Using Modelica under
Scilab/Scicos

Sébastien FURIC
Imagine

n:\ IMAGINE
AMESim®

Agenda

 Overview of the Modelica language
- Basic concepts
- Building models using Modelica

» Modelicac, a Modelica compiler

- Qverview

- Generating C code from a Modelica
specification using Modelicac

<—\ IMAGINE

AMESim®

Overview of the Modelica
language

Basic concepts

n:\ IMAGINE
AMESim®

Structuring knowledge

e Modelica enables the creation of:

- Structured types
- Connectors

- Blocks

- Models

- Functions

- Packages

<\ IMAGINE

AMESim®

Basic language elements

* Basic types (Boolean, Integer, Real
and String)

* Enumerations

e Compound classes

* Arrays

 Equations and/or algorithms
 Connections

* Functions

<\ IMAGINE

AMESim®

Data abstraction

 Packages, models, functions etc.
are all described using classes

- Classes are the only way to build
abstractions in Modelica

- Classes enable structured modelling

- Classes offer an elegant way of
classifying manipulated entities that
share common properties (nested
sets)

<—\ IMAGINE

AMESim®

Example of a simple model

class imppart circuit

Ground Grnd;

VsourceAC VSrc (VA=220, £=50);
Resistor R1(R=100);

Resistor R2(R=10);

Inductor Ind(L=0.1);
Capacitor Capa(C=0.01);
VoltageSensor Vsnsr;

OutPutPort out; - =\ i=—

equation k=04
connect (Ind.n,VSrc.n);
connect (Capa.n,VSrc.n); - s
connect (Vsnsr.n,VSrc.n); C=0.01

connect (Capa.p,R2.n); o (::)
connect (Vsnsr.p,R2.n); 7

connect (Rl.p,VSrc.p);
connect (R2.p,VSrc.p);
connect (Grnd.p,VSrc.p); ‘
connect (Ind.p,Rl.n); " ﬁy
Vsnsr.v = Out.vi; M —
end imppart circuit;

IMAGINE

AMESim®

Example of a complicated model

AMESlm

Class description

* A class is composed of three kinds
of sections:

- Element declaration sections

- Equation and/or algorithm clause
sections

- External function call sections

<o\ IMAGINE

AMESim®

Restricted classes

* Restricted classes can be defined
iIn Modelica by replacing the
keyword “class” by one the
foIIowing ones: “record”,

“connector”, “model”, “block”,
“type”, “package”, “function”

* Restricted classes allow library
designers to enforce the intended
use of a given class

<\ IMAGINE

AM E_Sl'm

Element declaration section

e Elements include:

- Local components and/or local classes
(named elements)

- Imports (to allow components and
local classes of another class to be in
scope)

- “Extends clauses” (Modelica's
Inheritance mechanism)

<—\ IMAGINE

AMESim®

Visibility modifiers

By default, a declared named
element is public (i.e., it can be
accessed from the outside using

dot notation)

* Protected named elements can be
declared using the prefix
“protected”

<\ IMAGINE

AMESim®

Scoping rules

e | ocal classes declarations form an
ordered set of lexically enclosing
parents

e Apart from its own named
elements, a class may only access
names of constants and local class
definitions in the enclosing set of
parents

By default, name lookup is static

<\ IMAGINE

AM ESlme

Static lookup of simple names

e Simple names (no dots) are lookup
as follows:

- In the sequence of control variable
names of enclosing “for” constructs

- In the locally defined components and
classes (including inherited ones)

- In the import statements (qualified
ones first, then unqualified ones)

- In the sequence of enclosing parents
until the current class is encapsulated

_ - Inthe unnamed toplevel class
w=\ IMAGINE

AMESim®

Static lookup of composite
names

e Composite names (of the form A.B,
A.B.C, etc.) are looked up as
follows:

