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Solveur numérique pour les systémes d’equations algébro-différentiels hybrides
Résumé

Les systemes hybrides sont des systémes composés de sous-systémes temps-discret et de sous-
systémes temps-continu. Les travaux de cette thése sont concentrés sur I'outil Scicos qui est
un logiciel de simulation des systémes hybrides. Une nouvelle extension de Scicos permet de
modéliser des systémes physiques en utilisant des composants. Afin de décrire les modeéles
des composants on a choisi le langage Modelica et pour faire la simulation quelques dispositifs
ont été rajoutés & Scicos. Du point de vu du simulateur de Scicos, la différence principale,
quand on modélise un systéme basé sur des composants, est que 1’on obtient plus souvent un
systeme algébro-différentiel. Pour résoudre numériquement ce type de systémes d’équations,
le solveur numérique Daskr, a été intégré dans Scicos. Mais la simulation n’est pas seulement
le probléme de l'interface du solveur et du simulateur. D’autres problémes doivent étre réglés
afin d’obtenir des résultats satisfaisants. Dans cette thése les solveurs et le simulateur de
Scicos ont été modifiés ou développés pour mieux gérer les systémes hybrides implicites.

Mot-clés: Simulation, Modélisation, Systéme dynamiques hybrides, Scilab, Scicos, Mod-
elica, Solveur Numérique

The numerical solver for the simulation of the hybrid dynamical systems
Summary

Hybrid systems are characterized by the co-existence of continuous-time dynamics and discrete-
time dynamics. In this thesis, we focus on Scicos as a hybrid systems modeler and simulation
tool. A new extension of Scicos allows the natural modeling of physical systems using mod-
els of physical components or implicit blocks. To extend the capacity of Scicos to allow
component based modeling, we adopted the Modelica language and to simulate the models
containing the components some new features have been added to the Scicos simulator. From
the Scicos simulator’s viewpoint, the main difference when using component based modeling
is that the resulting global system is very often given as a set of Differential-Algebraic Equa-
tions (DAE). To solve such systems, the DAE numerical solver Daskr has been included in
Scicos. But simulation is not just the problem of linking the solver to the simulator; there
are other problems that should be coped with to achieve a good simulation result. In this
thesis, the development of the Scicos simulator to use the numerical solver efficiently and the
modifications made in the numerical solvers for better handling of hybrid systems is presented.

Key words: Simulation, Modeling, Hybrid dynamical systemes, Scilab, Scicos, Modelica,
Numerical solver
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Abstract

A new research domain in the field of simulation of physical systems deals extensively with
the new class of systems called hybrid systems. Hybrid systems are characterized by the
co-existence of continuous-time dynamics and discrete-time dynamics. The simulation of this
new class of systems, obtained by the combination of the two types of dynamics, requires
new methodologies and approaches. In this thesis we focus on Scicos as a hybrid systems
modeler and simulation tool. In particular, the Scicos formalism and its hybrid aspect will
be discussed.

The continuous-time and discrete-time dynamics of hybrid systems have such significant
interaction that they cannot be decoupled and must be analyzed simultaneously. So to have
an efficient simulation, the discrete-time part should be developed by taking into account
the properties of continuous-time part and vice versa. Simulation of the continuous-time
part needs a numerical solver so it would be unrealistic to imagine that a simulator can be
developed independent of the properties of the numerical solver. Then it is important to study
these properties and identify precisely what properties are important and must be taken into
account in the development of the formalism and the implementation of the modeler and
the simulator. The reverse is also true, most numerical solvers are designed to integrate a
system without any discontinuity in the variables and their derivatives. A hybrid system, on
the other hand, consists of a piecewise continuous-time system. To detect and handle the
discontinuities efficiently, the solver must be adapted to the hybrid nature of the system. In
this thesis, the development of the Scicos simulator to use the numerical solver efficiently and
the modifications made in the numerical solvers for better handling of discontinuities will be
discussed.

Before simulation, a hybrid system should be modeled. Recently the Modelica language
has been introduced to describe and model hybrid dynamical systems. Scicos has adopted
it. This thesis will show how this language is used in Scicos and how the obtained model is
simulated.

The thesis then describes some real hybrid models used in an electric power plant. The
case studies presented here include, among others, a thermo-hydraulic system, and a heat
transfer system. The thesis concludes with a brief overview of ongoing work and possible
future research directions.
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Chapter 1

Introduction

Hybrid systems are systems with mixed discrete-event/continuous-time subsystems. At dis-
crete time instants some actions take place and between two consecutive discrete actions,
the continuous-time subsystem evolves as a function of time. Typically, the continuous-time
subsystem is modeled by differential equations, while the discrete-time events are modeled
by finite/infinite state machines. Hybrid systems are everywhere. As an example, consider
a water tank with a tap on the top. When the tap is open and water is flowing, the water
level in the tank is a continuous function of time. The tap is closed when the tank reaches
its full capacity. The actions of opening and closing the tap occur at discrete-times. Such
a system that has both continuous-time and discrete-time behavior is an example of a hy-
brid system. There are many reasons for using hybrid system techniques in modeling and
simulation of physical systems. The overall motivation for hybrid methods is significant in-
teraction between the continuous-time and the discrete-time parts of a system, as can be the
case in the discrete-time planning of continuous-time processes. Hybrid system theory also
provides a convenient framework for modeling engineering systems with multiple time scales,
where fast dynamics can be abstracted away and be treated as discrete-time changes affecting
slower dynamics. The application areas of hybrid systems today range from process control,
robotics, flexible manufacturing, avionics and automated highway systems [?, 7, ?].

The complexity of hybrid models can grow enormously. This is because purely continuous-
time and purely discrete-time systems can already be rather complex and in hybrid systems
these two world-views are present in a combined way. To predict the behavior of complex
hybrid systems computer simulation is necessary. Nowadays we cannot imagine design and
manufacturing of any new advanced technological system before its complete modeling and
simulation. Obtaining a better and faster result strongly depends on the ability and accuracy
of modeling and simulation of that system. In fact, to avoid the high cost of prototyping,
the use of computer modeling and simulation is inevitable. A simulator is a collection of
hardware and software systems which are used to show the behavior of phenomenon or to
analyze and verify theoretical models. Modeling and simulation of a large and complex
physical system consists in cutting up the system into several subsystems and then connecting
them. Each subsystem has a physical behavior that is described by mathematical equations.
Hybrid systems are in general difficult to simulate due to the non-smooth characteristics of the
state evolution. There are several hybrid simulation softwares, such as Scicos, SystemBuild,
Simulink, Shift, Dymola, etc. In this thesis we focus on Scicos.

Scicos is a software package for modeling and simulation of hybrid dynamical systems.
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Introduction

More specifically, Scicos is intended to be a simulation environment in which both continuous-
time systems and discrete-time systems co-exist. Unlike many other existing hybrid system
simulation software, Scicos has not been constructed by the extension of a continuous-time
simulator or of a discrete-time simulator; Scicos has been developed based on a formalism
that considers both aspects from the beginning. Scicos includes a graphical editor which can
be used to build complex models by interconnecting blocks which represent either predefined
basic functions available in Scicos libraries (palettes), or user defined functions. A large class
of hybrid systems can be modeled and simulated this way.

A new extension of Scicos allows the natural modeling of physical systems using models
of physical components or implicit blocks. In designing a model with components, there
is no causality and components are connected to each other via their ports that are not
labeled, a priori, as inputs and outputs. The component imposes a dynamical constraint on
the values on its ports, contrary to regular blocks which compute explicitly their outputs as
functions of their inputs. Physical components can be more naturally modeled in this way
and not as a system with input and outputs, simply because physical laws are expressed in
terms of mathematical equations not as mathematical assignments. To extend the capacity of
Scicos to allow component based modeling, we needed a language for describing the algebraic-
differential constraints on input/outputs of the components. We found the Modelica language
to be an excellent choice.

Modelica is an object-oriented modeling language for dynamical systems. Modelica is
primarily a modeling language, sometimes called hardware description language, for specifying
mathematical models of physical systems, in particular for the purpose of computer simulation
of hybrid systems. Modelica is a language that is based on equations instead of assignment
statements. This makes it particularly useful for the purpose of component based modeling.
This is not a surprise since Modelica is developed exactly for such applications.

To simulate component level models in Scicos, some new features have been added to
Scicos. From the Scicos simulator’s viewpoint, the main difference when using component
based modeling is that the resulting global system is very often given as a set of Differential-
Algebraic Equations (DAE). To solve such systems, the DAE numerical solver DASKR has
been included in Scicos. DASKR was chosen both because of its ability to solve many DAEs
and because of the root finding option which is important for hybrid system simulation.
But simulation is not just the problem of linking the solver to the simulator. There are
other problems that should be coped with to achieve a good simulation result. In a hybrid
simulator, the numerical solver management should be performed automatically. The solver
management may be a complicated task, because of the interaction between the continuous-
time and the discrete-time dynamics. The discrete part can affect the system equations of the
continuous part and the continuous part can generate an event affecting the discrete part.

The contribution of this thesis is in numerical simulation of component based models that
are in fact hybrid dynamical systems. In this thesis, the numerical solvers and the simulator
of Scicos were modified or developed to better handling the implicit hybrid systems. System
level modeling in Scicos had already been available since the beginning of the this project.
During this project, the Scicos semantics has been extended with component level modeling.
The extension consists of using the Modelica language to describe the model of components,
then a C code is automatically generated to produce the input/output behavior of the existing
components of the model. Complexity of the new model brings in many difficulties in the
simulation of models. These difficulties show up both in the simulator level and in the
numerical solver level. To integrate a hybrid system efficiently, some modifications were
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made in the numerical solvers of Scicos. For example, the zero-crossing routines of the solvers
were modified in order to indicate the direction of crossings. In addition, the numerical
solver should receive a continuous smooth system of differential equations. But the main
characteristic of a hybrid system is the fact the system may not be continuous at all. Thus
simulator’s task is to provide the solver a piecewise continuous smooth system.

1.1 Thesis Outline

In the chapter that follows, modeling and simulation of hybrid dynamical system will be
introduced. Concepts, and simulation of hybrid systems and numerical solvers that are used
in simulation, in particular DASKR, will be presented. Also, at the end, an overview of hybrid
simulation software will be given.

