
An Analysis of the Ariane 5 Flight 501 Failure - A System
Engineering Perspective

Gdrard LE LANN
INRIA, BP 105, 78153 Le Chesnay cedex, France

Gerard.Le-Lann@inria.fr

Abstract

The report issued by the Inquiry Board in charge
of inspecting the Ariane 5 flight 501 failure concludes
that causes of the failure are rooted into poor S/W En-
gineering practice. From the failure scenario described
in the Inquiry Board report, it is possible to infer what,
in our view, are the real causes of the 501 failure. We
develop arguments to demonstrate that the real causes
of the 501 failure are neither S/W specification errors
nor S/W design errors. Real causes of the failure are
faults in the capture of the overall Ariane 5 applica-
tion/environment requirements, and faults in the de-
sign and the dimensioning of the Ariane 5 on-board
computing system. These faults result from not fol-
lowing a rigorous System Engineering approach, such
as applying a proof-based System Engineering method.
What is proof-based System Engineering for Computing
Systems is also presented.

1. Introduction

On 4 June 1996, the maiden flight of the Ariane 5
launcher ended in a failure, entailing a loss in the order
of 1.9 Billion French Francs (- 0.36 Billion US $) and
a 1-year delay for the Ariane 5 program. An Inquiry
Board was asked to identify the causes of the failure.
Conclusions of the Inquiry Board were issued on 19
July 1996, as a public report [3]. The failure analysis
given in this paper is based upon the Inquiry Board
findings. Our conclusions deviate significantly from the
Inquiry Board findings. Essentially, the Inquiry Board
concludes that poor S/W Engineering practice is the
culprit, whereas we argue the 501 failure results from
poor System Engineering practice.

This case study is believed to be particularly useful
in illustrating the following facts :
i) current industrial practice vis-a-vis System Engineer-
ing for Computing Systems is much more empirical

than current S/W Engineering practice,
ii) confusion between System Engineering and S/W En-
gineering should come to an end,
iii) belief that S/W trustworthiness is the most impor-
tant challenge faced by the Computing industry need
be re-assessed,
iv) the emergence of proof-based System Engineering
methods for Computing Systems is one of the great
challenges set to our profession for the coming years.

The paper is structured as follows. Section 2 intro-
duces our view of those phases of a computing system
lifecycle that pertain to System Engineering. In Sec-
tion 3, we investigate how some of these phases have
been conducted in the case of Ariane 5 (according to
the findings published by the Inquiry Board) and we
identify what we believe are the real causes of the fail-
ure. Conclusions are given in section 4. A detailed
analysis of the 501 failure, as well as a critical appraisal
of the Inquiry Board report, can be found in [6].

Disclaimer: This analysis is meant to - hopefully ~

help those partners in charge of and involved in the Ar-
iane 5 program. System engineers cannot be “blamed”
for not having applied a proof-based System Engineer-
ing method, given that it is only recently that such
methods have emerged. This analysis is also meant to
- hopefully - explain why it is inappropriate to “blame”
S/W engineers.

2. Prolegomena

2.1. What is System Engineering for Computer-
Based Systems ?

Following the terminology and the definitions of the
IEEE Computer Society, the Engineering of Computer-
Based Systems (CBSs) is the engineering discipline
which encompasses all the engineering disciplines in-
volved in the lifecycle of CBSs, from the initial expres-

339
0-8186-7889-5197 $10.00 0 1997 IEEE

mailto:Gerard.Le-Lann@inria.fr

sion of end users/clients requirements up to the main-
tenance and evolution of deployed CBSs. The Engi-
neering of CBSs encompasses, e.g., Modeling, Human-
System Interface Engineering, System Engineering,
Electrical Engineering, S/W Engineering.

System Engineering considers CBSs “in the large”.
A Computing System (CS) is an essential subsystem
of a CBS. Hence, System Engineering for CSs con-
siders CSs “in the large” as well, in much the same
way Civil Engineers consider bridges or dams “in the
large”, drawing plans first, then checking they are cor-
rect, before starting construction. System Engineering
for CSs is concerned with, e.g., external event arrival
models, architectures, protocols, algorithms, compu-
tational models, failure models, redundant constructs,
communications.