- A Is looked up as any other simple
name

- B, C, etc. are looked up among the
public declared named elements of
the denoted element (including
inherited ones). If an element denotes
a class, that class is temporarily
instantiated and lookup is performed

in the temporary instance
=\ IMAGINE

AM ESlme

Static name lookup example

class Foo
constant Real pi=3.1416;
Real x;
Bar b;
class Bar
Real y=cos(2*pi*time);
end Bar;
class Baz
constant Real e=2.71828;
end Baz;

import Modelica.Math.*;

equation
Baz.e*x = b.y;

end Foo;

n:\ IMAGINE
AMESim®

Dynamic lookup of hames

* A named element declared with
the prefix “outer’references an
element of the enclosing set of
Instances that has the same name

and is declared with the prefix
“Inner”

<\ IMAGINE

AMESim®

Dynamic name lookup example

class BarType
Real y;
end BarType;

class Foo
inner Real pi=3.1416;
inner class Bar
Real y;
end Bar;
Baz b;
end Foo;

class Baz
outer Real pi;
outer class Bar = BarType;
Bar b;
equation
Modelica.Math.cos(2*pi*time) = b.y
end Baz;

i | IMAGINE
AMESim®

Order of declarations

* The order of declaration of
elements does not matter (i.e., it is
possible to use a variable before
declaring it, provided a declaration
exists in the scope)

- Modelica was designed with ease of
code generation in mind (a graphical
tool is not supposed to sort elements
before generating code)

<\ IMAGINE

AM ESlme

Component declaration
specification

e A component declaration is
composed of:

- An optional type prefix
- A type specifier

- An optional array dimension
specification

- An identifier
- An optional set of modifications

- An optional comment
=\ IMAGINE

AMESim®

Examples of component
declarations

e To declare a constant:
constant Real pi=3.141592654;

* To declare an array of 10 Resistors,
each internal R=100 Ohms:

Resistor[10] Rs "my array of resistors”;

Resistor Rs[10];

* To declare an input vector of flow
Real (i.e., floating point) numbers:

flow input Real[:] Is;

<\ IMAGINE

AM ESlme

Type prefix

* Three kinds of type prefixes:

- “flow” prefix (indicating a flow
variable when set and a potential
variable otherwise)

- Variability prefix (one of “constant”,
“parameter” or “discrete” in the case
of a non-continuous variable)

- Causality prefix (“input” or “output”,
to force causality, for instance in case
of a function formal parameter)

<—\ IMAGINE

AMESim®

Component modifications

e Two kinds of modifications:

- Value modifications (mainly used to
give values to parameters)

- Structural (type) modifications (used
to refine an existing class definition,
either by restricting a type or by
replacing some named elements)

<\ IMAGINE

AM ESlmq

Initial values of variables

* Variables of predefined types can
be given initial values using
modifications:

Real x(start=0.0); /* just a guess */

Real x(start=0.0, fixed=true); /* we want
X to start at 0.0 */

* Another way to initialize variables
IS to use “initial equations”

<—\ IMAGINE

AMESim®

Class Inheritance

e Introduced by the “extends”
keyword

* I[nheritance iIs used to:

- Create new classes by extending
several existing ones (i.e., merging
contents of several classes) before
eventually adding new sections

- Modifying an existing class using
class modifications

<\ IMAGINE

AM ESlmq

Class inheritance example

class Bar
Real x=1;
end Bar;

class Baz
Real y;
end Baz;

class Foo

extends Bar;

Real z=3;

extends Baz(y=2);
end Foo;

Foo my foo;
/* my foo has 3 internal variables: x, y and z
whose values are 1, 2 and 3 respectively * /

n:\ IMAGINE
AMESim®

Replaceable elements

* Named elements may be declared
as “replaceable”:

- These elements may be replaced by
new ones in structural modifications,
provided type compatibility
constraints to be verified

- Allow a flexible model parametrization
(parametric polymorphism)

<\ IMAGINE

AM ESlmq

Example of element replacement

class ElectricalMotor
replaceable IdealResistor R(R=100);

end ElectricalMotor;

class Circuit
ElectricalMotor m(redeclare MyResistorModel R);

end Circuit;

n:\ IMAGINE
AMESim®

Partial classes

e Some classes are said to be
“partial” if they are declared under

the heading “partial”

