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Overview of the Modelica
language

Basic concepts
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Structuring knowledge

e Modelica enables the creation of:

- Structured types
- Connectors

- Blocks

- Models

- Functions

- Packages
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Basic language elements

* Basic types (Boolean, Integer, Real
and String)

* Enumerations

e Compound classes

* Arrays

 Equations and/or algorithms
 Connections

* Functions
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Data abstraction

 Packages, models, functions etc.
are all described using classes

- Classes are the only way to build
abstractions in Modelica

- Classes enable structured modelling

- Classes offer an elegant way of
classifying manipulated entities that
share common properties (nested
sets)
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Example of a simple model

class imppart circuit

Ground Grnd;

VsourceAC VSrc (VA=220, £=50);
Resistor R1(R=100);

Resistor R2(R=10);

Inductor Ind(L=0.1);
Capacitor Capa(C=0.01);
VoltageSensor Vsnsr;

OutPutPort out; - =\ i=—

equation k=04
connect (Ind.n,VSrc.n);
connect (Capa.n,VSrc.n); - s
connect (Vsnsr.n,VSrc.n); C=0.01

connect (Capa.p,R2.n); o (::)
connect (Vsnsr.p,R2.n); 7

connect (Rl.p,VSrc.p);
connect (R2.p,VSrc.p);
connect (Grnd.p,VSrc.p); ‘
connect (Ind.p,Rl.n); " ﬁy
Vsnsr.v = Out.vi; M —
end imppart circuit;
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Example of a complicated model
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Class description

* A class is composed of three kinds
of sections:

- Element declaration sections

- Equation and/or algorithm clause
sections

- External function call sections
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Restricted classes

* Restricted classes can be defined
iIn Modelica by replacing the
keyword “class” by one the
foIIowing ones: “record”,

“connector”, “model”, “block”,
“type”, “package”, “function”

* Restricted classes allow library
designers to enforce the intended
use of a given class
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Element declaration section

e Elements include:

- Local components and/or local classes
(named elements)

- Imports (to allow components and
local classes of another class to be in
scope)

- “Extends clauses” (Modelica's
Inheritance mechanism)
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Visibility modifiers

By default, a declared named
element is public (i.e., it can be
accessed from the outside using

dot notation)

* Protected named elements can be
declared using the prefix
“protected”
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Scoping rules

e | ocal classes declarations form an
ordered set of lexically enclosing
parents

e Apart from its own named
elements, a class may only access
names of constants and local class
definitions in the enclosing set of
parents

By default, name lookup is static
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Static lookup of simple names

e Simple names (no dots) are lookup
as follows:

- In the sequence of control variable
names of enclosing “for” constructs

- In the locally defined components and
classes (including inherited ones)

- In the import statements (qualified
ones first, then unqualified ones)

- In the sequence of enclosing parents
until the current class is encapsulated

_ - Inthe unnamed toplevel class
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Static lookup of composite
names

e Composite names (of the form A.B,
A.B.C, etc.) are looked up as
follows:

- A Is looked up as any other simple
name

- B, C, etc. are looked up among the
public declared named elements of
the denoted element (including
inherited ones). If an element denotes
a class, that class is temporarily
instantiated and lookup is performed

in the temporary instance
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Static name lookup example

class Foo
constant Real pi=3.1416;
Real x;
Bar b;
class Bar
Real y=cos(2*pi*time);
end Bar;
class Baz
constant Real e=2.71828;
end Baz;

import Modelica.Math.*;

equation
Baz.e*x = b.y;

end Foo;
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Dynamic lookup of hames

* A named element declared with
the prefix “outer’references an
element of the enclosing set of
Instances that has the same name

and is declared with the prefix
“Inner”
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Dynamic name lookup example

class BarType
Real y;
end BarType;

class Foo
inner Real pi=3.1416;
inner class Bar
Real y;
end Bar;
Baz b;
end Foo;

class Baz
outer Real pi;
outer class Bar = BarType;
Bar b;
equation
Modelica.Math.cos(2*pi*time) = b.y
end Baz;
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Order of declarations