In chapter 3, Scicos as a software tool for modeling and simulation of hybrid systems
will be introduced. A Scicos block as the basic block of modeling of hybrid systems will
be explained. Some examples of continuous-time, discrete-time, and hybrid systems will be
given. Then, the internal architecture of an ordinary Scicos block will be studied in detail.
At last, it will be explained how an interface between AMESim and Scicos softwares can be
established. In chapter 4, the shortcomings of the current numerical solvers used in Scicos
will be explained. Then the modifications that have been made as part of this research to
adapt them to integration of hybrid system will be discussed.

In chapter 5, Scicos architecture will be the main subject. First, the Scicos compiler, then
the Scicos simulator will be discussed. The difficulties that we came across in the simulation
of hybrid systems will be studied in detail. Also, the whole Scicos simulator flowchart will be
given.

In chapter 6, the implementation of a new extension of Scicos, the component level mod-
eling, will be presented. System level and component level modeling approaches and their
advantages and disadvantages will be discussed. Some numerical difficulties that were con-
fronted and the implemention of the analytical Jacobian for these systems will be presented.

In chapter 7, some modeling case studies for component level modeling will be given. In
particular, a thermo-hydraulic system, which has been modeled and simulated in Scicos, will
be explained.

The thesis will conclude in chapter 8 with a discussion of the contributions made and
some suggestions for further research.

1.2 Introduction (en francais)

Les systemes hybrides sont des systemes composés de sous-systémes temps-discret et de sous-
systémes temps-continu. Aux instants discrets plusieurs actions peuvent avoir lieu au méme
temps que 'activation temps-continu, en effet entre deux événements discrets le sous-systéme
continu évolue en fonction du temps continu. Les systémes temps-continus sont modélisés
selon leurs nature soit par des systémes différentiels ordinaires, soit par des systemes algébro-
différentiels, tandis que les systémes temps-discrets sont modélisés par des systémes machine
a état fini ou infini. Les systemes hybrides se retrouvent partout, par exemple, considérez
un réservoir avec un robinet. Quand le robinet est ouvert le réservoir se remplit, le niveau
d’eau est une fonction continue de temps. Quand le niveau d’eau arrive & certain seuil le
robinet se ferme. L’action d’ouverture et de fermeture du robinet s’exécute dans un instant
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discret. Ce type de systéme qui a des comportements discrets et continus est un exemple
de systéme hybride. La portée d’application des systemes hybrides est tres variée, comme
par exemple, le contrdle des procédés, la robotique, I'aviation et les routes automatisées.
Il y a beaucoup de raisons pour utiliser les systémes hybrides dans la modélisation et la
simulation de systémes physiques. La motivation principale pour se servir de la méthode
hybride est 'interaction signifiante qui existe entre la partie continue et la partie discréte. La
théorie des systémes hybrides fournit également une méthode pour modéliser des systémes
avec plusieurs échelles de temps, par exemple dans un systeme qui contient deux dynamiques
lente et tres rapide, a la place de la dynamique tres rapide, on peut utiliser un changement
d’état discret. Un tel exemple de ses systémes, est de considérer I’horloge d’un ordinateur qui
change continuellement, mais on le considere comme une horloge discrete.

Pour connaitre le comportement d’un systéme temps-continu ou temps-discret, il faut
résoudre les systémes d’équations continus ou discrets du modele. Si on modélise la partie
continue en utilisant des systémes algébro-différentiels et la partie discréte en utilisant des
systémes a état fini/infini et des événements, on pourra représenter une large classe des
phénomenes physiques. La complexité des systémes hybrides peut étre augmentée, c’est parce
que chaque partie continue ou discrete peut étre trés complexe ce qui rend le modele hybride
trés compliqué. Alors, pour connaitre le comportement d’un systéme hybride, une simulation
doit étre effectuée. Aujourd’hui, Il est impossible d’imaginer la conception et la réalisation
des systémes hautes technologies avant les modélisations et les simulations complétes du
systéme. Pour obtenir un meilleur résultat dans un délai plus court, dans toutes les étapes de
conception et de réalisation, il est indispensable d’utiliser des modélisations et des simulations
bien précises. Une simulation est une collection de matériels et de logiciels qui pourrait
servir 3 montrer le comportement d’un phénomene & analyser et & vérifier théoriquement, par
exemple d’un model qui peut étre trés difficile ou impossible & réaliser dans le monde réel. La
modélisation et la simulation d’un systeme physique compliqué consiste a de séparer le systéme
en plusieurs sous-systémes et ensuite les relier par des connecteurs. Chaque sous-systeme a
un comportement physique qui se décrit par un ensemble d’équations mathématiques.

La simulation numérique est trés importante dans ’analyse et la conception d’un systéme
de commande hybride, parce que la complexité de ce genre de systéme limite I’application
des méthodes analytiques. En général, il n’est pas facile de simuler numériquement un
systéeme hybride a cause des caractéristiques discontinues des systemes hybrides. Il existe
plusieurs logiciels de simulation des systémes hybrides, comme par exemple Scicos, Sys-
temBuild, Simulink, Shift, Ptolemey, etc. Les travaux de cette these sont concentrés sur
Poutil Scilab/Scicos. Scicos (www.scicos.org) est une boite & outils du logiciel libre de calcul
scientifique Scilab (www.scilab.org), dédiée 4 la modélisation et la simulation des systémes
dynamiques hybrides. Ces systemes, représentés sous forme de schémas blocs, peuvent étre
potentiellement constitués d’éléments avec des fonctionnements de nature différente : continu,
discret, événementiel; réalisant ainsi des systémes hybrides.

Nous présentons dans ce mémoire une méthodologie pour la modélisation des systémes
dynamiques hybrides. Le principal objectif de cette modélisation est la simulation du systéme
complet, c’est & dire constitué de tout ’environnement avec son systéme de commande, de
fagon & répondre aux besoins du monde industriel comme par exemple la validation des lois de
commande ou la simulation d’un systéme thermo-hydraulique d’une centrale nucléaire. L’idée
principale est le développement de Scicos dans ’objectif d’obtenir un simulateur bien défini
qui permettra la modélisation et la simulation d’une large classe de systémes dynamiques
hybrides de maniére plus naturelle et plus proche de la modélisation physique du systeme.
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1.2 Introduction (en francgais)

Scicos est composé d’un éditeur graphique qui sert & construire des modeéles en reliant des
blocs. Un bloc peut étre déja défini comme une fonction élémentaire disponible dans des
palettes de Scicos ou défini par l'utilisateur. Ainsi, une grande classe des systémes hybrides
peut étre modélisée et ensuite simulée dans Scicos.

Une nouvelle extension de Scicos permet de modéliser les systémes physiques plus na-
turellement en utilisant des composants ou des blocs implicites. Dans la construction d’un
modeéle avec des composants, il n’y a pas de causalité et les composants se connectent par
leur ports, qui ne sont pas libellés, a priori, comme des entrées ou des sorties. Contraire-
ment aux blocs réguliers qui calculent explicitement leurs sorties en fonction de leurs entrées,
les composants ou les blocs implicites imposent des contraintes dynamiques sur les valeurs
de ses ports. Ces contraintes sont des lois physiques qui sont exprimées par des équations
mathématiques et non pas avec des affectations mathématiques, ce qui est le cas avec les
blocs explicites. Afin de décrire des contraintes algébro-différentielles sur les entrées/sorties
des composants et d’étendre la portée de Scicos pour modéliser des systemes en utilisant
des composants, on a eu besoin d’un langage. On a choisi le langage Modelica. Modelica
est un langage orienté objet pour modéliser des systémes dynamiques. C’est un langage de
modélisation pour spécifier des modeles mathématiques de systémes physiques, en partic-
ulier, pour la simulation. Modelica est basé sur des équations et non pas des affectations
mathématiques, cela est tres utile pour la modélisation au niveau des composants.

Afin de pouvoir modéliser les systémes en utilisant des blocs implicites, quelques dispositifs
ont été rajoutés a Scicos. Du point de vu du simulateur de Scicos, la différence principale,
quand on modélise un systeme basé sur des composants, est que l'on obtient souvent un
systeme algébro-différentiel. Pour résoudre numériquement ce type de systémes d’équations,
le solveur numérique DASKR, a été intégré dans Scicos. DASKR a été choisi, d’abord, pour ses
capacité a résoudre une large classe de DAE, ensuite pour 'option de détection des traversées
de zéro qui est importante pour la gestion des discontinuités. Mais la simulation n’est pas
seulement le probleme de I'interface du solveur et du simulateur. D’autres problémes doivent
étre réglés afin d’obtenir des résultats satisfaisants. Dans un contexte hybride, le controle du
solveur doit se faire automatiquement et sans que 1'utilisateur s’en apercoive. Ce controle est
assez compliqué & cause de l'interaction qui existe entre la dynamique continue et le reste
du systéme. D’un c6té la partie discréte peut affecter les systémes d’équations de la partie
continue, de l'autre coté, la partie continue peut générer un événement affectant la partie
discrete.

L’objet de cette thése réside dans la simulation numérique des modeles basés sur des
composants, qui sont en effet des systémes hybrides. Dans cette thése les solveurs et le
simulateur de Scicos ont été modifiés ou développés pour mieux gérer les systemes hybrides
implicites. La modélisation basée sur les blocs explicites était déja utilisable quand cette thése
a commencé. Ce document présente la fagon dont la sémantique de Scicos a été étendue pour
permettre la modélisation au niveau des composants. Cette extension consiste a utiliser le
langage Modelica pour décrire les modeles des composants, ensuite générer un code C pour
réaliser le comportement entrée sortie de systeme composé des blocs implicites. La complexité
de ces nouveaux modeles entraine beaucoup de difficultés au niveau de la simulation. Ces
difficultés se manifestent au niveau du simulateur ainsi qu’au niveau du solveur numérique.
Afin de simuler un systeme hybride efficacement quelques modifications ont été effectuées
dans le solveur numérique de Scicos. Par exemple, les routines de traversée de zéro du
solveur ont été modifiées pour indiquer la direction des traversées de zéro. De plus, le solveur
numérique doit recevoir un systéme d’équations différentielles bien lisse. Mais la principale
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caractéristique d’un systeme hybride est qu’il n’est pas nécessairement continu et lisse, il peut
étre discontinu. La tache du simulateur est donc de fournir au solveur un systéme continu et
lisse par morceau.

Ce document s’achéve avec quelques exemples physiques, en particulier, une application
basée sur équation de la chaleur et un systéme de refroidissement de centrale de production
d’électricité. Les deux applications ont été modélisées et simulées dans Scicos.