* A partial class can not be
instantiated

e Partial classes are used to provide
a framework to develop models
according to a given interface

<\ IMAGINE

AM ESlmq

Example of a partial class

partial class TwoPin
Pin p, n;
Real v, 1i;

equation
1 = p.i;
i = -n.i;
V = p.V - n.v;

end TwoPin;

class Resistor
extends TwoPin;
parameter Real R;

equation
v = R * i;

end Resistor;

n:\ IMAGINE
AMESim®

Equation clauses

* Equation clauses are used to
describe the set of constraints that
apply to a model

 Constraints can apply either at
initialization time (initial equations)
or at simulation time (ordinary
equations)

<\ IMAGINE

AM ESlmq

Examples of equation clauses

class Resistor
parameter Real R;
Pin p, n;
Real i;
Real v;
equation
pP.V — n.v = v;
p.i = 1i;
n.i = -p.1i;
v = R * i;
end Resistor;

class Circuit
Resistor R(R=100);
VsourceAC Src;

initial equation
Src.v = 0;

equation
connect(R.p, Src.p);

end Circuit;

n:\ IMAGINE
AMESim®

Comments about equation
clauses

e Equation clauses are not
sequences of statements! (in
particular, there is no notion of
assignment, nor evaluation order)

* |t iIs however possible to describe
how to compute a result by means
of sequences of assignments,
loops, etc. in Modelica, but not
using equations!

<\ IMAGINE

AM ESlme

Different kinds of equations (1)

 Equality between two expressions:

v =R * 1;
 Conditional equation:

if mode == Modes.basic then
X = basicControl.c;:

else
X = complexControl.c;

end if;

e “For” equation:

for k in 1 : n loop
vik] = R[k] * 1i[k];
end for;

<—\ IMAGINE

AMESim®

Different kinds of equations (2)

e “Connect” equation:

connect (R.p, Src.p);

e “When” equation:

when x <= 0.0 then
reinit(a, -a);
reinit(v, 0);
end when;

e “Function call”:

assert(n > 0, “Model is not valid”);

<o\ IMAGINE

AMESim®

Expressions

» Modelica provides the necessary
functionalities to express:

- The usual “mathematical” functions
(sin(), cos(), exp(), etc.)

- The derivative of a variable
- Conditional expressions
- “Event-free” expressions

- Multi-dimensional arrays and
associated operations

<—\ IMAGINE

AMESim®

Variability of expresions

e Varibility modifiers in declarations:

- “constant”
- “parameter”
- “discrete”

 Discrete variables and ordinary
variables only may change their
values during simulation time
(discrete variables are only
modified inside “when” equations)

<\ IMAGINE

AM ESlme

Examples of equations

* Algebraic equation:

R * 1i;
v / R; // a “less general” formulation

* Differential equation:

\Y%
1

a = -g;

der(v) = a;

der(x) = v; // der(der(x)) = a is illegal!
 Conditional expression in equation:

y 1f x > x0 then exp(x0) else exp(x);

y = if noEvent(x > x0) then exp(x0) else
exp(x); // the correct version

<—\ IMAGINE

AMESim®

Algorithm clauses

* Algorithm clauses are sequences of
assignments and control structures
statements

* Algorithm clauses are used to
describe how a quantity has to be
computed

* Like equation clauses, algorithm
clauses may apply either at
initialization time or at simulation
time

<\ IMAGINE

AM ESlme

Different kinds of statements(1)

 Assignment:
y = 2 * X;

o “If” statement:

if x >= 0.0 then

Yy = Xj;
else

y = —-Xj
end if;

e “For” statement:

for 1 in 1 : n loop
y[i] == 2 * x[1];
end for;

<\ IMAGINE

AMESim®

Different kinds of statements(2)

e “While” statement:

while abs(x — y) > eps loop
X =Yy
y := X — f(x) / fdot(x);
end while;

e “When” statement:

when x == 0.0 then

y := 0;
end when;

e Continuation statements:

return;
break;

