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Jyväskylä, 24–28 July 2004

NUMERICAL INVESTIGATION OF SURFACE RUNOFF IN
HILLSLOPES WITH VARIABLY SATURATED FLOWS

H. Beaugendre?, A. Ern?, T. Esclaffer† and E. Gaume†

?ENPC, Cermics,
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Abstract. During heavy rainfall episodes, subsurface flow can saturate the soil in various
regions near the surface and, therefore, contribute to the production of overland flow. This
paper investigates numerically watertable dynamics in partially saturated porous media and
the coupling mechanisms between the hydraulic state of the soil and the genesis of surface
runoff. Variably saturated flows are modeled using Richards’ equation discretized using
a finite element method (P1-conforming) on unstructured, non-uniform triangulations.
Two strategies are considered to model the coupling between the subsurface water table
and surface runoff. The first strategy neglects the height of the overland flow as well as
re-infiltration processes. The water table position being an unknown of the problem, its
intersection with the ground surface yields an unsteady obstacle-type problem. A more
detailed approach consists of modeling the overland flow using a simplified form of the
Saint-Venant equations, yielding the so-called diffusive wave approximation. Numerical
results are presented to compare both approaches.

1



H. Beaugendre, A. Ern, T. Esclaffer and E. Gaume

1 INTRODUCTION

The mechanisms leading to surface runoff on hillslopes exposed to heavy rainfall episodes
have received significant attention over the last decades. Historically, the first approach
considers streamflow to be generated by runoff over areally extensive portions of a water-
shed, where rainfall intensity overcomes soil infiltration capacity (Horton [1], 1933). This
concept has been improved by the introduction of the partial area contribution approach
initiated by Cappus [2] (1960) and Betson [3] (1964) whose work has been further devel-
oped by Dunne and Black [4] (1970). In this approach, the actual surface contributing to
streamflow is restricted to saturated surfaces (where the water table reaches the surface
level). Thus, the contributing area might represent only a small portion of the watershed,
and its extension may vary in time and space. These studies lead to a segmentation of
the watershed into infiltration, runoff and exfiltration dominated zones. An important
issue is to determine the relative importance of surface and subsurface water in storm hy-
drographs. Several field and laboratory studies have been conducted (Abdul and Gillham
[5], Barros et al. [6]) and revealed that field results are strongly site-dependent, whereas
laboratory tests are complex and time-consuming. The need for numerical experiments to
achieve faster results and more flexibility has rapidly raised (Ogden and Watts[7], Weiler
and McDonnell [8]).

A widely used model to simulate partially saturated flow in porous media is the solution
of Richards’ equation. The complexity of this problem lies in the non-linearity of the
equation resulting from the pressure-head-saturation relation and the non-linearity caused
by the changing character of the boundary conditions owing to the movement of the water
table. These difficulties have been challenged by a great number of researchers who have
explored many ways: choice of the main unknown (Celia et al., 1990 [9]), of a non-linear
iterative solver, and of the space and time discretization scheme. Recently, this type of
model has been used to investigate the mechanisms leading to surface runoff in hillslopes
(Ogden and Watts [7], Cloke et al. [10]). These studies have emphasized the need for an
accurate description of soil hydraulic parameters.

In the proposed approach, the pressure head h is chosen as the main unknown of the
problem. Richards’ equation is discretized using a finite element method (P 1 conforming)
on unstructured, non-uniform triangulations Th. Two strategies are considered to model
the coupling between the subsurface and the surface motion of the water. The first strat-
egy neglects the height of the overland flow as well as re-infiltration processes and simply
imposes a head boundary condition downstream of the intersection point. The water
table position being an unknown of the problem, its intersection with the ground surface
is treated as an unsteady obstacle-type problem. A more detailed approach consists in
modeling the overland flow with a simplified form of the Saint-Venant equations, yielding
the so-called diffusive wave approximation. The behavior of the fluid in the two regions
is described by different partial differential equations. To close the problem, suitable in-
terface conditions relating the unknowns from the two sub-domains across the interface
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are needed. These two approaches are compared on two geometries, the first one at the
metric scale and the second one at the hectometric scale. These test cases are also used to
investigate the impact of hydraulic properties, boundary conditions, and initial condition
on saturated area prediction.