We share the view that the essential goal of Sys-
tem Engineering is, for any given project, to produce a
global implementation specification of a CS, and to give
predictions about the CS future global behavior, along
with proofs that predicted global behavior matches the
initial expression of end users/clients requirements.

A final global implementation specification of a CS
usually is modular, each module being known to be im-
plementable (e.g., over commercial off-the-shelf tech-
nology, or via specific H/W orland S/W develop-
ments). However, System Engineering is not concerned
with how to implement individual modules. System
Engineering serves the purpose of splitting some pos-
sibly complex initial problem into a number of simpler
and independent sub-problems, in such a way that a
solution is known to exist for every sub-problem, i.e.
every specification arrived at is implementable as a
module (some combination of H/W, S/W and data).

Solving the sub-problems - i.e. conducting a correct
implementation of the modules specifications - is the
province of Electrical Engineering, S/W Engineering,
Device Interface Engineering, Optical Engineering, etc.
Implementing a CS module involves specification and
design work as well. The crucial observation is that
the initial specification of a module cannot be guessed
by those in charge of implementing it. Before decid-
ing on how a module is going to be implemented, and
then apply relevant Engineering methods (e.g., S/W
Engineering), it must be the case that a complete and
unambiguous specification of that module is available.

Methods for System Engineering may be more or
less “demanding” vis-&-vis formalization or proofs of
correctness. For example, specifications may be ex-
pressed in human language, in formalized notations, or
may result from applying a formal method. In this pa-
per, “specification” is used to refer to any complete and
unambiguous statement of a Computer Science prob-

lem and/or solution.
There is growing evidence that System Engineering

now is the “weakest” (i.e. the least rigorous) of all En-
gineering disciplines involved with computing systems.
Many of the setbacks experienced with projects that
involve computing technology are due to poor System
Engineering practice. We believe that time has come
for the emergence of proof-based System Engineering
for Computing Systems, this being one of the major
objectives of the IEEE Computer Society’s Technical
Committee on ECBS [9], as well as one of the goals
pursued by INCOSE (Title of the 7th Annual Interna-
tional Symposium in 1997 is ‘[Systems Engineering: A
Necessary Science”).

2.2. What is proof-based System Engineering for
Computing Systems ?

Notation < N , n > is used in the sequel for refer-
ring to problems and solutions, N being a set of prop-
erties and n being a set of assumptions. Examples of
properties are “task atomicity”, “timeliness”, “depend-
ability”. Examples of assumptions are “task execute
concurrently”, “aperiodic task activations”, “network
crash failures”, “arbitrary processor failures”.

SpECS is the acronym used to refer to proof-based
System Engineering for Computing Systems. Desired
global behavior of a CS, as it should be observed by
the CS’ users and environment, is specified by the end
client/user, via a requirements description (not a spec-
ification). Requirements encompass application ser-
vices as well as the application’s environment. Such
a description can be viewed as comprising two sub-
sets: one subset < R,w >, which describes unvalued
or partially valued requirements (e.g., type of timeli-
ness requirements is “latest deadlines for application
tasks termination”, type of overall dependability re-
quirement is “ultra-high availability” [a]), and another
separate subset < O‘, w’ >, which provides valuations
of those unvalued variables appearing in < 0, w > (e.g.,
actual values of the latest deadlines for every applica-
tion task, overall unavailability < lo-’). Availability
of subset < O’,w’ > is not required to start designing
a CS.

cle. For the sake of conciseness, we will not present
the phase concerned with how to cope with changes
of user/client initial requirements after a CS has been
fielded, or with technological upgrades (existing mod-
ules replaced with newer modules). In fact, this phase
builds upon the three phases examined below.

