions and recommendations listed in the Inquiry Board 
report focus almost exclusively on S/W Engineering 

issues. It is reasonably obvious that the expertise re- 
quired to identify RC faults (fault RC3 in particular) 
and system design/dimensioning faults is not related to 
S/W Engineering culture in any respect. Issues raised 
are Systems Engineering issues. 

The current Ariane 5 on-board CS is a solution 
to some unknown problem << A,X >*,< Qb,p >*>. 
Reverse System Engineering should be applied in or- 
der to identify this problem. However, problem 
<( A, X >, < a, p >> not being stated, it is impossi- 
ble to compare << h,X >,< cP,p >> and <<: h,X >*, 
< @,cp >*>. Portions of problem << h,X >, < @ , p  >> 
- such as property DEP ~ can be inferred. Conse- 
quently, related design/dimensioning faults are identi- 
fiable (see further). Such faults can be corrected. How- 
ever, doing this does not suffice. As long as problem 
< A,X > will not be completely and unambiguously 
specified, it will be impossible to assert that the Ari- 
ane 5 on-board CS is correct. Even if flights 502 and 
503 turn out to be successful. 

no SpECS method was applied either in 
the case of Ariane 4. It was experimentally “ver- 
ified” in the course of real launches that poten- 
tial faults in requirements capture and/or system 
design/dimensioning/implementation were ironed out 
(some faults having possibly contributed to a. few early 
failures). Such “experiment a1” approaches may yield 
a “confidence level” comparable to that reached with 
proving, albeit in a much more costly and lengthy man- 
ner. Now that SpECS approaches have emerged, why 
should we keep wasting time and money? 

Note: 

3.3. System design 

Under a SpECS approach, proofs are mandatory at 
every single design stage. For example, for specified 
failure models, proofs that DEP holds for such failure 
models should be given, for some feasibility conditions 
to be established. Let n be the smallest number of SRI 
modules needed to cope with up to f module failures. 
Making such “deterministic” assumptions as f-out-of-n 
(property DEP), or any similar assumption of proba- 
bilistic nature, does not make sense unless it can be 
demonstrated that there are no faults that can cause 
n identical failures (the “common mode” failure sce- 
nario). Two approaches can be followed: 

0 either prove that requirements capture and sys- 
tem design/dimensioning/implementation faults are 
avoided; in this case, non-diversified redundancy can 
be considered, 

0 or skip such proofs (which has been done); it is 
then mandatory to consider diversified redundancy, in 
order to tolerate potential faults, with a sufficiently 
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“high” probability. The greater the value of f, the 
higher the probability. 

Many “fault- 
tolerant” CSs are implemented via non diversified re- 
dundancy, despite the fact that (i) their design is based 
on f-out-of-n assumptions, (ii) no proofs that system 
design and system dimensioning are correct are given. 
This is like building on quicksand, given that the acti- 
vation of any System Engineering fault is guaranteed to 
lead to a total CS failure (n failed modules), whatever 
the respective values of f  and n. 

This is an important observation. 

3.3.1 Fact 

Requirement that property DEP should hold was vio- 
lated. Both SRI modules failed. 

Fault DESI (the SRIs): No SpECS method was 
used. Hence, non diversified redundancy is an incorrect 
solution (see above). 

Other Space missions have failed for the same reason 
(Mars Observer is a recent example). 

3.3.2 Fact 

Both SRI modules failed, exhibiting failure behavior 
stronger than “crash-only” , namely “omission” and 
“erroneous non-malicious behavior in the value do- 
main”. 

Fault DES2 (the SRIs): The implicit “crash- 
only” assumption has not been specified. Hence, it 
could be violated, which happened. Detection-and- 
recovery - which is the type of fault-tolerance algorithm 
used - cannot be proven to  be a correct solution unless 
failure models are specified. 

For property DEP to hold, it is well known that ac- 
tive redundancy is the only algorithmic construct that 
can be considered in the presence of unspecified failure 
models (i.e. stronger than “crash-only” a priori). It is 
also well known that n > 2f is a necessary and sufficient 
feasibility condition under such circumstances. 

Fault DES3 (the SRIs and the OBCs): The im- 
plicit “crash-only” assumption has not been specified. 
Hence, rather than “killing themselves”, SRI modules 
issued diagnostic/error messages. 