* The order of declaration of
elements does not matter (i.e., it is
possible to use a variable before
declaring it, provided a declaration
exists in the scope)

- Modelica was designed with ease of
code generation in mind (a graphical
tool is not supposed to sort elements
before generating code)
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Component declaration
specification

e A component declaration is
composed of:

- An optional type prefix
- A type specifier

- An optional array dimension
specification

- An identifier
- An optional set of modifications

- An optional comment
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Examples of component
declarations

e To declare a constant:
constant Real pi=3.141592654;

* To declare an array of 10 Resistors,
each internal R=100 Ohms:

Resistor[10] Rs "my array of resistors”;

Resistor Rs[10];

* To declare an input vector of flow
Real (i.e., floating point) numbers:

flow input Real[:] Is;
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Type prefix

* Three kinds of type prefixes:

- “flow” prefix (indicating a flow
variable when set and a potential
variable otherwise)

- Variability prefix (one of “constant”,
“parameter” or “discrete” in the case
of a non-continuous variable)

- Causality prefix (“input” or “output”,
to force causality, for instance in case
of a function formal parameter)
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Component modifications

e Two kinds of modifications:

- Value modifications (mainly used to
give values to parameters)

- Structural (type) modifications (used
to refine an existing class definition,
either by restricting a type or by
replacing some named elements)
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Initial values of variables

* Variables of predefined types can
be given initial values using
modifications:

Real x(start=0.0); /* just a guess */

Real x(start=0.0, fixed=true); /* we want
X to start at 0.0 */

* Another way to initialize variables
IS to use “initial equations”
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Class Inheritance

e Introduced by the “extends”
keyword

* I[nheritance iIs used to:

- Create new classes by extending
several existing ones (i.e., merging
contents of several classes) before
eventually adding new sections

- Modifying an existing class using
class modifications
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Class inheritance example

class Bar
Real x=1;
end Bar;

class Baz
Real y;
end Baz;

class Foo

extends Bar;

Real z=3;

extends Baz(y=2);
end Foo;

Foo my foo;
/* my foo has 3 internal variables: x, y and z
whose values are 1, 2 and 3 respectively * /
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Replaceable elements

* Named elements may be declared
as “replaceable”:

- These elements may be replaced by
new ones in structural modifications,
provided type compatibility
constraints to be verified

- Allow a flexible model parametrization
(parametric polymorphism)
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Example of element replacement

class ElectricalMotor
replaceable IdealResistor R(R=100);

end ElectricalMotor;

class Circuit
ElectricalMotor m(redeclare MyResistorModel R);

end Circuit;
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Partial classes

e Some classes are said to be
“partial” if they are declared under

the heading “partial”

* A partial class can not be
instantiated

e Partial classes are used to provide
a framework to develop models
according to a given interface
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Example of a partial class

partial class TwoPin
Pin p, n;
Real v, 1i;

equation
1 = p.i;
i = -n.i;
V = p.V - n.v;

end TwoPin;

class Resistor
extends TwoPin;
parameter Real R;

equation
v = R * i;

end Resistor;
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Equation clauses

* Equation clauses are used to
describe the set of constraints that
apply to a model

 Constraints can apply either at
initialization time (initial equations)
or at simulation time (ordinary
equations)
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Examples of equation clauses

class Resistor
parameter Real R;
Pin p, n;
Real i;
Real v;
equation
pP.V — n.v = v;
p.i = 1i;
n.i = -p.1i;
v = R * i;
end Resistor;

class Circuit
Resistor R(R=100);
VsourceAC Src;

initial equation
Src.v = 0;

equation
connect(R.p, Src.p);

end Circuit;
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Comments about equation
clauses

e Equation clauses are not
sequences of statements! (in
particular, there is no notion of
assignment, nor evaluation order)

* |t iIs however possible to describe
how to compute a result by means
of sequences of assignments,
loops, etc. in Modelica, but not
using equations!
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Different kinds of equations (1)

 Equality between two expressions:

v =R * 1;
 Conditional equation:

if mode == Modes.basic then
X = basicControl.c;:

else
X = complexControl.c;

end if;

e “For” equation:

for k in 1 : n loop
vik] = R[k] * 1i[k];
end for;
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Different kinds of equations (2)

e “Connect” equation:

connect (R.p, Src.p);

e “When” equation:

when x <= 0.0 then
reinit(a, -a);
reinit(v, 0);
end when;

e “Function call”:

assert(n > 0, “Model is not valid”);
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Expressions

» Modelica provides the necessary
functionalities to express:

- The usual “mathematical” functions
(sin(), cos(), exp(), etc.)