2 GOVERNING EQUATIONS

The soil is modeled as an isotropic variably saturated porous medium, in which the
movement of liquid water can be described by Richards’ equation

∂tθ(h) = ∂x ·
(
k(h) · ∂xϕ

)
, (1)

where t is the time (T), x is the space coordinate (L), θ is the volumetric water con-
tent (dimensionless), k the unsaturated hydraulic conductivity (LT−1), h the soil water
pressure head (L), and ϕ = h + z the total hydraulic head (L) where z is the vertical
coordinate (upwards). In particular, the use of Richards’ equation assumes that there is
no air pocket trapped by the flow. The Darcy flow velocity (LT−1) is defined by

v(h) = −k(h) · ∂xϕ = −k(h) · ∂xh − k(h) · ez , (2)

with ez the upward unit vector.
Eq.(1) requires knowledge of the soil water retention curve, θ(h), and the unsaturated
hydraulic conductivity function, k(h). Many empirical equations have been used to de-
scribe the relations between water content, pressure and hydraulic conductivity (Brooks
and Corey [11], Mualem [12], van Genuchten [13]). The choice of one of these models
strongly conditions the hillslope hydrology [10], especially near saturation and therefore
influences the position of the water table. In this paper hydraulic conductivity and water
content will be described using the van Genuchten model (VGM model). Let n > 1 and
α be the van Genuchten soil parameters, and set m = 1−1/n. The van Genuchten model
(VGM model) [13] is

θ̃(h) =

{
(1 + (−αh)n)−m , h < 0 ,

1 , h ≥ 0 ,
(3)

where θ̃(h) = θ(h)−θr

θs−θr
is the effective saturation, θr and θs being the residual and saturated

water content, respectively. Letting ks be the saturated hydraulic conductivity, we set
k(h) = kskr(h) where the relative hydraulic conductivity is specified as a function of θ̃(h):

kr(θ̃) =





θ̃1/2
[
1 −

(
1 − (θ̃)

1/m
)m]2

, h < 0 ,

1 , h ≥ 0 .
(4)
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Figure 1: Left: schematic representation of the domain Ω. Right: typical pressure head, h (m), and
normal velocity, v · n (m/h), distribution along the top surface, at saturation h = 0.

3 OBSTACLE-TYPE MODEL (OTM code)

In this model, the feedback of surface runoff on the water table dynamics is neglected.
The height of the overland flow as well as re-infiltration processes are neglected and we
simply impose a head boundary condition downstream of the intersection point. Consider
the two-dimensional domain Ω (its boundary ∂Ω) sketched on the left panel of figure 1.
Let n be the normal vector outwards to the surface. A constant rainfall intensity i (LT−1)
is considered; the rainflow velocity is defined as vr = −i ez where ez is the upward unit
vector so that i ≥ 0. The upper surface of the model domain (top boundary: ∂Ωt) allows
infiltration and exfiltration. The top boundary may be divided into two regions

• ∂Ω−
t the non-saturated region: h ≤ 0 and v · n = vr · n

• ∂Ω+
t the saturated region: h = 0 and v · n ≥ vr · n

The saturated region may also be divided into two subregions, see right panel of figure 1:

• the saturated zone that still allows some infiltration: h = 0 and vr · n ≤ v · n ≤ 0

• the exfiltration region: h = 0 and v · n > 0.

For the bottom and left boundaries we assume an impermeable layer, i.e. we impose
v · n = 0. On the right boundary ∂Ωr, two kinds of boundary conditions are considered
in this paper:

• BC1: no-flow boundary condition at the right surface (representing an impermeable
condition or a symmetry condition);

• BC2: constant total hydraulic head, ϕ, at the right surface (accounting for the
presence of a stream).
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3.1 Steady problem

One can prove that a steady-state solution exists whenever i ≤ ks. For the sake of
simplicity we present the algorithm assuming a BC1 boundary condition on ∂Ωr. Recall
that H1 is the space of square integrable functions whose distributional derivative is also
square integrable. The weak formulation corresponding to the steady problem is the
following: given ∂Ω+

t ⊂ ∂Ωt, let

V∂Ω+
t

=
{

φ ∈ H1(Ω); φ = 0 on ∂Ω+
t

}
, (5)

and let a be the form (non-linear in h, linear in φ):

a∂Ω+
t
(h, φ) =

∫

Ω

k(h) · (∂xh + ez) · ∂xφ +

∫

∂Ω−

t

(vr · n) φ . (6)