Under a SpECS approach, every event that can be 
posted to a module must be listed. Similarly, tasks that 
can be activated over a module must be listed. A {task, 
event} mapping must be provided. Had this been done, 
event “flight data” could not be confused with event 
“exception condition reporting”. Consequently, Sys- 
tem engineers would have identified the need to pro- 
vide for (among others) two separate OBC tasks, one 
in charge of executing the flight program, the other 
one in charge of handling exception conditions (error 

messages). Had this been done, “crash-only’’ behavior 
would have been correctly implemented vis-a-vis the 
OBC flight program. 

Although this would not have helped avoid the 501 
failure, this is a latent fault that may lead to  a future 
flight failure. 

3.3.3 Fact 

The OBC modules (H/W + S/W + data) in charge 
of commanding the nozzle deflections interpreted error 
messages issued by the SRI modules as flight data. 

Fault DES4 (the OBCs): No proof has been es- 
tablished showing that a correct OBC module delivers 
correct inputs to the OBC task in charge of command- 
ing the nozzle deflections, in the presence of some faulty 
values issued by the SRI modules. 

A correct OBC module can be shown to compute a 
correct value out of a set of values issued by n SRI mod- 
ules, f of them at  most being faulty, by using an error 
masking algorithm (e.g. majority voting). A harder 
problem, known as the “Byzantine Generals” problem, 
was solved long ago, for the most unrestricted failure 
model [ 5 ] .  This work has influenced the design of the 
US Space Shuttle on-board CS. 

In passing, one may observe that this “checking” 
conducted by the OBC modules would have compen- 
sated for the lack of checking (of BH values) by the 
SRI modules. And the 80 % maximum workload target 
set for SRI computers would not have been exceeded. 
This has not been done due to lack of having rigorously 
looked at  the on-board CS “in the large”. 

3.3.4 Fact 

Loss of correct flight data occurred while running the 
alignment program. With Ariane 5, keeping this pro- 
gram active after lift-off is unnecessary. 

Fault DESS (the SRIs): Conditions under which 
tasks can be run, suspended or aborted are to  be stated 
explicitly (see rc2, section 3.2). 

Had this been done, and assuming a correct task 
scheduler has been designed for the SRI modules (not a 
S/W Engineering issue), the alignment task would have 
been deactivated (by the task scheduler) as specified, 
e.g. right after lift-off if so desired. 

3.4. System dimensioning 

No rigorous requirements capture having been con- 
ducted, and design faults having been made, provably 
correct dimensionings of some of the variables appear- 
ing in the final on-board CS implementation specifica- 
tion were missing (BH and f ,  in particular). That could 
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not be detected during the (S/W and/or H/W) im- 
plementation phase, unless accidentally. This resulted 
into an incorrect size of the memory space used for stor- 
ing variable BH. This resulted also into an empirical 
dimensioning of the SRI modules group (which should 
have been based on diversified redundancy). 

3.4.1 Fact 

The Operand Error was due to an unexpected high 
value of BH. 

Fault DIM1: Range of values taken by variable BH 
was assumed to be in the {-215, +215} interval. 

Had a SpECS method been used, fault RC1 would 
have been avoided. Hence, the client/user or some rep- 
resentative - e.g., a spacefflight engineer - would have 
been explicitly asked to quantify the ranges of possible 
values of Horizontal Velocity and BH, for the applica- 
tion under consideration, that is Ariane 5 (not Ariane 
4). This would have translated into a correct dimen- 
sioning of the memory block used to implement BH. 

Similar implicit assumptions may have been made 
also for other variables or data structures. 

Calling an incorrect dimensioning of a memory block 
a “S/W design error” (see [3]) is as erroneous as calling 
the selection of too slow a processor a “S/W design 
error”. Again, the dimensioning of external variables 
is a System Engineering issue, not a S/W Engineering 
issue. 

3.4.2 Fact 

Both SRI modules failed. The f-out-of-n (1-out-of-2) 
implicit assumption was violated. 

Fault DIM2: It was implicitly assumed that f’s 
value would be 1 and that simple redundancy (n = 2) 
would suffice. No proof that probability 1 - p would be 
higher than some quantified value, was given. 