- The derivative of a variable
- Conditional expressions
- “Event-free” expressions

- Multi-dimensional arrays and
associated operations

<—\ IMAGINE

AMESim®



Variability of expresions

e Varibility modifiers in declarations:

- “constant”
- “parameter”
- “discrete”

 Discrete variables and ordinary
variables only may change their
values during simulation time
(discrete variables are only
modified inside “when” equations)
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Examples of equations

* Algebraic equation:

R * 1i;
v / R; // a “less general” formulation

* Differential equation:

\Y%
1

a = -g;

der(v) = a;

der(x) = v; // der(der(x)) = a is illegal!
 Conditional expression in equation:

y 1f x > x0 then exp(x0) else exp(x);

y = if noEvent(x > x0) then exp(x0) else
exp(x); // the correct version
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Algorithm clauses

* Algorithm clauses are sequences of
assignments and control structures
statements

* Algorithm clauses are used to
describe how a quantity has to be
computed

* Like equation clauses, algorithm
clauses may apply either at
initialization time or at simulation
time
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Different kinds of statements(1)

 Assignment:
y = 2 * X;

o “If” statement:

if x >= 0.0 then

Yy = Xj;
else

y = —-Xj
end if;

e “For” statement:

for 1 in 1 : n loop
y[i] == 2 * x[1];
end for;
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Different kinds of statements(2)

e “While” statement:

while abs(x — y) > eps loop
X =Yy
y := X — f(x) / fdot(x);
end while;

e “When” statement:

when x == 0.0 then

y := 0;
end when;

e Continuation statements:

return;
break;
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Examples of an algorithm clause

block Fib
input Integer n;
protected Integer p, g:=1;
public output Integer f:=1;
algorithm
assert(n > 0, “Argument must be strictly positive”);
for i in 1 : n loop
£ :=p + q;
p = qg;
q := £;
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External function calls

e Modelica allows the user to call
external functions written in a
foreign language (only C and
FORTRAN are currently supported)

* Modelica provides the necessary
framework to handle formal
parameters and multiple return
values
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Restrictions over external
functions

 External functions must be “pure”,
iIn the sense that they should not
attempt to alter any variable that
IS not declared as “output” in the
calling Modelica code

* Also, external functions must
return the same values given the
same arguments (referential
transparency property)
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Exemple of external function

function Foo

input Real x[:];

input Real y[size(x,1l),:];

input Integer 1i;

output Real ul[size(y,1l)];

output Integer u2([size(y,2)];
external "FORTRAN 77"

myfoo(x, y, size(x,1l), size(y,2), ul, i, u2);
end foo;
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References

e Modelica's official WEB site:

- http://www.modelica.org
* Books:

- “Introduction to Physical Modeling
with Modelica”, by M. Tiller

- “Principles of Object-Oriented
Modeling and Simulation with
Modelica 2.1", by P. Fritzson
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Overview of the Modelica
language

Building models using Modelica
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Notion of package

* A package is a hierarchical set of
Modelica classes and constant
components

 Packages may be stored:

- As nested modelica classes, In a
single file

- In the host file system, as a tree of
directories and files
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Contents of a package

e Packages are generally divided into
subpackages corresponding to a
discipline (library)

* The default Modelica package
contains the definition of:

- physical quantities and constants

- Useful connectors, blocks and models
(electrical domain, mechanical
domain, etc.)