Note that working with the space V∂Ω+
t

implies h = 0 on the saturated area ∂Ω+
t . Then,

we seek ∂Ω+
t ⊂ ∂Ωt and h ∈ V∂Ω+

t
such that





(i) a∂Ω+
t
(h, φ) = 0 ∀φ ∈ V∂Ω+

t
,

(ii) h ≤ 0 on ∂Ω−
t ,

(iii) v(h) · n ≥ vr · n on ∂Ω+
t .

(7)

Note that the well posedness of (i) requires that ∂Ω+
t 6= ∅, i.e. that the water table

has reached the top boundary. An approximate solution
{
∂Ω+

t , h
}

of (7) is sought using
Newton’s method embedded into a fixed-point iteration to determine those points lying
on the soil surface where artesian conditions are met. The following iterative algorithm
is proposed to solve the problem:

1. choose an initial ∂Ω+
t ;

2. solve problem (i) using e.g. P 1 conforming finite elements;

3. check whether (ii) and (iii) are satisfied;

4. if (ii) is satisfied and (iii) is not, move ∂Ω+
t one mesh cell (or more) down; go to

step 2;

5. if (iii) is satisfied and (ii) is not, move ∂Ω+
t one mesh cell (or more) up; go to step

2;

6. if both (ii) and (iii) are satisfied, then the current pair
{
∂Ω+

t , h
}

is the desired
solution; one may refine the mesh and go back to step 2.
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Owing to the maximum principle, both (ii) and (iii) can not be violated simultaneously.
However, in numerical approximations, this may happen. In this case, we still consider
that the water table has been correctly positioned. With this “loosened” convergence
criterion, the final position of the water table depends from whether the converged position
∂Ω+

t has been approached from below or above. The two resulting values give lower and
upper bounds for the water table position (typically differing from one or two mesh cells
at the most).

3.2 Unsteady problem

The unsteady problem is solved using an implicit Euler scheme. For a time step k ≥ 0,
given (∂Ω+

t )k and hk, we seek (∂Ω+
t )k+1 ⊂ ∂Ωt and hk+1 ∈ V(∂Ω+

t )k+1 such that






(i) 1
δt

∫
Ω

(
θ(hk+1) − θ(hk)

)
φ + a(∂Ω+

t )k+1(hk+1, φ) = 0 ∀φ ∈ V(∂Ω+
t )k+1 ,

(ii) hk+1 ≤ 0 on (∂Ω−
t )k+1 ,

(iii) v(hk+1) · n ≥ vr · n on (∂Ω+
t )k+1 .

(8)

The problem is solved using the same iterative algorithm as in the steady problem. In
step 1, the initial choice is (∂Ω+

t )k+1 = (∂Ω+
t )k. Note that in the unsteady case, problem

(i) is well-posed even if the water table has not reached the top boundary.

4 DIFFUSIVE WAVE MODEL (DWM code)

4.1 Governing equations

Transient flow of shallow water (both overland flow and open channel) can be described
by the Saint-Venant equations,






(i) ∂ty + ∂x(yV ) = 0 ,
(ii) ∂tV + V ∂xV + g∂xy + g(Sf − S) = 0 ,

(I) (II) (III) (IV)

(9)

were y is the water depth (L), V is the flow velocity (LT−1), g is the gravity (LT−2), S is
the river bed slope and Sf is the energy line slope (S and Sf are dimensionless).
We assume that in the momentum equation Eq.(9) (ii) terms (I) and (II) can be neglected
in comparison with (III) and (IV). Thus we obtain the diffusive wave approximation which
is widely used to describe flood routing:

{
(i) ∂ty + ∂x(yV ) = 0 ,
(ii) ∂xy + Sf − S = 0.

(10)

Basic assumptions underlying this model are [14, 15]:

• flow is one-dimensional (horizontal);
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• pressure has hydrostatic distribution;

• distributed friction losses can be evaluated using the usual uniform flow formula
[16].