<o\ IMAGINE

AMESim®

Examples of an algorithm clause

block Fib
input Integer n;
protected Integer p, g:=1;
public output Integer f:=1;
algorithm
assert(n > 0, “Argument must be strictly positive”);
for i in 1 : n loop
£ :=p + q;
p = qg;
q := £;

n:\ IMAGINE
AMESim®

External function calls

e Modelica allows the user to call
external functions written in a
foreign language (only C and
FORTRAN are currently supported)

* Modelica provides the necessary
framework to handle formal
parameters and multiple return
values

<\ IMAGINE

AM ESlme

Restrictions over external
functions

 External functions must be “pure”,
iIn the sense that they should not
attempt to alter any variable that
IS not declared as “output” in the
calling Modelica code

* Also, external functions must
return the same values given the
same arguments (referential
transparency property)

<\ IMAGINE

AM ESlme

Exemple of external function

function Foo

input Real x[:];

input Real y[size(x,1l),:];

input Integer 1i;

output Real ul[size(y,1l)];

output Integer u2([size(y,2)];
external "FORTRAN 77"

myfoo(x, y, size(x,1l), size(y,2), ul, i, u2);
end foo;

n:\ IMAGINE
AMESim®

References

e Modelica's official WEB site:

- http://www.modelica.org
* Books:

- “Introduction to Physical Modeling
with Modelica”, by M. Tiller

- “Principles of Object-Oriented
Modeling and Simulation with
Modelica 2.1", by P. Fritzson

<\ IMAGINE

AMESim®

Overview of the Modelica
language

Building models using Modelica

n:\ IMAGINE
AMESim®

Notion of package

* A package is a hierarchical set of
Modelica classes and constant
components

 Packages may be stored:

- As nested modelica classes, In a
single file

- In the host file system, as a tree of
directories and files

<\ IMAGINE

AMESim®

Contents of a package

e Packages are generally divided into
subpackages corresponding to a
discipline (library)

* The default Modelica package
contains the definition of:

- physical quantities and constants

- Useful connectors, blocks and models
(electrical domain, mechanical
domain, etc.)

- Many more...

<\ IMAGINE

AM ESlme

Overview of a Modelica library

e A library usually provides several
subpackages containing:

- The public types used in the library
- Eventually, some useful functions

- The connectors used to build classes
- Interfaces of classes

- Instantiable classes

- Some test models

<\ IMAGINE

AM ESlmq

Example of a Modelica library

package MyElectricalLibrary

package Types

type Voltage = Real(unit="v");

type Current = flow Real(unit="A");
end Types;

package Connectors
connector Pin
Voltage v;
Current 1i;
end Pin;
end Connectors;

package Interfaces
partial model TwoPin
end TwoPin;

end Interfaces;

end MyElectricallibrary;

i | IMAGINE
AMESim®

Building models

e To build models, one has to
proceed the following steps:

- Define the types attached to the
discipline

- Define connectors

- Build library models

- Build “main” models (i.e., models that
can be simulated)

<\ IMAGINE

AMESim®

Model building example

type Voltage = Real(unit="v");
type Current = flow Real(unit="A");

connector Pin

Voltage v;

Current 1i;
end Pin;
model Resistor ... end Resistor;
model Capacitor ... end Capacitor;

model Circuit
Resistor R1(R=100);
Capacitor C1(C=0.001);
equation
connect(R1l.p, Cl.n);

end Circuit;

n:\ IMAGINE
AMESim®

Modelicac, a Modelica compiler

Overview

n:\ IMAGINE
AMESim®

History

e 1998~2001: SimLab project (EDF
R&D and TNI)

- Causality analysis problem

- Symbolic manipulation of
mathematical expressions

e 2001~2004: SimPA Project (TNI,
INRIA, EDF, IFP and Cril Technology)

- Compilation of Modelica models
- Automatic event handling, DAE solvers
- Ehancements of Scicos's editor