- Many more...
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Overview of a Modelica library

e A library usually provides several
subpackages containing:

- The public types used in the library
- Eventually, some useful functions

- The connectors used to build classes
- Interfaces of classes

- Instantiable classes

- Some test models
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Example of a Modelica library

package MyElectricalLibrary

package Types

type Voltage = Real(unit="v");

type Current = flow Real(unit="A");
end Types;

package Connectors
connector Pin
Voltage v;
Current 1i;
end Pin;
end Connectors;

package Interfaces
partial model TwoPin
end TwoPin;

end Interfaces;

end MyElectricallibrary;

i | IMAGINE
AMESim®




Building models

e To build models, one has to
proceed the following steps:

- Define the types attached to the
discipline

- Define connectors

- Build library models

- Build “main” models (i.e., models that
can be simulated)
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Model building example

type Voltage = Real(unit="v");
type Current = flow Real(unit="A");

connector Pin

Voltage v;

Current 1i;
end Pin;
model Resistor ... end Resistor;
model Capacitor ... end Capacitor;

model Circuit
Resistor R1(R=100);
Capacitor C1(C=0.001);
equation
connect(R1l.p, Cl.n);

end Circuit;
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Modelicac, a Modelica compiler

Overview
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History

e 1998~2001: SimLab project (EDF
R&D and TNI)

- Causality analysis problem

- Symbolic manipulation of
mathematical expressions

e 2001~2004: SimPA Project (TNI,
INRIA, EDF, IFP and Cril Technology)

- Compilation of Modelica models
- Automatic event handling, DAE solvers
- Ehancements of Scicos's editor
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Inside Modelicac

» Modelicac is composed of three
main modules:

- Modelica parsing and compilation
- Symbolic manipulation
- Code generation
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Compilation modes

e Modelicac can be used for two
different purposes:

- Compiling connectors and library
models as “object files”

- Generating code (usually C code) for
the target simulation environment
(for instance, Scicos)
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The compiled modelica subset:
class definitions

* Only two kinds of classes are
currently supported

- “class”: to describe connectors and
models

- “function”: to describe external
functions

”n dd

e “encapsulated”, “final” and
“partial” are not supported
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The compiled modelica subset:
definition of elements

e An element can be either an
Instance of another class or an
instance of the primitive type
“Real”

* Only “value” modifications are
supported

* Local classes, imports and
extensions are not currently
supported

<\ IMAGINE

AM ESlme



The compiled modelica subset:
equations and algorithms

* |nitial equations are not supported
(use modifications instead)

 Equations defined by equality,
“for” equations and “when”
equations are supported

 Currently, it is possible to use
neither “if” equations nor
algorithm clauses
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The compiled modelica subset:
external functions

* Only “Real” scalars can currently
be passed as arguments to
functions

 Functions only return one “Real”
scalar result

* The foreign language is supposed
to be C
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Model transformation

 Before generating code for the
target, Modelicac performs the
following tasks:

- Building an internal flat model
representing the model to simulate

- Performing some symbolic
simplifications (elimation of the
linearities, inversions of some
bijective functions)

- Eventually, computing the analytic
jacobian matrix of the system
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Modelica library files

» Modelicac requires a file to contain
exactly one Modelica class
definition

* The name of the file Is the same as
the name of the defined class,
followed by the suffix “.mo”
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Compiling library models

e Modelicac has to be invoked with
the “-c” option:

- Modelicac -c <model.mo>

* Modelicac generates a file named
“<model>.moc” that contains
binary object code

* No link is done at that stage,
names of external classes are only
looked up when flattening a
complete model
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Writing a “main” model

e The difference between a “main”
model and a library model is that
“main” models are required to be
well constrained

e Usually, writing main models is not
done by the user: graphical
simulation environments (like
Scicos) can do it automatically
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Compiling a “main” model

By default, Modelicac considers the
file passed as argument to contain
a “main” model:

modelicac <model.mo>

e Additional command line
arguments can be passed to
Modelicac, for instance:

- -0 <filename>: to indicate the name
of the file to be generated

- -L <library path>: to indicate where
to find object files to link to the model
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The C code generated by
Modelicac for the Scicos target

» Modelicac generates a file
containing a C function that is
compiled and linked against Scilab
before simulation takes place

* The generated C code is Iin fact the
code of an ordinary external Scicos
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Compilation process