The Manning-Strickler uniform flow formula is usually chosen to describe the energy line
slope Sf [17, 18]:

V = KSR2/3S
1/2
f , (11)

where KS is the Strickler coefficient of roughness (L−1/3T−1) and R the hydraulic radius
(L) defined as the ratio between the cross sectional flow area A (L2) and the wet perimeter
χ (L).
Assuming that overland flow occurs as a thin layer with a wide rectangular section of
width B, the relation y � B is granted. Hence, A = By, χ = B + 2y and

R =
B.y

B + 2y
≈ y . (12)

Let q(y) = yV , using Eq.(10) (ii) and Eq.(12) in Eq.(11) yields

q(y) = KS.y5/3.
√

(∂xy + S) . (13)

The continuity equation then becomes:

∂ty + ∂xq(y) = 0. (14)

4.2 Coupling method

Considering the hydrostatic distribution of pressure in shallow water, we assume the
following relation between the variable y describing the surface flow and the variable h
describing the subsurface flow:

y =

{
h , on ∂Ω+

t ,

0 , on ∂Ω−
t .

(15)

Taking into account the mass transfer from the subsurface flow into the surface flow yields
the continuity equation

∂th + ∂xq(h) = v(h) · n on ∂Ω+
t . (16)

A finite element/finite volume method is used for the discretization in space: a finite
element method is used for Richards’ equation and a finite volume method is used for the
diffusive wave equation.
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Let P 1
c (Th) =

{
vh ∈ C0(Ω)/∀T ∈ Th , vh|T ∈ P 1(T )

}
where P 1(T ) is the space of poly-

nomials on T with degree ≤ 1. We consider the discrete problem

1

δt

∫

Ω

(
θ(hk+1) − θ(hk)

)
φ + a(∂Ω+

t )k+1(h
k+1, φ) = R(hk, hk+1, φ) ∀φ ∈ P 1

c (Th) (17)

where

R(hk, hk+1, φ) = −

∫

∂Ω+
t

(
hk+1 − hk

δt
φ + ∂xq(h

k+1)φ

)
. (18)

In the current DWM implementation the hydraulic conductivity in a(∂Ω+
t )k+1 is defined

explicitly in time.

��

��

��Ni

L

L
i−1/2

i
N

i−1

i+1N

Figure 2: Details of the space discretization at the soil surface.

A finite volume method is used to evaluate R(hk, hk+1, φ). The unsteady term is
approximated with a mass lumping, i.e. for the vertex Ni located on ∂Ω+

t (figure 2):

∫

∂Ω+
t

(
hk+1 − hk

δt

)
φ ≈

hk+1
i − hk

i

δt
Li . (19)

The second term of R(hk, hk+1, φ) is approximated using an upwind scheme. We assume
that the nodes on ∂Ω+

t are numbered downwards defining the numerical flux Q(hk+1
i−1 , hk+1

i ) =

Ks(h
k+1
i−1 )5/3

(
hk+1

i −hk+1

i−1

Li−1/2
+ S

)1/2

, we set

∫

∂Ω+
t

∂xq(y)φ ≈ Q(hk+1
i , hk+1

i+1 ) − Q(hk+1
i−1 , hk+1

i ). (20)

Eq.(20) is used for all nodes in the interior of ∂Ω+
t . At the outlet node, say Ni0 , we set

Q(hk+1
i0

, hk+1
i0+1) = KShk+1

i0
S1/2 which implicitly assumes ∂xh = 0 at the outlet.

Regarding the BC2 boundary condition for the DWM, we assume that the nodes are
numbered downwards on ∂Ωr. For two such nodes, say Nj and Nj+1, we impose

∀(Nj, Nj+1) ∈ ∂Ωr hj + zj = hj+1 + zj+1 . (21)

Eq.(21) implies that the total hydraulic head ϕ = h + z is spatially constant along ∂Ωr.
At each time t, its value is hi0(t)+ zi0 , where zi0 is the vertical coordinate of the node Ni0

at the toe of the slope and hi0(t) is the corresponding pressure head.
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5 NUMERICAL RESULTS