SpECS covers four important phases of a CS lifecy-

Capture of initial requirements: is concerned
with the translation of subset < R, w > (the application

340

problem), into a specification of the Computer Science
problem “hidden within” < 0, w >, denoted < A, X >,
which is also unvalued or only partially valued. Simi-
larly, when available (see further), subset < Cl’, w f > is
translated into specification < @,cp >, a valuation of
those unvalued variables appearing in < A, X >.

covers all the design stages
needed to arrive at a modular (unvalued or partially
valued) specification of a CS, the completion of each
design stage being conditioned on fulfilling correctness
proof obligations. For example, if “mutual exclusion”
is a requirement at some design stage, then that design
cannot be proven correct unless it includes a mutual ex-
clusion algorithm that matches those assumptions con-
sidered at that stage. Similarly, if latest deadlines are
to be met by task terminations, one fulfills a timeliness
proof obligation by providing: (i) the specification of
a scheduling algorithm, (ii) the expression of a com-
putable function B(m, r), which is an upper bound on
response times for any task ranked rth in module m’s
waiting queue, r being shown to be the highest rank
reachable by that task, (iii) computable feasibility con-
ditions under which function B holds system-wide.

By the virtue of the uninterrupted chain of proofs
that designs are correct, final (unvalued or partially
valued) specification of CS - the aggregation of all de-
sign specifications, denoted < D, d >, provably solves
problem < A,X >.

0 System dimensioning: covers a single stage that
has < @,cp > as an input. The output is a valuation
of < D,d >, denoted < V,v >. In particular, set
< V,w > is a valuation of those implementation vari-
ables that appear in < D,d >, such as sizes of mem-
ory banks, sizes of data structures, processors speeds,
databuses throughputs, number of databuses, proces-
sors redundancy degrees, total number of processors.
Many different subsets < Qf,wf > (hence various sub-
sets < @,cp >) may be contemplated by a client/user
before a decision is made to field or to implement a CS.

0 System design:

Pair << D, d >, < V, v >> is a modular implementa-
tion specification of a CS that provably solves problem
<A,X>,<@,cp>>.

In other words, capture of initial requirements and
assumptions yields the expression of a generic problem
in Computer Science. System design yields a generic
solution of that generic problem.

After this is done, the end user/client is free to di-
mension his/her generic problem, as many times as de-
sired. For each problem dimensioning, there exists a
matching dimensioning of the generic solution (i.e., of
the CS). The specification of the matching dimensioned
solution is a complete implementation specification of

a CS. S/W engineers, Electrical engineers, Optical en-
gineers, Telecommunications engineers, etc. can then
be put to work, in order to correctly implement the CS
as specified.

A major benefit of applying a SpECS method is de-
sign reusability. Whenever a new application problem
< 0 , w >* is being considered, and captured as prob-
lem < A,X >, which has been solved in the past with
design < D, d >, that design comes for free.

It is common practice to assign different pieces of an
implementation specification to different teams (sub-
contractors - competitors sometimes, in-house engi-
neers). Another major benefit of applying n SpECS
method is to get rid of three serious problems arising
under current practice, which are as follows:

* specifications of some (a few, many) modules are
missing, or are ambiguous, or are incomplete; imple-
mentors of modules (H/W or/and S/W engineers) pro-
ceed by guess-work, which results into errors tlhat, usu-
ally, are not caught before the real system is put into
operation,

* verification that the set of concatenated modules
“behaves correctly” indeed ~ the “system in1 egration
phase” - is a combinatorial problem,

verification is done via testing, within some limited
time budget, which means that verification is almost
always incomplete.

Ariane 5 Flight 501 can in fact be seen as a - rather
costly - continuation of an incomplete testing proce-
dure.

Under a SpECS approach it is proven beforehand
that the reunion of solutions (of modules) is a global
solution. Therefore, if every module is correctly im-
plemented, there is no need to check their interactions.
The “system integration phase” vanishes (from a the-
oretical viewpoint) or is vastly simplified (from a prac-
tical viewpoint).