Chapter 2

Review and Theoretical
Background

2.1 Physical System Modeling and Simulation

A physical system is a set of interacting components, or entities, that generally work together
to achieve some objectives. These systems are large and complex, and would be difficult and
expensive to experiment with directly. A model is an abstract and simplified representation of
a system that represents the most important system components, and the way in which they
interact. Simulation is using the model to predict the behavior of the system without directly
experimenting with the system. Simulation has been used to analyze a very large variety of
systems. For evaluating the performance of manufacturing systems, simulation has come to
be the dominant methodology, and special modeling tools and simulation software have been
developed for these systems. Simulation is not specific to any particular application area, but
can be applied to any system that can be modeled using the modeling concepts.

The term simulation has been used to mean quite a number of things. Usually it refers to
a realization of a representation of some larger, more complex activity. For example, engineers
build simulations of physical systems such as a ship’s flow through water. Any simulations use
a model to represent the behavior of a system that may or may not exist and that is generally
much larger, costlier and more complex than the model. The model may be physical, as in
the cases of an aircraft simulator, or it may just be represented as a computer program. In
all cases, the key idea is that the simulation is an alternative realization that approximates
the system, and in all cases the purpose of the simulation is to analyze and understand the
system’s behavior under various alternative actions or decisions.

In order to simulate a physical system, modeling is the first step. There are several
other steps that should be done to achieve a reliable simulation result. Typical phases in a
simulation study are shown in Fig. 2.1.1. They are data collection, mathematical modeling,
model verification, model validation, and finally simulation to gain the results. The main
concern of this thesis is the modeling and simulation approaches.

2.2 System Modeling

The system state is a collection of variables and possibly other necessary information to run
over time. The major task in simulating a system is to come up with a model that captures the

9
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Real world systems
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Figure 2.1.1: Simulation steps.

behavior of the system. Thus, the modeler must first select a representation for the system
states. In some simple models, the system state could be a collection of variables such as
temperature, speed, etc. More realistic models, however, need a much richer representation
for the system state in order to capture the complexity of the model. Maybe the first important
factor in modeling is the independent variable selection. The modeler has two choices about
the independent variable (time); it can advance either continuously, or it jumps. In other
words, time can be represented as a continuous-time variable or as a discrete-time variable.
This choice makes the system continuous-time or discrete-time, respectively.

e If time advances continuously, the system states change continuously in time as well.
In this modeling approach, time is treated as a continuous-time variable and as a result,
system changes are expressed in terms of a set of differential equations involving the system
state variables. In this case, the simulation program numerically integrates the differential
equations to compute the solution of the system state. A typical plot of a continuous-time
state in a continuous-time simulation is depicted in Fig. 2.2.1.

o If time advances discretely, the system states change only at discrete-time points, called
event times. When an event occurs, states may change abruptly (sudden changes) with respect
to time. This type of model is called a discrete-time or discrete-event system model. This
approach might be used to model the processing of parts in a factory. In this model type,
the state does not change between two events. The graphic in Fig. 2.2.2 shows the plot of a
state of a discrete-time system with respect to time in a discrete-time simulation.

e It is possible to have a combined discrete-time and continuous-time system model in
which the values of some variables are controlled by differential equations and for others the
values are changed at the moments that events occur. For example, in a steel mill, an event
occurs to cause the steel to begin heating, but the temperature of the steel is determined by
a set of differential equations that depend upon the amount of power applied, the starting
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a continuous-time state

Figure 2.2.1: Continuous-time system output example.

a discrete-time state

FEvents 4 bbby 4
Figure 2.2.2: Discrete-time system output example.

temperature and some random variables. The event involving pouring the steel cannot occur
until the steel exceeds a specified temperature. Thus, the variables that change continuously
over time and those that change only in events are interdependent. We call this category of
systems hybrid systems. The graphic in Fig. 2.2.3 shows a possible plot of a state with
respect to time in a hybrid simulation.

2.3 Hybrid Modeling

A hybrid system is a dynamical system that cannot be represented and analyzed with sufficient
precision either by the method of the continuous-time systems theory or by the method of
the discrete-time systems theory. It is modeled using continuous-time components as well as
discrete-time components. As an example consider a bouncing ball. It is a hybrid system,
since its state variables (position and speed) vary continuously according to Newton’s laws
when falling, but have a discrete-time change (speed is reversed) when entering in collision
with the ground. Note that the discrete-time change is due by the way we model the collision
(for simplicity); in reality, everything is continuous-time for this example.

11
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a state in hybrid system

FEvents 4 bbo4d
Figure 2.2.3: Combined system output example.

The state jumps and the discontinuities are the basic phenomena that cannot be rep-
resented and analyzed by methods elaborated either in continuous-time or in discrete-time
system theory. Hence, a system has to be considered as a hybrid system if both the continuous-
time movement and the state jumps are important to be taken into account. In the following
sections, the specification of continuous-time and discrete-time sub-systems, and their inter-
action in a hybrid system will be discussed in detail.

2.3.1 Discrete-time Systems

From a classical mechanical point of view, everything is continuous-time in nature: for ex-
ample, the collision of the ball with the ground is not an instantaneous event, but in reality,
is the deformation of the ball (like a spring) which will have the effect at the end of hav-
ing inverted its speed. This continuous-time world is no more true in Quantum Mechanics,
but this point is not relevant at our level of modeling since Quantum Mechanics is rarely
present in engineering situations. There are several reasons to use discrete-time modeling
and simulation:

First, The real world is very complicated. To deal with this complexity, we have to make
approximations and abstract out the non-important phenomena. The bouncing ball is a good
example. We usually do not know how the ball will deform itself when colliding with the
ground and we usually do not care anyway. A good first approximation is to assume that
the collision is not elastic, i.e., some kinetic energy is transformed in thermal energy due
to deformation of the ball. This approximation business is closely related to the time scale
we are interested in. For example, if we want to study effects on the ball which occur in a
microsecond period, then we will have to study in detail its collision with the ground and not
consider it as instantaneous. Fig. 2.3.1 shows the effect of the time scale on the continuity of
the downward velocity of ball. Depending on the time scale under study, a phenomenon will
appear continuous-time or discrete-time.

12
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1 p-Second

Figure 2.3.1: Approximation due to time scale.

Furthermore, discrete-time behavior happens often in control systems, where switches
are usually used (electrical switch, for example). A canonical example of a control system
used in the modeling world is bang-bang control. This can be used, for example, to keep
the temperature of a room inside a predefined range with a simple thermostat. When the
temperature exceeds a high threshold (Tmaz), the control mechanism stops heating; when the
temperature falls below a lower threshold ( Tmin), it starts heating. So the heating undergoes
a discontinuous change in a bang-bang model.

Finally, discrete-time systems are simulated much more efficiently and much faster than
continuous-time ones. For these purposes we often use discrete-time systems to model physical
systems. A discrete-time system is mathematically modeled by a set of difference equations
expressed as:

(2.3.1)

where z(k) is the discrete-time state vector, ¢(k) is the time, k is the index corresponding
to the time point ¢(k + 1) at which the state takes on the new value z(k + 1), y(k + 1) is
the output vector, and u(k) is the input vector. The time ¢(k) is usually, but not always,
uniformly spaced (¢(k) = ¢(0) + k - Ts) where Ty is the sampling time. In any case we assume
that these times points are known in advance. This time points at which the system states
are changed are referred to as events.

Events

In discrete-time systems, the connections between two system parts is carried out with signals
that consist of events placed on a time axes. An event is characterized by a source and an
activation time. This is different from continuous-time signals, where the signal is continuous
in time. In the discrete-time models, the set of events are located discretely on the time axis.
The components in a system respond to input events and produce output events (instanta-
neously or in the future) that may trigger other parts of the system. As an example of a
discrete-time system, the arrival of patient to a hospital can be considered as an event that
activates the emergency ward, and then a surgery is called (a new event).

13
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Discrete-time Modeling and Simulation

There are three basic ways to implement discrete-time modeling in practice: the event schedul-
ing approach, the activity scanning approach and the process interaction approach [?, ?, ?, ?].
While each of these methods has their own special way of looking at system dynamics, every
discrete-time system can be modeled using any of the three methods. For the sake of brevity,
we will only explain the event scheduling approach that will be used in this thesis.

In the event scheduling approach an event is the only thing that changes the system states.
The essential idea of event scheduling is to move along the time scale until an event occurs,
and then depending on the event, modify the system state and possibly schedule new events
(which can occur as a result of the arriving event). Each event specification then consists
of one determined event and a collection of events that may be caused by it. In the event-
scheduling approach, simulation is executed as a sequence of events ordered in time; but no
time elapses within an event. Simulated time (the simulation clock) jumps from one event
time to the next event time. At each event, we need to change the state and possibly the list
of future events. The simulation can end either at a fixed time (e.g., 10 seconds) or event
count (e.g., 1000 job completions) or a special event (e.g., user stop request).

A typical discrete-time simulator operates by maintaining an event queue, in which the
events are sorted by their activation-time. During the simulation, the output events from all
model parts will be fed into the queue. At each iteration of the execution, the event with the
smallest activation-time is removed from the queue, and the model parts concerning to this
event are activated. The activation time of the event that is just removed from the queue is
defined as the current time of the simulation.

Managing the simultaneous events (events with the same activation-time) and synchronous
events (events having the same origin) is a key issue in designing a discrete-time simulator.
At any event arrival, all the consequent simultaneous or synchronous events should be treated
or programed. In this thesis, we do not enter into the details of discrete-time system analysis.
For a complete analysis of the discrete-time model, please see [?, 7, 7, ?].

2.3.2 Continuous-Time System Modeling

In contrast to discrete-time systems, the signal flow in all parts of a continuous-time systems
are usually continuous-time signals. In order to model the continuous-time part of a hybrid
system or a continuous-time system, we use the differential equations. In this section we are
going to explain how the differential equation of a model is obtained then different types of
differential equations will be introduced.

Modeling a physical system is to give a description of the system and its states (physical
properties) and the state transition mechanism (physical laws). Simulating a physical system,
on the other hand, is to describe its behavior when specific inputs are given to the system
(like initial conditions, driving forces, etc.) (see [?]). Modeling a system consists of three
main Steps:

1. Determine the goal of the model. This gives the framework of the subsequent modeling
and simulation and influences the assumptions to take.

2. Determine the state variables (such as the temperature of the system, the position and
velocity of its constituents, etc.)
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3. Determine the laws and interactions in the system which describe its evolution in time
and the constraints relating its state variables.

4. Then determine the parameters of the system which should remain constant after start-
ing the simulation such as mass, lengths, etc.