<—\ IMAGINE
AMESim®

Inside Modelicac

» Modelicac is composed of three
main modules:

- Modelica parsing and compilation
- Symbolic manipulation
- Code generation

<\ IMAGINE

AMESim®

Compilation modes

e Modelicac can be used for two
different purposes:

- Compiling connectors and library
models as “object files”

- Generating code (usually C code) for
the target simulation environment
(for instance, Scicos)

<\ IMAGINE

AMESim®

The compiled modelica subset:
class definitions

* Only two kinds of classes are
currently supported

- “class”: to describe connectors and
models

- “function”: to describe external
functions

”n dd

e “encapsulated”, “final” and
“partial” are not supported

<\ IMAGINE

AM ESlmq

The compiled modelica subset:
definition of elements

e An element can be either an
Instance of another class or an
instance of the primitive type
“Real”

* Only “value” modifications are
supported

* Local classes, imports and
extensions are not currently
supported

<\ IMAGINE

AM ESlme

The compiled modelica subset:
equations and algorithms

* |nitial equations are not supported
(use modifications instead)

 Equations defined by equality,
“for” equations and “when”
equations are supported

 Currently, it is possible to use
neither “if” equations nor
algorithm clauses

<\ IMAGINE

AM ESlme

The compiled modelica subset:
external functions

* Only “Real” scalars can currently
be passed as arguments to
functions

 Functions only return one “Real”
scalar result

* The foreign language is supposed
to be C

<\ IMAGINE

AM ESlmq

Model transformation

 Before generating code for the
target, Modelicac performs the
following tasks:

- Building an internal flat model
representing the model to simulate

- Performing some symbolic
simplifications (elimation of the
linearities, inversions of some
bijective functions)

- Eventually, computing the analytic
jacobian matrix of the system

<\ IMAGINE

AM ESlme

Modelica library files

» Modelicac requires a file to contain
exactly one Modelica class
definition

* The name of the file Is the same as
the name of the defined class,
followed by the suffix “.mo”

<\ IMAGINE

AMESim®

Compiling library models

e Modelicac has to be invoked with
the “-c” option:

- Modelicac -c <model.mo>

* Modelicac generates a file named
“<model>.moc” that contains
binary object code

* No link is done at that stage,
names of external classes are only
looked up when flattening a
complete model

<\ IMAGINE

AM ESlme

Writing a “main” model

e The difference between a “main”
model and a library model is that
“main” models are required to be
well constrained

e Usually, writing main models is not
done by the user: graphical
simulation environments (like
Scicos) can do it automatically

<\ IMAGINE

AM ESlme

Compiling a “main” model

By default, Modelicac considers the
file passed as argument to contain
a “main” model:

modelicac <model.mo>

e Additional command line
arguments can be passed to
Modelicac, for instance:

- -0 <filename>: to indicate the name
of the file to be generated

- -L <library path>: to indicate where
to find object files to link to the model

<\ IMAGINE

AM ESlme

The C code generated by
Modelicac for the Scicos target

» Modelicac generates a file
containing a C function that is
compiled and linked against Scilab
before simulation takes place

* The generated C code is Iin fact the
code of an ordinary external Scicos

block

AM ESlm

Compilation process

Library model files Object code files

*_mo —
*.mocC

'

“Main” model file Target code file

modelicac -c <model.mo>

*_mo — *_C

modelicac -0 <filename> <model.mo> -L <librarypath>

\ IMAGINE

AMESim®

Modelicac, a Modelica compiler

Generating C code from a
Modelica specification using
Modelicac

i | IMAGINE
AMESim®

Building an electrical library(1)

 Defining connectors

class Pin
Real v;
flow Real i;
end Pin;

n:\ IMAGINE
AMESim®

Building an electrical library(2)

* Defining a class of resistors

class Resistor
Pin p, n;
Real v, 1i;
parameter Real R “Resistance”;

equation
V = p.V — n.v;
i=p.i;
i = -n.1i;

v = R * i;
end Resistor;

i | IMAGINE
AMESim®

Building an electrical library(3)