Theories and scientific disciplines/techniques that
are relevant for SpECS approaches depend on the type
of problem under consideration, as well as on the de-
sign approach adopted to solve it. Critical applica-
tions raise problems of deterministic nature (guaran-
tees for extreme conditions are required). It is then
appropriate, or even mandatory, to resort to determin-
istic design approaches and solutions. Algorithms play
an essential role w.r.t. generic solutions and correct-
ness proofs (see [11, [7], [8] for examples). Serializabil-
ity theory, Scheduling theory, Adversary Arguments,
Proofs by contradiction, Worst-case Analysis, Analyt-
ical Calculus, Matrix Calculus in (Max, +) Algebra,
are examples of theories and techniques we have found
to be useful for solving, with proofs, deterministic ap-
plication/design problems.

341

A SpECS method has been developed within IN-
RIA'S project REFLECS for addressing those System
Engineering issues that arise with Real-time (R), Dis-
tributed (D), Fault-tolerant (F) applications and sys-
tems. That method (the TRDF method) has been ap-
plied to four real problems/cases so far, the most dif-
ficult one being a Modular Avionics problem [4]. It is
currently being applied to solve a generic R/D/F prob-
lem that arises with many critical applications (e.g.,
Air Traffic Control) and Defense applications.

Analysis of major setbacks, such as project delays,
or project cancellations, or operational failures, that
occurred over the last ten years, reveals that the dom-
inant cause of such setbacks is neither poor project
management nor poor S/W Engineering practice, as is
often believed, but lack of applying a SpECS method,
which results into faulty capture of initial requirements,
or system design faults, or system dimensioning faults,
or any combination of the above. This is now illus-
trated with the 501 failure.

3. Autopsy of the 501 Failure

3.1. The failure scenario

The 501 failure scenario described in the Inquiry
Board report is as follows. The launcher started to dis-
integrate 39 seconds after lift-off, because of an angle
of attack of more than 20 degrees, which was caused by
full nozzle deflections of the solid boosters and the Vul-
cain main engine. These deflections were commanded
by the On-Board Computer (OBC) S/W, whose input
is data transmitted by the active Inertial Reference
System (SRI 2) . Part of these data did not contain
proper flight data, but showed a diagnostic bit pattern
of the SRI 2 computer, which was interpreted as regular
flight data by the OBC. Diagnostic was issued by the
SRI 2 computer as a result of a S/W exception. The
OBC could not switch to the backup SRI 1 because
that computer had ceased functioning 72 ms earlier,
for the same reason as SRI 2.

The SRI S/W exception was raised during a conver-
sion from a 64-bit floating point number F to a 16-bit
signed integer number. F had a value greater than
what can be represented by a 16-bit signed integer,
which caused an Operand Error (data conversion - in
Ada code - was not protected, for the reason that a
maximum workload target of 80 % had been set for
the SRI computer). More precisely, the Operand Er-
ror was due to a high value of an alignment function
result called BH, Horizontal Bias, related to the hori-
zontal velocity of the launcher. The value of BH was
much higher than expected because the early part of

the trajectory of Ariane 5 differs from that of Ariane 4,
which results in considerably higher horizontal velocity
values.

The Operand Error occurred while running an align-
ment function, which serves a particular purpose with
Ariane 4 but is not required for Ariane 5.

According to the Inquiry Board, causes of the 501
failure are S/W specification and S/W design errors.
We now present those System Engineering faults which,
in our view, are the real causes of the 501 failure.

3.2. Capture of initial requirements

Under a SpECS approach, stating problem < A, X >
involves establishing a specification of the following (in
particular) :
0 set of external events (modeling of the CS environ-
ment),
0 for every external event :

that is activated,
* list of every (possibly one) application-level task

* arrival law (periodic, sporadic, aperiodic, arbi-
trary),
0 for every application-level task:

* external variables shared by this task and the CS
environment, as well as variables that depend on those
external variables (rcl),

* application-level conditions under which that task
can run, be suspended, resumed, aborted (rca),

* timeliness constraints (latest termination deadline,
bounded termination jitter, etc.).

3.2.1 Fact

Horizontal Velocity is an external variable, shared by
the environment and some of the SRI module tasks.
Horizontal Velocity is used to compute the value of an
integer variable called BH. This value, which is sent
to the OBC modules, determines the nozzle deflections
(solid boosters, Vulcain main engine).