Consider, for instance, the simple ideal pendulum shown in Fig. 2.3.2 with a "massless”
string of length [ and a bob of mass m.

Figure 2.3.2: Pendulum.

The primary forces acting on the bob are the gravitational force that makes it move in
the first place and the force exerted by the string to keep it moving along a circular path. In
addition, there may be a damping force from friction at the pivot or air resistance or both
that we do not consider at first in this example. We construct a model to describe how the
angle of the pendulum varies as a function of time ¢. Let s(t) be the distance along the arc
from the lowest point to the position of the bob at time ¢, with displacement to the right
considered positive. Let 6(t) be the corresponding angle with respect to the vertical. The
gravitational force is directed downward and has magnitude mg, where g is the gravitational
acceleration constant. Thus, the force acting in the tangential direction is f; = —mgsin(0)
(The negative sign is because this force is in the negative direction when € is positive and
vice versa). Since this force is mass times acceleration, it follows that

d?s

di?

Now s and @ are related as arc length and central angle in a circle of radius [, i.e.,

s =160. Thus, the second derivative of s is [ times the second derivative of §. That brings us

to our undamped model differential equation with a single dependent variable, the angular
displacement 8:

= —gsin(0).

d?0  gsin(9)
a2 1

Next, to make the model more precise, we can introduce damping to the model. We make

the simplest possible assumption about the damping force, that it is proportional to velocity.
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Since arc length and central angle are themselves proportional (with proportionality constant
[), it makes no difference whether we use linear or angular velocity. Having selected 0 as our
dependent variable, we will represent the damping as proportional to angular velocity, say,
—b(%). The negative sign is because the damping force has to be opposite the direction of
motion. When we include this term in the model, our equation becomes

d?0 n b df n gsin(0)

2747 —0
dt?2  mdt l ’
and with o = @ we have
dt
6=a
b .
P gsm(@)’
m l

which is, in fact, a differential equation set in the form of ordinary differential equation.

Ordinary Differential Equation

Modeling most dynamical systems ends up with a finite number of coupled ordinary differen-
tial equations:

j)l = fl(:l;l,...,xn,ul,...,up,t)
.’i‘Q = f2(.’E1,...,:L‘n,ul,...,up,t)
Tn = fo(T1,00 Tn, UL, ons Up, T,

where #; denotes the derivative of z; with respect to the independent variable ¢, and u; are
specified input variables. We call the variable z1, zs, ...,z, the state variables, that represent
the memory that the dynamical system has of its past. Vector notation is usually used to
write the above equation in a compact form. That is,

(2.3.2) z = f(z,u,t).

Then (2.3.2) is called the state equation, and z and u are referred to as the state variables
and the input respectively. Sometimes, another equation is associated with (2.3.2), i.e.,

(2.3.3) Y= h(.’E,’U,,t),

which defines an output vector that comprises variables of particular interest in the analysis
of the dynamical system, like variables which can be physically measured or variables which
are required to behave in a specified manner. The output equation (2.3.3) with the equation
(2.3.2) together are referred to as the state-space model. Often, the state equation is used
without explicit presence of an input u, that is, the so-called unforced state equation

(2.3.4) & = f(z,1).

Working with an unforced state equation does not necessarily means that the input to
the system is zero. It could be that the input has been specified as a given function of time,
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u = ¢g(t), a given feedback function u = g(z), or both, u = g(¢,z). Substitution of u = ¢ in
(2.3.2) eliminates u and yields an unforced state equation.

Although equation (2.3.2) is a general equation, there are certain phenomena that cannot
be described with it. In fact, the modeling a physical system does not always end up with
an ODE. There are two other important differential equation forms, i.e., partial differential
equations and differential Algebraic Equations that will be discussed in the following sections.

Partial Differential Equation

If in modeling a physical system we have a single independent variable, we may end up with
an ODE, i.e., (2.3.2). But if we have two or more independent variables, we will obtain a
Partial Differential Equation (PDE). A PDE is an equation relating a function of two or more
independent variables and its partial derivatives, such as the following equation

u:m:"'“yy"'uzz:fa

where u is a functions of z, y and z. For example, the distribution of temperature in an iron
bar, heated at its both ends with different heating rates, is a function of time and distance
from the end points. PDEs are used everywhere in science, as they describe phenomena, such
as fluid flow, gravitational fields, and electromagnetic fields. They are important in fields
such as aircraft simulation, computer graphics, and weather prediction. In this thesis PDE’s
are not addressed, so interested readers are referred to e.g., [?, ?].

Differential Algebraic Equations

This is an explicit ODE
z = f(z,t).

A more general form is an implicit ODE

0= F(.’i)’,i[;,t),

where the ‘z—g matrix is assumed to be nonsingular for all argument values in an appropriate
domain. In principal, it is then often possible to solve for  in terms of ¢ and z, obtaining the
explicit ODE form. However, this transformation may not always be numerically easy or cheap
to realize, so in many cases it is preferred to leave the ODE in the implicit form. This form
of differential equation appears in modeling of a physical system involving some constraints
such as conservation laws (mass and energy balance), constitutive equations (equations of
state, pressure drops, heat transfer...), and design constraints (desired operations...). In fact,
modeling a system with constraints usually leads to a sort of ODE’s and some algebraic
equations, i.e.,

0 = g(z,y,1),

where (2.3.5) is the differential part and (2.3.6) is the constraints or the algebraic part of the
DAE. This equation set is also referred to as an ODE with constraints. Here the ODE (2.3.5)
for £ depends on an additional algebraic variable y, and the solution is forced to satisfy the
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algebraic constraints (2.3.6). Consider again the pendulum in Fig. 2.3.2, but instead of 0,
select the bob’s position in Cartesian coordinates as system states. Then Newton’s law for z
and y coordinates are

= M
mi = fz :_jf

. Y
my = -—mg+ fy Zﬂw—jﬁ

where f, and f, are the z and y components of the force and —myg is the additional downward
force due to gravity acting on the pendulum. In addition to equations for Newton’s law, there
is a constraint that the position must sum to the length of the pendulum:

z2 —I—y2 =2

After introducing additional variables u = & and v = ¥ we have

T = u
i = ——f
ml
y = v
b = —g+-f
ml
0 = ®+y* 17

which is composed of four ODEs and an algebraic equation. This is no longer an ODE, it’s
a Differential Algebraic Equation or simply a DAE. In this very simple example of a DAE
system, the change of variables z = ['sin(f) and y = [ cos() allows elimination of f by simply
multiplying the ODE for z by y and the ODE for y by z and subtraction. This yields the
simple ODE

6= —% sin(#),

as we saw in section 2.3.2. Such a simple elimination is usually impossible in more general
situations to obtain an ODE from a DAE. DAEs arise in a variety of applications, such as
constrained mechanical systems, electrical circuits and chemical reaction kinetics. Therefore
their analysis and numerical treatment plays an important role in modern modeling and
simulation. DAEs present analytical and numerical difficulties that are quite different from
those encountered in ODEs [?]. The difference between ODE and DAE is fundamental. In
the following sections, we will start with some definitions and then we will explain some
characteristics of DAEs.

Semi-Explicit vs Fully Implicit DAE

The (2.3.5-2.3.6) equation set where the ODE and the algebraic part are decomposed is a semi-
explicit DAE. In this DAE form, equation (2.3.5) is referred to as the differential equations
and the equation (2.3.6) that is purely algebraic is called the algebraic equations.

If we cast (2.3.5-2.3.6) in the form of an implicit ODE for the unknown vector z = ( :; ) ;

however, we have:

(2.3.7) 0=F(2,2,t),

18



2.3 Hybrid Modeling

where %—I; is no longer nonsingular. This system is called a fully implicit DAE. Note that

if %—5 is non-singular, then it is possible to formally solve 2 for z in order to obtain an ODE.

However, if it is singular, this is no longer possible and the solution z has to satisfy certain
algebraic constraints. As an example, this is an fully implicit DAE:

0 = =z + 43+ sin(ze + 71)
0 = z3—x1 + cos(i2).
DAE Index

DAEs are characterized by their index. Here, the definition of the differential index is given,
as defined by Gear [7].

Definition: The indez of a equation (2.3.7) is m, if m is the smallest number such that the
system of differential equations

F(z,z,t) = 0
dF (i,z,t) 0
dt N

d™F(i,z,t)
dt(m)

can be transformed into an ODE by algebraic manipulations. Obviously, the index of an ODE
is zero. In general, the higher the index, the greater the numerical difficulty one is going to
encounter, when trying to solve the system numerically. Systems with indexes greater than
one are particularly difficult to solve. These are called high index DAEs. The first method for
solving DAEs was proposed by Gear [?, ?]. This is based on a backward difference formula
(BDF method). Several codes have been written to solve DAEs that exploit this method. For
example, LSODI [?], DAssL, and DASKR [?, ?]. These codes are capable of solving DAEs
of index 0 and 1. The direct solution of high index systems, except for some rather specific
forms, however, is not possible using classical numerical methods. Some numerical techniques
are under development for general DAEs, See works by Kunkel and Mehrmann [?, 7, 7, 7]
and Campbell [?, ?, 7, ?, ?]. High index problems are mostly solved by first reducing the
index to 0 or 1, then the resulting system is solved by available solvers.

= 0,

Consistent Initial conditions

One issue which is quite different for DAEs compared to ODEs is the specification of initial
conditions. For ODEs a set of initial conditions uniquely determines a solution. In other
word, we are free to choose all the variables. If the ODE size is N, our degree of freedom
in N. One of the key differences between DAEs and ODEs is that in DAEs not all variables
can freely be initialized. This problem is far from being trivial even if the DAE is a smooth
function. To better understand this issue, consider the following index-2 DAE:

x1 = sin(t)

2.3.
( 38) 1.51:332,
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where the exact solution of (2.3.8) is

x1 = sin(t)
9 = cos(t).

sin(0)
z) = .
(=0)

For this example we do not have any degree of freedom. If integration start from a point
other than this initial condition set, say z;, then the difference between the consistent initial
condition set (z9) and the proposed initial condition (z;) will introduce a constant value
eg = zg — z1 in the local error in the first step of integration. Since the local error will not
vanish but rather approach the value ey when the step-size reduces, the error control strategies
implemented in solvers will fail to meet the error criteria. If the initial conditions do not satisfy
the system equations, in the first step the the numeric solver may fail to converge due to a
large error independent of step size [?].

The initial values of variables i, z and y, denoted by #(0), z(0), and y(0), must satisfy
equation (2.3.7) at time ¢ = 0:

So the initial conditions should be

f(#(0),2(0),4(0),0) =0.