Simulations have been performed at the metric scale and at the hectometric scale. The
metric-scale problem is used to investigate the effects of hydraulic properties and boundary
conditions (BC1, BC2) on the dynamic response of the water table. For the hectometric-
scale problem the effects of some geometrical properties, of the boundary conditions and
of the initial condition are under study. Selected soil textures are summarized in table
1. Let L be the length of the slope, Ls be the portion of the hillslope that is saturated
and Qrain = iL(ez · n) be the rainfall rate. We define Qin to be the infiltration flux and
Qnot in the “direct runon” flux (the water that never infiltrates): Qrain = Qin + Qnot in.
The exfiltration flux Qexf corresponds to the top surface exfiltration Qexf |∂Ωt plus the
exfiltration into the stream Qexf |∂Ωr (subsurface flow through the right surface) if any:
Qexf = Qexf |∂Ωt +Qexf |∂Ωr. Qrunoff is composed of the exfiltration and the “direct runon”:
Qrunoff = Qexf +Qnot in = Qexf +Qrain−Qin. The time to reach equilibrium Te is defined
numerically as the lowest time for which |Qin − Qexf | ≤ 5 × 10−3Qin. At equilibrium
Qin = Qexf and, hence, Qrunoff = Qrain. Note that Qrunoff is not the instantaneous
water flux at the toe of the slope and into the stream but the instantaneous water flux
into the overland flow and into the stream.

Texture θr (-) θs (-) α (1/m) n (-) ks (m/h)
Sand OW 0.069 0.435 0.326 3.9 5.0
Sand 1 0.045 0.430 14.5 2.68 0.297
Sand 2 0.05 0.5 3.7 5 0.1
YLC 0.23 0.55 3.6 1.9 0.018
SCL 0.1 0.41 1.9 1.31 0.0026

Table 1: VGM soil hydraulic parameters.

5.1 Metric-scale problem

The two-dimensional domain Ω (its boundary ∂Ω) selected to perform the study is
sketched in figure 3 and corresponds to the configuration considered by Abdul and Gill-
ham [5]. The domain dimensions are 1.4 m in length and 1 m to 0.8 m in height. Two
kinds of boundary conditions are considered on the right boundary: the BC1 and BC2
boundary conditions previously described. For the bottom and left boundaries we assume
an impermeable layer. We impose v ·n = 0 at the upslope end (left boundary) and at the
bottom surface of the domain. Simulations were run using a constant rainfall intensity,
i/ks = 10% (preventing Hortonian runoff), for a duration longer than the time necessary
to reach equilibrium. The Strickler coefficient of roughness KS is set to 10m−1/3s−1. We
observed that when i/ks is fixed, the ratio Ls/L at steady state is not affected by soil tex-
ture and depends only on geometrical and boundary considerations (figure 4). The shape
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Figure 3: Abdul and Gillham geometry. Left: BC1 boundary condition. Right: BC2 boundary conditions.

of the three curves is a consequence of the respective shapes of the hydraulic functions
for the three soils. More precisely, the value of the n parameter conditions the curvature
of the plots. For instance, a sole modification of this parameter set to 5 for the YLC soil
gives a similar response to that of the Sand 2 soil.
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Figure 4: Temporal evolution of the relative hillslope saturated area for the three soils (SCL, YLC,
Sand 2), i/ks = 10%, initial condition: horizontal water table at 0.7m, (OTM code, with BC1 boundary
condition).