Fault RC1 (external variable): The need to split
the initial application requirements into two subsets
< a, w > and < R', w' > has not been identified. A for-
tiori, the need to transform description < R,w > into
specification < h,X > has not been identified either.
Hence, problem < A,X > has not been stated. Conse-
quently, external variables, such as Horizontal Velocity,
and related variables, such as BH, have not all been
listed explicitly (see rc1 above).

This fault has resulted into system dimensioning
fault DIMl.

342

3.2.2 Fact

The alignment program was running after lift-off. The
“exception condition” (BH overflow) was raised while
running this program. It was later acknowledged that
there is no need to keep this program running after
lift-off in the case of Ariane 5.

Fault RC2 (application task attribute): Had
problem < h,X > been stated, the alignment task
would have been listed, along with its attributes. In
particular, the condition “alignment task should not
be running after lift-off”, would have been explicitly
specified (see rc2 above). Which has not been done.

This fault has resulted into system design fault
DES:, . It was simply impossible for those system en-
gineers in charge of designing/selecting the SRI com-
puter task scheduler, as well as eligibility scheduling
rules, to “guess” that the alignment task should have
been aborted right after lift-off.

3.2.3 Fact

Continuous correct SRI service is essential to a correct
functioning of the launcher. This has not been the case.

Fault RC3 (dependability property and as-
sumptions): A specification of problem < A , > >
would have stated the following dependability property
DEP and related assumptions:

(DEP) for some SRI module failure model, SRI ser-
vice is correctly and continuously delivered for the en-
tire duration of a flight, with a probability at least
equal to 1 - p.

In other words, up to f SRI modules - out of n -
“can” fail during a flight. Probability that more than
f such failures can occur should be p at most.

Rather, it was implicitly assumed that SRI comput-
ers (H/W only, unlike modules) would behave accord-
ing to “crash-only” semantics. It was also implicitly
assumed that 1 SRI module at most would fail. This
has resulted into system design faults DESI, DE&,
DES3 and DE&, as well as into system dimensioning
fault DIM2.

3.2.4 Summary

Beyond the fact that, via the reading of the In-
quiry Board report, it is possible to diagnose the
three faults listed above, one may wonder whether
the current Ariane 5 on-board CS is plagued with de-
sign/dimensioning faults other than those identified in
this paper, some of them being ascribable to RC faults
other than RC1, RCB, RC3. Problem is that conclu-
sions and recommendations listed in the Inquiry Board
report focus almost exclusively on S/W Engineering

issues. It is reasonably obvious that the expertise re-
quired to identify RC faults (fault RC3 in particular)
and system design/dimensioning faults is not related to
S/W Engineering culture in any respect. Issues raised
are Systems Engineering issues.

The current Ariane 5 on-board CS is a solution
to some unknown problem << A,X >*,< Qb,p >*>.
Reverse System Engineering should be applied in or-
der to identify this problem. However, problem
<(A, X >, < a, p >> not being stated, it is impossi-
ble to compare << h,X >,< cP,p >> and <<: h,X >*,
< @,cp >*>. Portions of problem << h,X >, < @ , p >>
- such as property DEP ~ can be inferred. Conse-
quently, related design/dimensioning faults are identi-
fiable (see further). Such faults can be corrected. How-
ever, doing this does not suffice. As long as problem
< A,X > will not be completely and unambiguously
specified, it will be impossible to assert that the Ari-
ane 5 on-board CS is correct. Even if flights 502 and
503 turn out to be successful.

no SpECS method was applied either in
the case of Ariane 4. It was experimentally “ver-
ified” in the course of real launches that poten-
tial faults in requirements capture and/or system
design/dimensioning/implementation were ironed out
(some faults having possibly contributed to a. few early
failures). Such “experiment a1” approaches may yield
a “confidence level” comparable to that reached with
proving, albeit in a much more costly and lengthy man-
ner. Now that SpECS approaches have emerged, why
should we keep wasting time and money?