If they do so, then the initial values are consistent. But it is not always enough, a further
property of DAEs is that the initial values may have to satisfy additional algebraic constraints.
These are hidden constraints that are not explicitly present in the original DAEs. This is
particularly true for high index DAEs. These conditions can be revealed by executing the m
differentiations in (2.3.8) [?]. In this way, however, all equations are differentiated, possibly
unnecessarily. Pantelides proposes an algorithm [?] to identify the subset of the equations that
must be differentiated in order to reveal such hidden constraints. In the preceding example
(2.3.8), differentiating the first equation yields

z9 = cos(t),

this means, in addition to constraint x1(t) = sin(¢), that there is also a hidden constraint
z9(t) = cos(t), which the solution must satisfy at any point ¢, so the only consistent initial
conditions are z1(0) = 0, z2(0) =1, [?].

Differential vs Algebraic Variables

Another important definition in DAE theory is the differential and algebraic variables. For
the semi-explicit index-1 and fully implicit index-1 DAEs, we can distinguish between differ-
ential variables and algebraic variables. Variables whose derivatives appear in DAE are called
differential variables and the other variables are algebraic, i.e z in (2.3.5) is differential and
y in (2.3.6) is algebraic. The algebraic variables may be less smooth than the differential
variables by one derivative (e.g., the algebraic variable may be non-differentiable) [?].

The computation of consistent initial conditions of a DAE requires a classification of its
state’s components. Suppose an index one DAE is in semi-explicit form, that is, it is in the
form:
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(2.3.9) { f(@&zy) =0

g(z,y) =0,

where ‘%‘ # 0 and
computation of a consistent initial condition consists of finding the initial values of y and z.
The initial value of g is not needed because it does not appear in the Jacobian and is not
really needed to compute the estimate for the next value of y since a small step is used. In
developing initialization for DASKR it was found that the solution was insensitive to the value
of y and a value of y(tg) = 0 was found to work well [?, ?].

In this case, ¢ and y are called respectively the differential and algebraic variables or
states. x is called differential because & appears explicitly in the system, similarly y is called
algebraic because 3 does not appear explicitly. In the general index one case, the situation
is somewhat more complex and the notions of differential and algebraic cannot be used in
exactly the same way. Consider for example the following DAE:

{¢+y:0

z=1.

g—z‘ # 0. Then the initial z is free and must be supplied and the

If we apply the above definitions, z and y would both be differential. However, clearly the
initial condition of z is not free in contrast to that of y. In this case, there are two options:
we can consider both states as differential providing =z and y and asking Scicos to compute
consistent  and ¢, or provide y and ask Scicos to find consistent x (which of course in this
case is clearly equal to one). In the first option, it is up to the user to make sure that they
furnish a consistent (z,y). On the other hand, in the second option, the part of the state that
needs to be furnished is not always uniquely defined. Consider for example:

T+y=0
z—y=1

In this example both x and y can be freely initialized but not simultaneously. Note that in
all cases, the system equations do not characterize completely # and ¢. In the above example
the only equation characterizing them is £ + ¢ = 0. It turns out, however, in this example
that the solver does not need them as long as it has a pair of # and y satisfying the system
equations. The reason is that this system is linear in the derivative so that the Jacobian
depends only on the value of © + 3. After one step we have z(t;) — y(t;) =1 for i = 0,1 and
we pick up the additional information needed to get unique estimates for £ and y. In this
thesis, we do not treat these special cases, and we assume that all DAE are in the form of
(2.3.9). Hence, variables whose derivative appears in the DAE are called differential variables
and the rest are called algebraic variables.

Discontinuity in ODE/DAE

The functions f in (2.3.2), and F in (2.3.7) are allowed to be discontinuous at a countable
number of discrete-time points, called the discontinuity points [?]. These discontinuity points
may be caused by the discontinuity of input signal u, or by an intrinsic property of the
ODE/DAE functions. In theory, the solutions at these discontinuous points are not well
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defined. But the left and right limits at these points are. So instead of solving the ODE/DAE
at those points, we would actually try to find the left and right limit. A discontinuity point
may be known beforehand, in which case it is called a predictable discontinuity. For example,
for a square wave signal source, we can predict its next flip time. This information can be used
to control the discretization of time. A discontinuity point can also be unpredictable, which
means it is unknown until the time it occurs. An example is a system whose functionality is
varied when an input signal crosses a threshold. In the first case, integration can be carried
out until the left limit of the discontinuity point, but in the latter case, the discontinuity
point should be found and then integrate until its left limit. This means there is more work
to do to handle this kind of discontinuity.

2.3.3 Discrete-Time and Continuous-Time System Interaction

Hybrid systems arise from the interaction between continuous-time systems (i.e., systems
that can be described by a system of differential equations) and discrete-time systems (i.e.,
asynchronous systems where the state transitions are initiated by events. In a hybrid system
composed of continuous-time and discrete-time sub-systems, each sub-system can interact
with the other, see Fig. 2.3.3.

Continuous
system

A

Common

Model Change Event Trigger

variables

Y
Discrete
system

Figure 2.3.3: Continuous-Time and discrete-time parts interaction in a hybrid system.

The discrete-time components influence the continuous-time behavior by changing the
values of the continuous-time variables by discrete-time actions. This can be accomplished in
the following ways:

e A discrete-time variable used in a differential equation is changed. As a consequence,
all the continuous-time variables that depend on this value are changed implicitly. As
a result we may have a discontinuity.

e One set of equations is replaced by another set. We assume that the number of states
remains the same. In this case we may have a discontinuity as well.

In the same way, a continuous-time sub-system can influence the discrete-time behavior
in the following ways:

e The value of a continuous-time variable is used in a discrete-time action.

e A boolean condition that depends on the values of some continuous-time variables be-
comes true and triggers a discrete-time action.
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Discrete-time and continuous-time systems have distinct types of signals. For continuous-
time systems, all output signals are continuous-time waveforms, while for discrete-time sys-
tems, the activation signals are discrete-time and the output signals are piecewise continuous.
When putting together these two domains, the signals at the boundaries must be treated
carefully. A Zero-Order Hold (ZOH) converts discrete-time into a continuous waveform to
have a value at the time points where no events occur. Zero-order hold’s output is a piecewise
constant function.

The discrete-time part is activated by events that may come from several sources such as
intervention by human operators or from input control or may be programed to be generated
autonomously. They are called control switches and autonomous jumps [?, ?]. There are
two event types that are more important. They are events that occur at a given time, i.e.,
a time-event, and those who appear when a variable reaches a certain threshold value, i.e., a
state event. The continuous-time part can make a change in the discrete-time part only if it
generates a state event.

Time-Events

Time-events occur at a specified future time that is known when the event is scheduled, such
as the sampling-time of a discrete-time controller. Time-events are most easy to handle as
they may be specified directly before the simulation begins. The integration thereby may be
stopped and restarted exactly at the possible discontinuity point. An example is a process
where an operator resets a valve opening at a specified time.

Zero-crossing Event

It is possible that a hybrid system have several possible configurations whereby in each config-
uration the behavior of the system is described by a system of differential equations. Such a
system switches from one configuration to another based on a condition. This condition may
depend on the input control of the system (such as human operators intervention), or may
depend on system states [?, ?]. For instance, in [?] several flight modes of a helicopter such
as Howver, Cruise, Acc/AH, Dec/AH, Climb, and Descend, where AH and Acc stands for ” Al-
titude Hold”, and ” Acceleration” respectively, have been represented. Each mode represents
a different configuration of operation of the helicopter that correspond to different variables
and differential equation set in the system dynamic, see Fig. 2.3.4.

Descend

Figure 2.3.4: Helicopter flight mode switches.
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In this example, the switching between configurations is done by the pilot, i.e., by input
control. There are, however, systems for which switching between configurations is automatic
or inherent in the system. Consider, for example, the constrained pendulum of Fig. 2.3.5,
where a pin is placed at (r = 0,y = H), to constrain the string’s movement. The bob
trajectory changes at § = 6y, and another equation set should be used for the trajectory of
the bob.

Figure 2.3.5: Constrained pendulum.

For this system, it is no longer possible to define the whole trajectory with a single
differential equation set. In this case it should be defined as follows:

0 fi(@,z,u,t) if 0> 6
N fo(z,z,u,t) if 6 < 6.

This is an example of a system with two configuration or two modes.

A transition between two modes occurs when some conditions on the continuous-time state
are fulfilled (e.g., a temperature reaches a threshold and implements the discrete-time state
change of turning off a heater). Thus the timing of transition is a function of the solution of
the differential equations governing the system. The transition time is given by a transition
condition:

g('i"x,u’ t) > 0’

where z is the continuous-time state vector and u is the input, and ¢ is the time. Whenever
g(.) crosses zero, this condition switches its logical value. An event is defined as the earliest
time at which one of the currently pending transition conditions becomes true. This event
is a so called zero-crossing event or state-event in contrast with the events that whose
activation time are known in advance, i.e., they depend only on time (time-event).

Zero-crossing events are the mechanism whereby the state of the continuous-time sub-
system influences the discrete-time subsystem. Zero-crossing events which are dependent on
state variables of the system are more difficult to handle accurately in time than the time-
events. To locate the instant in time where the discontinuity appears, an additional function
is introduced i.e., a zero-crossing function, which changes its sign at the discontinuity. By
calculating the value of this function, it is possible to detect the discontinuity. This function
is also called the zero-crossings surface or root function.
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2.4 Hybrid System Simulation

A hybrid system is composed of discrete-time components and continuous-time components,
and a hybrid signal looks like the plot in Fig. 2.2.3 where at discrete-time times, or simply
at events, the discrete-time part is activated and their state values remain unchanged until
the next event arrives. Between every two discrete-time, a differential equation defines the
system behavior.

To=start time

T, —final time Event times at ¢;

i=0,1,...,n
1=0
End time test
YES
t; > T,
NO End

Y

Differential equation
numerical solver

t; — tit1

Zero crossing test

State event
programming

Y \i

Discrete event activation
at t;41 or i,

t=1+1

Figure 2.4.1: Basic hybrid system simulator.

As a result, the simulation is composed of two interlaced phases, continuous-time-phase
and discrete-time-phase. In discrete-time phase, several events may be activated, but the sim-
ulation time does not advance. In continuous-time phase, a numerical integrator (numerical
solver) integrates the active differential equation and the simulation time is advanced. The
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diagram in Fig. 2.4.1 shows a simple architecture for a hybrid system simulator.