* Defining a class of capacitors

class Capacitor

Pin p, n;

Real v;

parameter Real C “Capacitance”;
equation

V = p.V — Nn.V;

0 = p.i + n.i;

C * der(v) = p.i;
end Capacitor;

i | IMAGINE
AMESim®

Building an electrical library(4)

* Defining a class of inductors

class Inductor
Pin p, n;

Real 1i;

parameter Real L “Inductance”;
equation

L * der(i) = p.v — n.v;

0 = p.i + n.i;

1 = p.i;

end Inductor;

i | IMAGINE
AMESim®

Building an electrical library(5)

* Defining a class of AC voltage
sources

class VsourceAC
Pin p, n;
parameter Real VA = 220 "Amplitude";
parameter Real f = 50 "Frequency"
equation
VA*Modelica.Math.sin(2*3.14159*f*time) = p.v — n.v;
0 = p.1i + n.i;
end VsourceAC;

\ IMAGINE

AMESim®

Building an electrical library(6)

* Defining a class for the ground

class Ground
Pin p;
equation
p.v = 0;
end Ground;

n:\ IMAGINE
AMESim®

Writing a “main” model

class Circuit
Resistor R1(R=100), R2(R=10);
Capacitor C(C=0.01);
Inductor I(L=0.1);
VsourceAC S(V0=220.0, £=50);
Ground G;
output Real v;

equation
connect(Rl.p, S.p);
connect(Rl.n, I.p);
connect(I.n, S.n);
connect(R2.p, S.p);
connect(R2.n, C.p);
connect(C.n, S.n);
connect(G.p, S.p);
v = C.p.v - C.n.v;

end Circuit;

i | IMAGINE
AMESim®

Invoking Modelicac (1)

e Compiling the library models is
done by entering the following
commands:

mode
mode
mode
mode
mode
mode

<\ IMAGINE

AM ESlmq

icac -c PIn.mo

Icac -c VsourceAC.mo
Icac -c Ground.mo
Icac -c Resistor.mo
icac -c Capacitor.mo
Icac -c Inductor.mo

Invoking Modelicac (2)

* Finaly, to compile the “main”
model, enter:

modelicac -o Circuit.c Circuit.mo

i | IMAGINE
AMESim®

Writing an external function(1)

* The prototype of the external
function is an ordinary C “header
file":

#include <math.h>

float Sine(float);

<\ IMAGINE

AMESim®

Writing an external function(2)

e The C code of the external
function:

#include “Sine.h”

float Sine(float u)
{
float y;
y = sin(u);
return y;

}

i | IMAGINE
AMESim®

Writing an external function(3)

e The Modelica code of the external
function:

function Sine
input Real u;
output Real y;

external;

end Sine;

i | IMAGINE
AMESim®

Compiling an external function

 External functions are compiled
like any ordinary library model:

modelicac -¢c <functionname.mo>

By default, Modelicac assumes a C
header file (with the same base
name) to be present in the
compilation directory

 Additional paths can be indicated
using the “-hpath” option

<—\ IMAGINE
AMESim®

Calling an external function from
a Modelica model

e The VsourceAC model, rewritten to

call an external version of the sine
function:

class VsourceAC
Pin p, n;
Real v;
parameter Real VO "Amplitude";
parameter Real f "Frequency";
parameter Real phi "Phase angle";

equation
VO * Sine(6.2832 * £ * time + phi) = v;
\% p.V — n.v;

0 = p.i + n.i;
end VsourceAC;

<—\ IMAGINE

AMESim®

AMESlm

Generated C code

if (flag == 0) {
v0 = sin(314.16*get scicos time());
res[0] = 0.01*xd[0]+0.1*x[0]-22.0*VvO0;
(res[l] = 0.1*xd[1]+100.0*x[1]-220.0*vO0;

LMF &
B }%:::zs)]

- h N
e
Vsre —
Lot
sinusoid
generator ™ Capa

— num(s)
_ E d—en(s) —