Note:

3.3. System design

Under a SpECS approach, proofs are mandatory at
every single design stage. For example, for specified
failure models, proofs that DEP holds for such failure
models should be given, for some feasibility conditions
to be established. Let n be the smallest number of SRI
modules needed to cope with up to f module failures.
Making such “deterministic” assumptions as f-out-of-n
(property DEP), or any similar assumption of proba-
bilistic nature, does not make sense unless it can be
demonstrated that there are no faults that can cause
n identical failures (the “common mode” failure sce-
nario). Two approaches can be followed:

0 either prove that requirements capture and sys-
tem design/dimensioning/implementation faults are
avoided; in this case, non-diversified redundancy can
be considered,

0 or skip such proofs (which has been done); it is
then mandatory to consider diversified redundancy, in
order to tolerate potential faults, with a sufficiently

343

“high” probability. The greater the value of f, the
higher the probability.

Many “fault-
tolerant” CSs are implemented via non diversified re-
dundancy, despite the fact that (i) their design is based
on f-out-of-n assumptions, (ii) no proofs that system
design and system dimensioning are correct are given.
This is like building on quicksand, given that the acti-
vation of any System Engineering fault is guaranteed to
lead to a total CS failure (n failed modules), whatever
the respective values of f and n.

This is an important observation.

3.3.1 Fact

Requirement that property DEP should hold was vio-
lated. Both SRI modules failed.

Fault DESI (the SRIs): No SpECS method was
used. Hence, non diversified redundancy is an incorrect
solution (see above).

Other Space missions have failed for the same reason
(Mars Observer is a recent example).

3.3.2 Fact

Both SRI modules failed, exhibiting failure behavior
stronger than “crash-only” , namely “omission” and
“erroneous non-malicious behavior in the value do-
main”.

Fault DES2 (the SRIs): The implicit “crash-
only” assumption has not been specified. Hence, it
could be violated, which happened. Detection-and-
recovery - which is the type of fault-tolerance algorithm
used - cannot be proven to be a correct solution unless
failure models are specified.

For property DEP to hold, it is well known that ac-
tive redundancy is the only algorithmic construct that
can be considered in the presence of unspecified failure
models (i.e. stronger than “crash-only” a priori). It is
also well known that n > 2f is a necessary and sufficient
feasibility condition under such circumstances.

Fault DES3 (the SRIs and the OBCs): The im-
plicit “crash-only” assumption has not been specified.
Hence, rather than “killing themselves”, SRI modules
issued diagnostic/error messages.

Under a SpECS approach, every event that can be
posted to a module must be listed. Similarly, tasks that
can be activated over a module must be listed. A {task,
event} mapping must be provided. Had this been done,
event “flight data” could not be confused with event
“exception condition reporting”. Consequently, Sys-
tem engineers would have identified the need to pro-
vide for (among others) two separate OBC tasks, one
in charge of executing the flight program, the other
one in charge of handling exception conditions (error

messages). Had this been done, “crash-only’’ behavior
would have been correctly implemented vis-a-vis the
OBC flight program.

Although this would not have helped avoid the 501
failure, this is a latent fault that may lead to a future
flight failure.

3.3.3 Fact

The OBC modules (H/W + S/W + data) in charge
of commanding the nozzle deflections interpreted error
messages issued by the SRI modules as flight data.

Fault DES4 (the OBCs): No proof has been es-
tablished showing that a correct OBC module delivers
correct inputs to the OBC task in charge of command-
ing the nozzle deflections, in the presence of some faulty
values issued by the SRI modules.

A correct OBC module can be shown to compute a
correct value out of a set of values issued by n SRI mod-
ules, f of them at most being faulty, by using an error
masking algorithm (e.g. majority voting). A harder
problem, known as the “Byzantine Generals” problem,
was solved long ago, for the most unrestricted failure
model [5] . This work has influenced the design of the
US Space Shuttle on-board CS.

In passing, one may observe that this “checking”
conducted by the OBC modules would have compen-
sated for the lack of checking (of BH values) by the
SRI modules. And the 80 % maximum workload target
set for SRI computers would not have been exceeded.
This has not been done due to lack of having rigorously
looked at the on-board CS “in the large”.