In continuous-time phase, depending on the nature of the differential equation an ODE
solver or a DAE solver is called. To integrate a differential equation, there are several nu-
merical method such as explicit Euler, implicit Euler, Runge-Kutta, BDF, etc. In the next
section, a BDF method for numerical integration and then DASKR which is a numerical solver
based on BDF will be introduced.

2.4.1 BDF Based Solvers

Simulating continuous-time systems requires solving the initial value ODE/DAE problems
numerically. A widely used class of algorithms, called time-marching algorithms, discretizes
the continuous-time-line into an increasing set of discrete-time instants, and numerically com-
putes state variable values at these time instants in increasing order. The discretization of
time reflects the trade-off between speed and accuracy of a simulation, and is handled based
on the error tolerance of the solutions and the order of the algorithms.

There are several integration methods, such as one-step methods (e.g., the simple explicit
Euler and Runge-kutta) and multi-step methods (e.g., the BDF method). BDF (Backward
Differentiation Formula) methods are implicit linear multi-step methods that depend on mul-
tiple previous solution points to generate a new approximate solution point. The BDF method
of order 1, is the implicit Euler method, i.e., to integrate £ = f(x,t), the DAE is discretized
as
il?n—’:lil“n = f(Tnt1,tn+1),

n+1
and is solved for znp4+1. In a BDF method of order n, the solution is advanced at each
step by interpolating n previous solution points along with the as yet unknown new solu-
tion point, differentiating that interpolant, and requiring the derivative to match the ODE
at the new point. Specifically, for an ODE & = f(z,¢) and approximate solution points
(tk—nt1> Tk—nt1), - (tk, Tk ), the approximate solution value zy 1 at time tx 1 = tx + hy is
determined by solving the implicit equation 1w (tgy1) = f(tk+1, Tkr1) for k1 where w(t) is
the unique polynomial of degree n that interpolates (tx—n11, Tr—nt1), - (tk> Tk )s (tkt1, Thr1)-
BDF methods have relatively large stability regions, so they are particularly suitable for
solving stiff ODEs. The stability region decreases as order increases.

BDF method has been used for ODEs successfully, for DAEs certain precautions should be
taken into account. The basic idea for solving DAE systems using numerical ODE methods,
originating with Gear [?] is to replace the derivative in (2.4.1) by a difference approximation,
and then to solve the resulting system for the solution at the current time ¢, 1 using Newton’s
method. Suppose the DAE is

(2.4.1) F(&,z,t) =0,

replacing the derivative in (2.4.1) by the first order backward difference, we obtain the implicit
Euler formula

Tptl — Tn
(2.4.2) F (%amn+latn+l) =0,
n+

where h,y1 = t,41 — t,. This nonlinear system is then usually solved using some variant of
Newton’s method for x,1 at t,41, for example,
Tp'y1 — Tn

m+1 __ —1 m
Tty =Ty —dJ F < ,wn+1,tn+1> ,

hn+1
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where m is the iteration index, and the Jacobian matrix J is defined as

1 0F OF

In some numerical solvers such as DASKR and LSODAR, the k" backward difference formula
is used, where k may range from 1 to 5. The step-size h,, and the order k varies, depending
on the behavior of the solution. The k-step BDF method on the n** integration step can be

represented as
k

Z O Tygiqj—k = hpy1 Br Tnya,

§=0
where the past values of z, (:vn_|_1_|_j_k ,j = 0,... ,k—1) are known. This equation may be
re-arranged to give:

. 1 i
Tn+1 = m Q Tp1 + Z Qj Tn+l1+j—k | »
7=0
which can be rewritten as
1
hn+1 /Bk:

where p(k,n + 1) is the collection of terms in the previous step. Substituting this into the
(2.4.1), yields

Tpy1 = (ag Tpy1 + p(k,n+ 1)),

1
F (7 (Otk; Tpi1 + p(k,n + 1)) 7$n+1atn+1> =0,
hn+1 B

This equation is then solved for z,+1. As the step-size varies, computed past values of z
may be unequally spaced, whereas in the above formula, equally spaced past values are used.
This problem is solved using the fixed leading-coefficient strategy. The Jacobian Matrix that
should be provided is

b oF OF
= xXx— _—
or 0Oz’
where a = hak is given by the solver. The Jacobian matrix either can be provided by the
nMk

user or can be computed numerically.

Continuity Criteria for Numerical Solvers

During a simulation of a dynamic system, an equation or its derivatives may be discontinuous
at a discrete value of the independent variable (at an event time). In such a situation special
care has to be taken. Since the BDF methods are based on polynomial backward time-
expansions of each variable, beyond a discontinuity point, a BDF method normally results in
repeated step failure and reduction of the integration step-size to obtain a coherent derivative
and to meet the accuracy requirements. For some problems the solver gives up with an error
message when the step gets too small, and in some other cases the solver may continue with
an erroneous result [?].

Numerical solvers cannot integrate discontinuous functions, but some numerical solvers,
however, can integrate functions with discontinuous first derivatives. Although this is with

27



Review and Theoretical Background

a cost of low order and small step-sizes. As a result, simulation slows down in the vicinity
of the discontinuities. Numerical solvers assume that input signals and their derivatives are
continuous. So a simulator should provide the solver a smooth function and prevent the solver
from attempting to integrate through discontinuities. In case of discontinuity, the solver must
be restarted at the discontinuity point.

Continuity Assumption at Initialization

Differential variables typically represent conserved quantities like mass, energy, entropy or
other quantities that are closely related to conserved ones. These quantities are conserved in
closed physical systems; only external actions change them. Mostly, their initial value can
be freely chosen, so that they represent degrees of freedom. The values of the differential
variables can be freely chosen at the beginning of the simulation. Note that the value of
a differential variable cannot be freely chosen if it is a dependent variable and/or there are
hidden constraints in the equations. After an event or a discontinuity, by default, whose values
are assumed to be continuous before and after the discrete-time. Suppose that the consistent
initial conditions of (2.4.3) after a discontinuity at ¢; should be calculated. Suppose we have
the DAE

(2.4.3) f@(t), z(tk), y(tk), tk) = 0.

Let z(t, ) and z(t;) denote the differential states (2.4.3) just before and just after an
event, respectively. Then the default continuity assumption holds

(2.4.4) z(t)) = z(ty).

In other words, in an initialization phase when solving (2.4.3), z is constant (equal to
z(t, ) by defalut). Note, that in the continuity assumption of differential variables (2.4.4)
does not preclude the possibility of modeling instantaneous changes to them. For instance,
the model of a bouncing ball is

Yy = v

Vo= -9,
where y and v are vertical position and vertical velocity correspondingly. Although both are
differential states, the velocity state is changed at a discontinuity point, i.e., v(t{) = —pv(ty )-
In most models such a change denotes an interaction with the model environment. For
example, some substance is added to a chemical process or charge is added to an electrical
circuit by closing a switch.

Role of Derivative in Initialization

In DAE initializations, state derivatives play an important role that will be discussed here. A
general DAE takes the form F(z,z,t) = 0. Initialization at time ¢, requires values of z(ty),
and Z(tp). In subsequent steps the unknowns are only the next value of x and predictions
are based on past values of z. In Jacobian evaluation, the % is estimated from a combination
of state values. Thus the estimated value of i(tg) has three uses. The first is to evaluate
the Jacobian during the initialization. Secondly it will continue to be used for the Jacobian
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evaluation until the first time the Jacobian is updated. After that it will have no direct effect.
One of the advantages of implicit methods like DASKR and other BDF based methods is that
it is not necessary to have the exact Jacobian and Jacobians are kept as long as the Newton
iterations converge fast enough at each time step.

There is a third role of %(tg), that is the value of z(¢y) determines which solution the
integrator will track. Consider the implicit ODE

tan(z) =0, to=0.

There are an infinite number of families of solutions of the form of z(t) = z(0) + nnt for each
n=0,1,.... It is the value of Z(ty) = nm which determines which solution the simulation will
track. It does this by generating the estimate of #(¢1) which is found to be nw. After finding
z(t1), we have two values of z(t) = z(0) + nnt and further initial guesses of z(¢;) will again
be nm.

2.4.2 DaAssL Family of Solvers

DAssL is a multi-step, implicit solver developed for large systems of stiff ODEs and fully-
implicit index-1 and semi-explicit index-2 DAEs [?]. DASKR is a new version of DASSL,
DASPK and DASRT(DASSL with root finder) that performs root finding and also solving the
initial state problem [?, 7, 7, ?].

These solvers are widely used in many industrial and military applications. DASXX is
available from NETLIB! as part of the ODEPACK. DASXX can be obtained as either a serial
(Fortran 77) or parallel (Fortran 90) subroutine. This solver implements the multi-step BDF
of orders 1-5. The formula order and step-size are selected adaptively to maintain stability
and efficiency. The code includes many diagnostic features and user-defined arguments for
customizing and optimizing routines in the code for a particular application. The potential
strength of this method lies in the ability to take larger, stable time steps (yielding fewer
iterations) for a level of accuracy comparable to other methods.

DASSL requires two user-provided subroutines: a residual routine in which the system of
DAE’s is defined; and a root-finding routine in which the zero-crossing surfaces are defined
(for DASRT and DASKR). DASSL should be called by a calling routine in which the initial
conditions (except for DASKR) and control parameters are defined. Runtime parameters
(some are optional) include maximum step size, matrix banding, maximum order, and the
absolute and relative error tolerances. Outputs from DASSL include reports on the order of
the method, step size of the last successful step, number of residual evaluations, number of
Jacobian evaluations, and number of convergence test failures.

In this chapter, these solvers, their advantages and their shortcomings with emphasis on
their impact on hybrid simulation will be discussed.

In the next sections, several aspects of DASSL/DASKR that are relevant to its integra-
tion and use in a hybrid simulator are discussed. These are step-size selection, convergence
and accuracy, discontinuity handling, root finding, consistent initial condition finding, and
condition number improving. Many practical tips about the use of DASSL can be found in

[7].

1

www.netlib.org
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Some Definitions Used in DAsSL family

Current step size: The step-size that is used in the current integration step.

Suggested next step-size: DASSL has an error control capability and the integrators
is able to predict an estimation for the next step size based on the local error of the
current step. Suggested next step-size value is the minimum of all the predictions from
the integrators.

Initial step size: This is the step-size that the user specifies as the desired starting
step size. For fixed step-size solvers, this step-size will be used in all iterations, But for
DaAssL, this is only a reference.