Library model files Object code files

*_mo —
*.mocC

'

“Main” model file Target code file

modelicac -c <model.mo>

*_mo — *_C

modelicac -0 <filename> <model.mo> -L <librarypath>
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Modelicac, a Modelica compiler

Generating C code from a
Modelica specification using
Modelicac
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Building an electrical library(1)

 Defining connectors

class Pin
Real v;
flow Real i;
end Pin;
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Building an electrical library(2)

* Defining a class of resistors

class Resistor
Pin p, n;
Real v, 1i;
parameter Real R “Resistance”;

equation
V = p.V — n.v;
i=p.i;
i = -n.1i;

v = R * i;
end Resistor;
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Building an electrical library(3)

* Defining a class of capacitors

class Capacitor

Pin p, n;

Real v;

parameter Real C “Capacitance”;
equation

V = p.V — Nn.V;

0 = p.i + n.i;

C * der(v) = p.i;
end Capacitor;
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Building an electrical library(4)

* Defining a class of inductors

class Inductor
Pin p, n;

Real 1i;

parameter Real L “Inductance”;
equation

L * der(i) = p.v — n.v;

0 = p.i + n.i;

1 = p.i;

end Inductor;
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Building an electrical library(5)

* Defining a class of AC voltage
sources

class VsourceAC
Pin p, n;
parameter Real VA = 220 "Amplitude";
parameter Real f = 50 "Frequency"
equation
VA*Modelica.Math.sin(2*3.14159*f*time) = p.v — n.v;
0 = p.1i + n.i;
end VsourceAC;
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Building an electrical library(6)

* Defining a class for the ground

class Ground
Pin p;
equation
p.v = 0;
end Ground;
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Writing a “main” model

class Circuit
Resistor R1(R=100), R2(R=10);
Capacitor C(C=0.01);
Inductor I(L=0.1);
VsourceAC S(V0=220.0, £=50);
Ground G;
output Real v;

equation
connect(Rl.p, S.p);
connect(Rl.n, I.p);
connect(I.n, S.n);
connect(R2.p, S.p);
connect(R2.n, C.p);
connect(C.n, S.n);
connect(G.p, S.p);
v = C.p.v - C.n.v;

end Circuit;
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Invoking Modelicac (1)

e Compiling the library models is
done by entering the following
commands:

mode
mode
mode
mode
mode
mode
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icac -c PIn.mo

Icac -c VsourceAC.mo
Icac -c Ground.mo
Icac -c Resistor.mo
icac -c Capacitor.mo
Icac -c Inductor.mo



Invoking Modelicac (2)

* Finaly, to compile the “main”
model, enter:

modelicac -o Circuit.c Circuit.mo
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Writing an external function(1)

* The prototype of the external
function is an ordinary C “header
file":

#include <math.h>

float Sine(float);
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Writing an external function(2)

e The C code of the external
function:

#include “Sine.h”

float Sine(float u)
{
float y;
y = sin(u);
return y;

}
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Writing an external function(3)

e The Modelica code of the external
function:

function Sine
input Real u;
output Real y;

external;

end Sine;
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Compiling an external function

 External functions are compiled
like any ordinary library model:

modelicac -¢c <functionname.mo>

By default, Modelicac assumes a C
header file (with the same base
name) to be present in the
compilation directory

 Additional paths can be indicated
using the “-hpath” option
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Calling an external function from
a Modelica model

e The VsourceAC model, rewritten to

call an external version of the sine
function:

class VsourceAC
Pin p, n;
Real v;
parameter Real VO "Amplitude";
parameter Real f "Frequency";
parameter Real phi "Phase angle";

equation
VO * Sine(6.2832 * £ * time + phi) = v;
\% p.V — n.v;

0 = p.i + n.i;
end VsourceAC;
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Generated C code

if (flag == 0) {
v0 = sin(314.16*get scicos time());
res[0] = 0.01*xd[0]+0.1*x[0]-22.0*VvO0;
( res[l] = 0.1*xd[1]+100.0*x[1]-220.0*vO0;

LMF &
B }%:::zs) ]
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