3.3.4 Fact

Loss of correct flight data occurred while running the
alignment program. With Ariane 5, keeping this pro-
gram active after lift-off is unnecessary.

Fault DESS (the SRIs): Conditions under which
tasks can be run, suspended or aborted are to be stated
explicitly (see rc2, section 3.2).

Had this been done, and assuming a correct task
scheduler has been designed for the SRI modules (not a
S/W Engineering issue), the alignment task would have
been deactivated (by the task scheduler) as specified,
e.g. right after lift-off if so desired.

3.4. System dimensioning

No rigorous requirements capture having been con-
ducted, and design faults having been made, provably
correct dimensionings of some of the variables appear-
ing in the final on-board CS implementation specifica-
tion were missing (BH and f , in particular). That could

344

not be detected during the (S/W and/or H/W) im-
plementation phase, unless accidentally. This resulted
into an incorrect size of the memory space used for stor-
ing variable BH. This resulted also into an empirical
dimensioning of the SRI modules group (which should
have been based on diversified redundancy).

3.4.1 Fact

The Operand Error was due to an unexpected high
value of BH.

Fault DIM1: Range of values taken by variable BH
was assumed to be in the {-215, +215} interval.

Had a SpECS method been used, fault RC1 would
have been avoided. Hence, the client/user or some rep-
resentative - e.g., a spacefflight engineer - would have
been explicitly asked to quantify the ranges of possible
values of Horizontal Velocity and BH, for the applica-
tion under consideration, that is Ariane 5 (not Ariane
4). This would have translated into a correct dimen-
sioning of the memory block used to implement BH.

Similar implicit assumptions may have been made
also for other variables or data structures.

Calling an incorrect dimensioning of a memory block
a “S/W design error” (see [3]) is as erroneous as calling
the selection of too slow a processor a “S/W design
error”. Again, the dimensioning of external variables
is a System Engineering issue, not a S/W Engineering
issue.

3.4.2 Fact

Both SRI modules failed. The f-out-of-n (1-out-of-2)
implicit assumption was violated.

Fault DIM2: It was implicitly assumed that f’s
value would be 1 and that simple redundancy (n = 2)
would suffice. No proof that probability 1 - p would be
higher than some quantified value, was given.

The intrinsic reliability of a SRI module (H/W +
S/W + data), and related coverage factor, can be de-
rived from statistics computed over accumulated exper-
imental data, or via probabilistic modeling. Intrinsic
reliability and coverage factor, combined with launch
duration, are used to compute a value for f, as well
as related probability q that at most f failures “can”
occur. Obviously, the smallest correct value o f f to be
chosen should be such that 1 - g < p holds true.

It is thereafter possible to derive the lower bound
of n which, depending on the (non malicious) failure
model that should have been considered, is f + l or 2f+l
(the latter in our case).

It appears that System engineers took H/W only
into consideration. This has also led to a violation of

the n > 2f lower bound, which applies whenever non
malicious failure semantics are not specified.

Although a value off (resp. n) greater than 1 (resp.
2) would not have helped avoid the 501 failure, this is
a latent fault that may lead to a future flight failure.

4. Conclusions

It is now possible to understand what led to the fail-
ure of flight 501. If we were to stick to internationally
accepted terminology, we should write the following:

Faults have been made while capturing the Ari-
ane 5 application/environment requirements. Faults
have also been made in the course of designing and
dimensioning the Ariane 5 on-board CS. These faults
have resulted into errors at the system modules level.
Some of these errors have been activated during launch.
Neither algorithmic nor architectural constructs could
cope with such errors. Flight 501 failure ensued.

Had all the modules - as specified - been imple-
mented in H/W, flight 501 would have failed the way
it did. Had the implementation of every module (in
S/W and/or in H/W) been proven correct - 1,v.r.t. the
specifications at hands - flight 501 would have failed
the way it did. Therefore, causes of the failure belong
neither to the Y / W world” nor to the “H/W world”.
Issues at stake are System Engineering issues.