Minimum step size: The lower bound for adjusting step-sizes. If this step-size is used
and the errors are still not tolerable, the step is considered failed, and the simulation
aborts.

Minimum time resolution: This controls the comparison of time. Since the simulator
works with double-precision real numbers, it is sometime impossible to reach or step
at a specific time point. If two time points are within this resolution, then they are
considered identical.

Value resolution: This is used in the fixed point iterations. If in two successive
iterations the states are within this amount, then the fixed point is considered reached.

Maximum number of iteration by step: This is used to avoid the infinite loops
in the fixed point iterations. If the number of iterations exceed this value but the
fixed point is still not found, then the fixed point procedure is considered failed. The
simulation then aborts.

Info vector: This is an integer array used to communicate details of how the solution
is to be carried out, such as tolerance type, matrix structure, step-size and order limits,
and choice of nonlinear system method.

Rwork, Iwork vector: Real and integer work arrays which provide the code with
needed storage space. These arrays are also used to provide the necessary information
to code quantities such as minimum step-size, maximum integration order, etc.

IDID variable: This scalar integer is an indicator reporting what the code did on
return. It should be monitored to decide what action to take next.

Zero-Crossing and Discontinuity Handling

The objective of state event modeling is to circumvent attempts by the numerical integration
code to integrate across sudden changes (that is, instantaneous changes of state values in
system equations) in the system. Usually such attempts cause the local error criterion of
the integration algorithm to fail or have convergence difficulties. These problems are most
acute when the time the event occurs is not known a priori. If state events are handled
properly, observe that they do not disturb the numerical integration of the continuous-time
system because they are handled outside of the integrators. To detect and handle the state
events a transition condition should be checked. The transition condition becomes true if its
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associated function crosses zero. That is why the transition associated function is also called
zero-crossing function.

Most modern numerical solvers, including DASKR/LSODAR, are able to find the point
where the zero-crossing function crosses zero to high accuracy. Then the solver returns to
the calling program, and then the associated state-event can be generated. Besides the use of
zero-crossing functions to generate the state-events, another important functionality of zero-
crossing is handling the discontinuities in ODE/DAEs. If an ODE/DAE function contains an
inherent discontinuity, at discontinuity points the derivatives of the signals are not defined,
so the integration formula is not applicable. That means the discontinuity points cannot be
crossed by one integration step. In particular, suppose the current time is ¢t and the intended
next time point is ¢t + h. If there is a breakpoint at ¢ + §, where § < h, then the next step-
size should be reduced to ¢ + §. For a predictable breakpoint, like a time-event, the main
program (simulator) can adjust the step size accordingly before starting an integration step.
However, for an unpredictable discontinuity, the simulator should be able to discard its last
step and restart with a smaller step-size to locate the actual discontinuity. Most of the time,
discontinuities are defined with transition condition or zero-crossing function. As a result,
they can be detected like state-events.

To use DASKR/LSODAR as an event detector, the number of crossing functions, as well as
the name of an external routine to compute the crossing-functions values should be provided.

Algebraic and Differential Variable Declaration

The equations solved by DASKR are in the form
F(i,z,t) =0,

where z, z are N dimensional vectors and F' is a vector valued function. Note that no distinc-
tion is made between differential and algebraic variables because DASSL/DASKR implements
a backward differentiation formula (BDF) method. But in DASKR there are two new options
to help the use to find the consistent initial condition and exclude the algebraic variables
from the error test. For these options, DASKR should be informed about the differential and
algebraic variables. This is done via initializing Iwork (Lid+I) before running DASKR (Lid is
an address index). To identify which variables are the differential and which are the algebraic
components (algebraic components are components whose derivatives do not appear explicitly
in the function F (%, z,t)). The user must set:

e Iwork(Lid+I) = +1 if z(¢) is a differential variable

e Twork(Lid+I)

-1 if (%) is an algebraic variable,

Consistent Initial Calculation

When using either of the solvers DASSL or DASPK, the integration must be started with a
consistent set of initial conditions. Consistency requires, in particular, that F(Zg, zg,%9) = 0.
Usually, not all of the components of z; and zy are known directly from the original problem
specification. The problem of finding consistent initial values can be a challenging task.
DASKR, the latest version of DASSL, provides the facility to compute the initial condition of
index-1 DAE, in two cases. Let

0= F(2,2,t),
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where z = ( z ) and z and y are differential and algebraic variables respectively. Then the
two cases are:

e 7 is considered as known and y and £ are calculated.

e Z is considered as known and z is calculated.

ov

case, — should be non-singular. In most models of industrial systems the default continuity

oF
In the first case, if v = ( Z ), then — should be square and nonsingular. In the second

assump%ion together with the set of valid DAEs can uniquely define the initial condition, i.e.,
the differential variables are assumed to be known, so the first initialization method will be
able to find the unknown part of initial states. However, there are cases when the default
continuity assumption does not hold for some of the differential variables. The most common
situation is when a process is initialized to its steady-state. Steady-state initialization is
possible by using the second initialization method and assigning 2 = 0. This problem does
not involve a split of the z vector into differential and algebraic parts or a semi-explicit form
for the equations.

DASKR has an integer array argument Info which is used to specify a variety of options.
In the latest version of DASKR, the user is to set Info(11) to have DASKR solve one of the
two initialization problems [?].

e Info(11)

0 means initial values are already consistent (the default).

e Info(11) = 1 means solve the first initialization problem. In this case, the user must
identify the differential and algebraic components of z.

Some times, specially when system initialization is not just finding the consistent initial
condition, we need to return to the main program after the initial condition calculation, before
proceeding to the integration of the DAE of the system. This possibility has been introduced
in DASKR, i.e., DASKR is called with INFO(11)=1, and if the initialization succeeded, it returns
with IDID = 4 indicating successful initialization. For the next call or start integration, the
user should reset INFO(14) to O to prevent the solver from repeating the initialization (and
to avoid an infinite loop).

Step-Size and Order Selection

In order to initiate the BDF method, it is required to obtain a number of solution points
equal to the order of the method. This may be done either by using a lower order multi-step
method with the drawback of smaller step sizes or by using single-step methods with the
drawback of having to implement these separately. In DASSL the first possibility has been
used by implementing an increasing order BDF which works well due to the variable step size
method. On the first step, DASSL takes the first order BDF formula, and a small step. The
initial step-size is calculated from the formula

) ; _ 1.,
ho = sign(Tous — T) - min(1072 [Ty — T, §||w|| b.

After the first step, the order and the step-size are gradually increased. DASSL uses the
order and step-size selection strategy described in [?]. At each step, the order and the step-size
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of the next step is determined. When the step-size is increased, it is increased by factor of 2,
when it is decreased it is decreased by a factor between 0.9 and 0.25. The default maximum
order is 5, however it can be modified by the user. In stiff region, the step-size reduces to
meet the accuracy requirement, but it cannot become less than h,,;, which is calculated from

hmin = 4.0 u max(|t], [tout|),

where u is the unit round of error of the computer (for a double precision floating point
numbers to represent reals, u = 27°2 so that u = 10716), ¢ is the current integration time,
and t,,; is the user requested output point. The simulator takes the minimum step-size
into consideration. If the next discrete-time phase is closer to the current time than the
minimum step-size, then the simulation time is not advanced, and the next discrete-time
phase is scheduled at the current time.

Accuracy, Error Tolerances

The true (global) error is the difference between the true solution of the initial value problem
and the computed approximation. Practically all present day codes, including DASSL, control
the local error at each step and do not attempt to control the global error directly. Usually,
but not always, the true accuracy of the computed z is comparable to the error tolerances.
DAssL will usually, but not always, deliver a more accurate solution if the user reduces the
tolerances and integrates again. By comparing two such solutions the user can get a fairly
reliable idea of the true error in the solution at the looser tolerances.

In DASSL it is possible to control the error and reach a desired accuracy. It is quite useful
to be able trade off simulation time for accuracy. The requested accuracy in the solution
is specified by the error tolerances Rtol and Atol. Rtol and Atol represent absolute and
relative error tolerances (on local error) which the user provides to indicate how accurately
user wishes the solution to be computed. Each variable should have a distinct tolerance
because they may have a different magnitude and accuracy. So Rtol and Atol should be
defined as vector. In DASSL it is possible to define scaler (one tolerance for all variables) as
well as a vectorial tolerances. The tolerances are used by the code in a local error test at each
step which requires roughly that

||Local error in z;|| < Rtol *|z;| + Atol,

for each vector component. More specifically, a root-mean-square norm is used to measure
the size of vectors, and the error test uses the magnitude of the solution at the beginning of
the step.

Setting (Atol=0) results in a pure relative error test on that component. Setting (Rtol=0).
results in a pure absolute error test on that component. A mixed test with non-zero Rtol
and Atol corresponds roughly to a relative error test when the solution component is much
bigger than Atol and to an absolute error test when the solution component is smaller than
the threshold Atol. DASSL will not attempt to compute a solution at an accuracy that is
unreasonable for the machine being used. It warns the user if too much accuracy has been
requested.

Cold/Hot-Start of Solver

There are two methods for initializing DASSL: a cold-start and a hot-start. A cold start is
the first call to DASSL for a given problem. In this case, many cumbersome memory setting
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is done, then as there is no memory about the solution, a very small step-size and a first
order method should be used at the beginning. A hot start, on the other hand, is a call to
the solver that is not the first call for the given problem. In this case, assuming no change in
problem or discontinuity, the solver does not performs the memory settings and can use all
past information about solution. In this case the solver can start integration with previous
[big] order and [long] step-size. This makes the hot-start much more efficient than a cold
start. It should be noted that, if there is any change in model or any discontinuity in the
solution, solution history before discontinuity or model change are useless in approximating
the derivative of z after the discontinuity. The solver should resolve the new initial conditions
and start the solving process as if it is at the starting point, i.e., it should be cold-restarted.

Forward Looking in Time (Tstop)

An important property of LSODAR and DASKR is the possibility to set constraints on the
solver. For example, constraints on the relative and absolute error tolerances can be imposed
globally or on each state variable separately. A time constraint can be imposed to forbid the
solver to advance the time beyond a given time called the stopping time. Normally the solver
is allowed to step beyond the final integration time and return the value at the final time by
interpolation. This increases the efficiency when the integration is restarted.