The evolution in time of the water table location has been studied for Sand 1 and
YLC soils (table 1) using both boundary conditions, BC1 and BC2, and both modeling
approaches. The initial condition is a horizontal water table located at 0.8 m (figure
3). Figure 5 displays the fraction of the hillslope saturated area, Ls/L, versus time t.
These plots reveal the temporal response of the hillslope for both boundary conditions
and both soils. The OTM and DWM codes give similar results. The time to achieve
equilibrium is larger for the YLC soil than for the Sand 1 soil; this is related to the fact
that ks is the controlling parameter for the temporal response in this case. The final water
table position is lower when a constant head boundary condition is imposed on the right
surface compared to the no-flow boundary condition. This is related to the creation of a
subsurface exfiltration on the right surface when BC2 is imposed. As a result of the water
table position, the infiltration flux at steady state is higher for BC2 (figures 6 a and b).
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At equilibrium, infiltration equals exfiltration and therefore exfiltration is higher for BC2.
Note that the velocity vectors for the two boundary conditions are very different. By
imposing BC2 boundary condition the velocity vectors on the saturated zone are nearly
tangent to the surface: most of the exfiltration occurs through the right surface (into the
stream). Figure 6 c shows the fraction of Qrunoff versus t for the two models and the
two boundary conditions. At this space scale, the boundary condition clearly affects the
dynamic evolution of Qrunoff . Similar results are observed for the YLC soil.
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Figure 5: Model comparison of the dynamic evolution of the saturated area using BC1 or BC2 boundary
condition for a) Sand 1 soil and b) YLC soil.
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Figure 6: For Sand 1 soil: model comparison of the infiltration flux Qin, the exfiltration flux Qexf using
a) BC1 boundary condition; b) BC2 boundary condition. c) Model comparison of Qrunoff for BC1 and
BC2 boundary conditions.
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5.2 Hectometric-scale model

The geometry [7] used in this case is presented in figure 7. A no-flow boundary condition
is imposed at the bottom and left surfaces, simulating an impermeable layer. Simulations
were run with a constant rainfall intensity, i = 30mm/h (i/ks = 0.6%). The initial con-
dition is a horizontal water table located at the toe of the slope (figure 7). The hillslope
geometrical properties are the following: the slope angle So fixed and set to 10 %, the
depth to impermeable layer D and the slope length L. The Sand OW proposed by Ogden
& Watts (table 1) is the chosen soil for this geometry.

D

L

Ls

water table

So

i

g

y

xInitial water table

Figure 7: Ogden and Watts geometry.

5.2.1 Geometrical investigations

A constant head boundary condition is imposed at the right surface, representing a
stream. Some geometrical properties (the slope length L and the depth D) are numerically
investigated by the OTM code, using the BC2 boundary condition.

L = 30m, D = 1m L = 50m, D = 1m L = 50m, D = 2m
Te (h) 1.43 5.98 11.97

1 − DksSo
iL

44.4% 66.7% 33.3%
Ls/L 45.6% 67.3% 34.7%

Table 2: Equilibrium time, Te, using Sand OW soil and the three geometries. Comparison between the
Ogden and Watts’ analytical prediction for Ls/L and our numerical prediction.

Figure 8 shows the dynamic response of the hillslope for the following configurations:
(L = 50m, D = 1m), (L = 50m, D = 2m) and (L = 30m, D = 1m). The relative hillslope
saturated area agrees with Ogden and Watts’ analytical considerations [7]: Ls

L
= 1− DksSo

iL

(table 2). Ogden and Watts’ analytical expression is based on the following assumption:
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the hydraulic gradient is equal to the land surface slope So wherever the water table
intersects the ground surface. At i, ks, So and L fixed, the saturated area increases as
D decreases (figure 8 a). At i, ks, So and D fixed, the saturated area increases as L
increases (figure 8 a). With BC2 imposed, the exfiltration flux occurs through the right
surface and is proportional to D, indeed Qexf is twice bigger when D is doubled, (figure
8 b). The time to reach equilibrium naturally increases with increasing soil depth and
slope length (table 2).

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1  1.2

Ls
/L

 (
%

)

t/Te

L=50m, D=1m, So=10%
L=30m, D=1m, So=10%
L=50m, D=2m, So=10%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2

Q
ex

f (
kg

/h
)

t/Te 

L=50m, D=1m, So=10%
L=30m, D=1m, So=10%
L=50m, D=2m, So=10%

a) b)

Figure 8: Using OTM code with BC2 boundary condition; a): Evolution in time of the relative saturated
area for (L = 50m, D = 1m); (L = 30m, D = 1m) and (L = 50m, D = 2m); b): Exfiltration flux.