The intrinsic reliability of a SRI module (H/W + 
S/W + data), and related coverage factor, can be de- 
rived from statistics computed over accumulated exper- 
imental data, or via probabilistic modeling. Intrinsic 
reliability and coverage factor, combined with launch 
duration, are used to compute a value for f, as well 
as related probability q that at most f failures “can” 
occur. Obviously, the smallest correct value o f f  to be 
chosen should be such that 1 - g < p holds true. 

It is thereafter possible to derive the lower bound 
of n which, depending on the (non malicious) failure 
model that should have been considered, is f + l  or 2f+l 
(the latter in our case). 

It appears that System engineers took H/W only 
into consideration. This has also led to a violation of 

the n > 2f lower bound, which applies whenever non 
malicious failure semantics are not specified. 

Although a value off (resp. n) greater than 1 (resp. 
2) would not have helped avoid the 501 failure, this is 
a latent fault that may lead to a future flight failure. 

4. Conclusions 

It is now possible to understand what led to the fail- 
ure of flight 501. If we were to stick to internationally 
accepted terminology, we should write the following: 

Faults have been made while capturing the Ari- 
ane 5 application/environment requirements. Faults 
have also been made in the course of designing and 
dimensioning the Ariane 5 on-board CS. These faults 
have resulted into errors at  the system modules level. 
Some of these errors have been activated during launch. 
Neither algorithmic nor architectural constructs could 
cope with such errors. Flight 501 failure ensued. 

Had all the modules - as specified - been imple- 
mented in H/W, flight 501 would have failed the way 
it did. Had the implementation of every module (in 
S/W and/or in H/W) been proven correct - 1,v.r.t. the 
specifications at  hands - flight 501 would have failed 
the way it did. Therefore, causes of the failure belong 
neither to the Y / W  world” nor to the “H/W world”. 
Issues at  stake are System Engineering issues. 

Our conclusions deviate from those of the Inquiry 
Board. We have found that these conclusions are un- 
justly directed at  S/W Engineering errors. This is yet 
another example of a long lasting confusion between 
S/W Engineering and System Engineering. Despite ev- 
idence that S/W engineers should not be blamed for the 
501 failure, improving the quality of the S/W design 
and production process is a reasonable recommenda- 
tion, as usual. (It is almost always the case that S/W 
can be improved). However, it is essential to under- 
stand that looking at  CSs as S/W “things” inevitably 
leads to disillusions. And to erroneous or inaccurate 
failure diagnostics. It is regrettable that manifesta- 
tions (S/W errors) are confused with the real causes 
(System Engineering faults). 

Regrettable but, maybe, not surprising. ]Expertise 
required to identify - or, even better, to avoid - System 
Engineering faults is not at  all related to S/W Engi- 
neering culture. 

A particularly striking illustration of the above is as 
follows. We have identified - among others - a serious 
system design fault, which mirrors knowledge that is 
reasonably widespread in the System Engineering com- 
munity, namely that any CS based on non diversified 
redundancy inevitably fails whenever a system design 
or a system dimensioning fault is activated, whatever 
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the redundancy degree. Obviously, such knowledge - 
hence the fault - was ignored by the Inquiry Board. 
The Board found no weakness w.r.t. the existing re- 
dundant on-board CS, which is demonstrated by the 
diagnosis that “there is considerable redundancy at  the 
equipment level” [3]. Non diversified simple redundancy 
is the weakest type of redundancy that can be imag- 
ined. 

It is reasonably clear that neither architectural nor 
algorithmic issues have been carefully investigated by 
the Inquiry Board. More testing is recommended by 
the Board. We argue that System Engineering faults 
cannot be detected by testing, unless accidentally. 

Proof-based System Engineering eases the job of 
S/W engineers (faults that would result into S/W er- 
rors are avoided). Conversely, proof-based S/W Engi- 
neering does not compensate for poor System Engineer- 
ing practice. Similarly, in Civil Engineering, “good” re- 
inforced concrete cannot compensate for lack of having 
global plans proven correct in the first place. 

Whether or not the existing Ariane 5 on-board CS, 
or any future Ariane 5 on-board CS, is free from design 
and/or dimensioning faults other than those identified 
in this paper can only be established by applying a 
SpECS method. 

A fortiori, it is strongly recommended that a SpECS 
method be applied to other Space programs. 

[9] S. White, J. Rozenblit, and B. Melhart. Engineering of 
Computer-Based Systems: Current Status and Techni- 
c d  Activities. IEEE Computer, pages 100-101, June 
1995. 
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