Our conclusions deviate from those of the Inquiry
Board. We have found that these conclusions are un-
justly directed at S/W Engineering errors. This is yet
another example of a long lasting confusion between
S/W Engineering and System Engineering. Despite ev-
idence that S/W engineers should not be blamed for the
501 failure, improving the quality of the S/W design
and production process is a reasonable recommenda-
tion, as usual. (It is almost always the case that S/W
can be improved). However, it is essential to under-
stand that looking at CSs as S/W “things” inevitably
leads to disillusions. And to erroneous or inaccurate
failure diagnostics. It is regrettable that manifesta-
tions (S/W errors) are confused with the real causes
(System Engineering faults).

Regrettable but, maybe, not surprising.]Expertise
required to identify - or, even better, to avoid - System
Engineering faults is not at all related to S/W Engi-
neering culture.

A particularly striking illustration of the above is as
follows. We have identified - among others - a serious
system design fault, which mirrors knowledge that is
reasonably widespread in the System Engineering com-
munity, namely that any CS based on non diversified
redundancy inevitably fails whenever a system design
or a system dimensioning fault is activated, whatever

345

the redundancy degree. Obviously, such knowledge -
hence the fault - was ignored by the Inquiry Board.
The Board found no weakness w.r.t. the existing re-
dundant on-board CS, which is demonstrated by the
diagnosis that “there is considerable redundancy at the
equipment level” [3]. Non diversified simple redundancy
is the weakest type of redundancy that can be imag-
ined.

It is reasonably clear that neither architectural nor
algorithmic issues have been carefully investigated by
the Inquiry Board. More testing is recommended by
the Board. We argue that System Engineering faults
cannot be detected by testing, unless accidentally.

Proof-based System Engineering eases the job of
S/W engineers (faults that would result into S/W er-
rors are avoided). Conversely, proof-based S/W Engi-
neering does not compensate for poor System Engineer-
ing practice. Similarly, in Civil Engineering, “good” re-
inforced concrete cannot compensate for lack of having
global plans proven correct in the first place.

Whether or not the existing Ariane 5 on-board CS,
or any future Ariane 5 on-board CS, is free from design
and/or dimensioning faults other than those identified
in this paper can only be established by applying a
SpECS method.

A fortiori, it is strongly recommended that a SpECS
method be applied to other Space programs.

[9] S. White, J. Rozenblit, and B. Melhart. Engineering of
Computer-Based Systems: Current Status and Techni-
c d Activities. IEEE Computer, pages 100-101, June
1995.

References

[l] P. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency Control and Recovery in Database Systems.
Addison-Wesley Publisher, ISBN 0-201-10715-5 (1987),
370 p.

[2] J. Gray and D. Siewiorek. High-Availability Computer
Systems. IEEE Computer, pages 39-48, Sept. 1991.

[3] Inquiry Board. ARIANE 5 - Flight 501 Failure.
Inquiry Board report, http://www.inria.fr/actualitb-
fra.htm1 (July 1996), 18 p.

[4] INRIA Project REFLECS. Algorithmique TR/TD/TF
ORECA. 4 reports (in French), French DoD contract

[5] L. Lamport, R. Shostak, and M. Pease. The Byzantine
Generals Problem. A CM Transactions on Programming
Languages and Systems, vol. 4, 3, pages 382-401, July
1982.

[6] G. Le Lann. The Ariane 5 Flight 501 Failure - A Case
Study in System Engineering for Computing Systems.
INRIA Research Report 3079 (Dec. 1996), 26 p.

[7] N. Lynch. Distributed Algorithms. Morgan Kaufmann
Publisher, ISBN 1-55860-348-4 (1996), 872 p.

[8] M. Joseph, et al. Real-Time Systems - Specifications,
Verification and Analysis. M. Joseph Editor, Prentice
Hall UK Publisher, ISBN 0-13-455297-0 (1996), 278 p.

DRET 94/395, 1995-1996.

346

http://www.inria.fr/actualitb