5.2.2 Boundary condition effects

Figure 9 shows the comparison between the two boundary conditions (BC1 and BC2)
for the geometry L = 50m, D = 1m. At this space scale the impact of the boundary
condition is negligible. The differences between the two solutions are localized at the toe
of the slope (in the area near the stream) and change the nature of the exfiltration: top
surface exfiltration for BC1 and subsurface exfiltration for BC2.
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Figure 9: Investigation of the boundary condition effects on the evolution of the saturated area, Qexf

and Qrunoff (OTM code, geometry: L = 50m, D = 1m).
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5.2.3 Model comparison

Figure 10 compares the results obtained with the two models on the geometry L = 50m,
D = 1m, and KS = 10m−1/3s−1. Both models give similar results, under these conditions.
Neglecting the feedback of surface runoff on water table dynamics in this case seems to
lead to reliable results. We notice a slight difference between the two models in the
steady-state value of Qexf , it is related to the way the head boundary condition, BC2, is
imposed with the DWM.
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Figure 10: Comparison of the two models for the BC2 boundary condition a) comparison of the evolution
in time of the relative saturated area; b) comparison of the exfiltration flux.

Note

As can be seen in figure 11 a the texture of the soil selected for the hectometric-scale
geometry is very specific. Its hydraulic conductivity decreases very slowly compared to
YLC or Sand 1 soil. With this type of soil and the initial condition proposed by Ogden
and Watts (horizontal water table at the toe of the slope) it is then possible to obtain a
numerical solution with a reasonable mesh size (mesh spacing around 0.5 m and 1 m). The
choice of an other soil, as YLC for example, will have required a much finer mesh. Indeed,
the extremely low hydraulic conductivity of the soil on the left part of the geometry will
induce a downward infiltration front. The choice of another initial condition, as proposed
in figure 11 b, allows the computation of a solution. Figures 11 c and d show the evolution
in time of the relative hillslope saturated area and the infiltration and exfiltration fluxes
for the soil YLC with a rainfall intensity i/ks = 10 % and the geometry L = 50m, D = 1m.
The ratio Qexf/Qrain, in this case is also in agreement with Ogden and Watts’ analytical

formula:
Qexf

Qrain
= ksSoD

i(ez ·n)L
≈ 0.02.
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Figure 11: a) Relative hydraulic conductivity for Sand 1, YLC and Sand OW soils; b) YLC initial water
table level; c) Evolution in time of the relative saturated area for YLC (OTM code, BC2 on the right
surface); d) Evolution in time of the infiltration and exfiltration fluxes for YLC (OTM code, BC2 on the
right surface).

6 CONCLUSION

Richards’ equation combined with the van Genuchten’s model for hydraulic functions
has been discretized using finite elements in space. Two strategies are considered in order
to model the coupling between the subsurface and the surface flow of the water. The first
strategy (OTM code) neglects the height of overland flow as well as re-infiltration processes
and simply imposes a head boundary condition downstream of the intersection point. The
changing character of the surface boundary conditions owing to the movement of the wa-
ter table yields an unsteady obstacle-type problem. A more detailed approach (DWM
code) consists in modeling the overland flow with a simplified form of the Saint-Venant
equations, yielding the so-called diffusive wave approximation. To close the problem,
suitable interface conditions relating the unknowns from the two sub-domains across the
interface are proposed. Both models have been used to investigate the hydraulic behavior
of hillslopes under constant rainfall conditions.
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Numerical results on the small-scale geometry have shown that for a fixed value of the
ratio i/ks, the texture of the soil, characterized by the van Genuchten hydraulic parame-
ters, strongly affects the dynamic response of the system, whereas the steady-state values
(Ls/L, Qin, Qexf and Qrunoff) remain identical. Because the range of ks is wide for the
soils presented in this study, a constant i/ks ratio represents rainfall events strongly differ-
ent (YLC: i = 1.8 mm/h, Sand 1: i = 29.7 mm/h). At the metric scale the ratio Ls/L is
also strongly dependent on boundary conditions. On the Ogden and Watts geometry, the
numerical results are in very good agreement with the analytical considerations of Ogden
and Watts. At this space scale boundary conditions on the right surface have a marginal
impact on the solution. This medium-scale problem also underlines the importance of the
initial condition.

For both geometries presented in this paper, mechanisms leading to saturation are
controlled by subsurface flows, i.e. the hydraulic properties of the soil. Modeling the
overland flow in these cases does not lead to significant differences. The two models give
similar results. Further comparisons involving re-infiltration processes will be conducted
to investigate the impact of overland flow modeling on the genesis of surface runoff.
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