Consider a situation where the user wants to integrate a DAE from ¢y to ¢ and many
intermediate output points are required. It is not efficient to run DASSL from one output
point to the next one and then return to the main program to print the output points, even
if DAsSL is called with a hot-start option. To handle this situation efficiently, DASSL may
integrate past the output points and interpolate back to obtain the results at output points.
This increase the efficiency, but sometimes it is not possible to integrate beyond some point
ts because the equation changes there or simply because the solution or its derivative is not
defined past ;.

To overcome this obstacle, DASSL has another important property, i.e., the possibility to
set a time constraint on the solver. Time constraint can be imposed to forbid the solver to
advance time beyond a given time called the stopping time. This stopping time (Tstop) can
be set via Info(4).

e Info(4) = 0: There is no restriction on time.

e Info(4) = 1: The integration should be carried out with restrictions on the indepen-
dent variable(time). In this case, the Tstop is given by setting Rwork(1) = Tstop.

Jacobian Matrix Calculation

In section 2.4.1, we saw that in order to integrate the DAE

F(z,z,t) =0,
DASSL needs the Jacobian matrix
oF OF
J = —_— e
@) =% * o

where « is a scaler given by the solver. An analytical expression of the Jacobian obtained
through symbolic computation is more accurate and leads to better simulation performance.
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So if the system description is available symbolically, Jacobian evaluation by symbolic ma-
nipulation should be performed if possible. There are situations, however, where symbolic
information is not available or practical. This happens in many situations such as when the
dynamics of the system is defined by black box computer programs.Furthermore, for small
and/or simple systems of equations, it may be possible to write out manually the analytical
Jacobian of F. For even moderately sized problems, however, it may be next to impossible
(e.g., for n=10, the full Jacobian contains 100 elements). In these cases, we will need to
compute the Jacobian numerically, i.e., we will perform a numerical differentiation. As an
aside, it should be mentioned that large scale analytical differentiation can be performed using
symbolic math packages such as MAPLE or MATHEMATICA. But for certain Scicos blocks we
can only evaluate the function and we do not have access to their analytic derivatives, so it
is not a good solution.

A convenient technique for computing the J(z) is to use difference approximation at x
that can be performed by finite differencing, i.e., we make a small perturbation to one of
the z elements (keeping the others constant), evaluate the function, and use the difference in
function value over the perturbation as a measure of the differential with respect to this z
element. If o; is the size of the j’th perturbation and e; is the unit vector with one in the
j'th element and zero elsewhere, then the Jacobian elements at x, are calculated as

F e;)—F
(@ntoje) = Flan) |

(2.4.5) J(zy) = Dj =

gj

where D; is the 4% column of J.
In DASSL/LSODAR, the Jacobian matrix can be either provided by the user or computed
numerically by DASSL.

e Info(5) = 0: The Jacobian is computed automatically by DASSL via difference ap-
proximation

e Info(5) = 1: DASSL uses the provided Jacobian matrix

Condition Number Improvement

Consider a linear system of equations
Az =D

where A is a square matrix. Here we look at effect of round-off error or error, in general, in
b on the stability of solutions. By stability, we are interested in how the solution x changes
when a small change or error is made in b. We say that the solution is stable if a small error
in the data leads to a small error in the solution. Let us first derive some relationship between
the perturbation of the data and resulting change in the solution. Consider a perturbation of
the right hand side of the above equation, i.e.,

Az + 0z) = b+ 6b = dz = A '6b,
and using some suitable norms we get

l6z]] < A - [|ab].
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Also since
1ol = [[Az]| < [|A]} - ||z]] = Tl ” <4 ”||b||
multiplying the previous two equations we get
19z]] 1,10l
o < Al AT T
]~ I8l

This equation gives an upper limit to the error in the solution in terms of the er-
ror/perturbation in b. What makes this important is that the inequality is strict, i.e., there
exist b and db for which equality holds. The quantity

K(A) = [lA]l - [ A7),

is called the condition number of matrix A. The condition number shows how much the
round-off error is magnified and appears in the solution. If the condition number of the
Jacobian matrix is large, then there is a possibility of a large error in the solution. This
problem shows up in the solution of index-1 and more seriously for index-2 DAE systems. In
DAE integration, a linear system is solved at each Newton iteration. For explicit ODE, as
hyn — 0, the Jacobian matrix tends to the identity. For index-p DAEs, the condition number
of the Jacobian matrix is O(h,”). To illustrate this, consider the backward Euler method
applied to the following semi-explicit index-1 DAE

& = [flzy1)
0 = g(z,y,t).
The Jacobian matrix is
J = ( al = fz —fy >’
—Jz —Gy,
where « is proportional to —. The condition number of this matrix is O(a). For big «

(small hy), this can lead to fallure of the Newton iteration. However, scaling can improve
the situation. In this case, multiplying the algebraic equation by « yields a Jacobian matrix
whose condition number no longer depends on « in this way.

Note that multiplying the differential equations by o' does not help, because it affects
the accuracy. The termination criteria of iteration in the solver is based on the size of the
error in residual. If the differential equations are multiplied by h,, then the solver may meet
the tolerances without really having an accurate enough solution.

In DASKR, this new option has been introduced to increase the accuracy and convergence.
In the calling sequence of the external routine that reads the residuals, DASKR provides the
scalar a. If the user can distinguish the differential and algebraic equations, multiplying
algebraic ones by « can help in some stiff situations.

2.4.3 DassL Family Shortcomings

Hybrid systems have some features, that the user should to be aware of. For complex physical
systems, often end up with an ordinary differential equation. As a result, a numerical differ-
ential equation solver should be used to solve it. The solver introduces numerical inaccuracy
in the results, which might even lead to incorrect behavior. The solver has requirements that

36



2.4 Hybrid System Simulation

have to be fulfilled; some of them are not checked by the compiler, so that the user has to
take care of them. In the following section several shortcomings of DASKR/LSODAR that we
encountered during simulation of some thermo hydraulic applications will be explained.

Zero-Crossing Starting Around Zero

DASKR can be used to detect state events. For example, a conditional statement like z > 1,
is delivered to DASKR as a zero-crossing function g(x) = x — 1. The problem is that DASKR
sometimes did not find the root, especially if g(z) is zero or around zero at the beginning of
the integration step. For instance, in the above example if we start the solver when z is very
close to 1, say 1 — 1079, and % is positive, the solver often fails to detect the zero.

Zero-Crossing and Time Derivative of Variables

In some applications, a state event depends on the derivative of a state variable. In DASKR
Zero-crossing statements could not contain a time derivative of a variable. For instance,

0 = F(dzt)
Gzc = 9(3.7),

where G, is the vector of zero-crossing functions, was not acceptable for DASKR. Note that,
if the z is a differential variable, in theory it is possible to substitute £ with a function of other
variable. But if it is a algebraic variable, it is no longer possible. Since, in the latter case,
introducing a new variable for the time derivative of variable will increase the DAE index by
1.

Zero-Crossing Direction

In some hybrid system applications, there are situations where the crossing-time of the zero-
crossing is not enough; it is also important to know in which direction the crossing has
occurred. LSODAR/DASKR did not provide this information.

Zero-Sticking

Zero-crossings are not just used to generate state-events in order to communicate with the
discrete-time part of the model. In most cases zero-crossings are used to properly control the
solver to simulate non-smooth continuous-time dynamics. In some hybrid applications, it can
very well happen that a zero-crossing function remains at zero over a period of time. This
means, from the solver point of view, that one of the zero-crossings is stuck on the value zero.
This situation is not properly dealt with in the solvers and, for example in DASKR, it stops
the integration.

Minimum Step-Size (Hmin)

In the integration of a DAE, to meet the requested accuracy, DASKR reduces the step-size
when it encounters a stiff region. The minimum step size is limited by the H,,;, variable,
defined in DASKR. H,;,, which is computed as a function of integration time, may cause
problems in some stiff problems specially at big simulation times.
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Initial Condition Calculation

the integration of a DAE can be started only with consistent initial states. Although DASKR
can be used to compute the consistent initial states of DAEs, there are still some problems
to be addressed in initialization, specially in Jacobian matrix computing and its evaluation
rate.

2.5 Survey Of Hybrid Simulators

Interactions between the discrete-time and the continuous-time components results in new
simulation phenomena that are typical of hybrid systems. A hybrid simulator, therefore,
must be able to handle these. There is, however, no general agreement as to what extent a
simulator should be able to handle these phenomena to qualify as a hybrid simulator. In [?],
[?] two surveys of some hybrid simulation packages have been presented. Here an overview
on the simulators which have been used as hybrid system modeling and simulation tool will
be given.

Matlab, Simulink, Stateflow

Simulink [?], trademark of MathWorks, is a software package for modeling, simulating, and
analyzing dynamic systems. Simulink is part of the Matlab tool family and implements a
dataflow-oriented, graphical language consisting of diagrams with blocks representing data
transformations and connecting lines representing data signals. It supports linear and non-
linear systems, modeled hierarchically in continuous-time, sampled time, or a hybrid of the
two. Systems can also be multirate, i.e., have different parts that are sampled or updated
at different rates. The dataflow notation lends itself very well to modeling mathematical
equations and Simulink offers a library of basic function blocks for this purpose. With this
library, the characteristic differential equations of feedback control systems can be modeled.

State-flow [?] is an interactive design and simulation tool for event-driven systems. State-
flow provides the language elements required to describe complex logic in a natural, readable,
and understandable form. It is tightly integrated with MATLAB and Simulink, providing
an environment for designing embedded systems that contain control, supervisory, and mode
logic. In Fig. 2.5.1, a Simulink block diagram modeling of a bouncing ball system has been
shown. The simulation result is shown in Fig. 2.5.2.
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Figure 2.5.1: A hybrid system modeled in Simulink.
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Figure 2.5.2: Simulation result of model in Fig. 2.5.1 in Simulink.

HyVisual, Ptolemy II

The Hybrid System Visual Modeler (HyVisual) is a block-diagram editor and simulator for
continuous-time dynamical systems and hybrid systems. It is a Java-based component as-
sembly framework with a graphical user interface. HyVisual is built on top of Ptolemy II,
a framework that supports the construction of such domain specific tools, and can be freely
downloaded from [?]. The Ptolemy project studies modeling, simulation, and design of con-
current, real-time, embedded systems. The focus is on assembly of concurrent components.
The key underlying principle in the project is the use of well-defined models of computation
that govern the interactions between components. A major problem area being addressed is
the use of heterogeneous mixtures of models of computation. The diagram in Fig. 2.5.3 show
how a Ptolemy model looks like, the simulation result of this model is given in Fig. 2.5.4.
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Figure 2.5.4: State machine inside the model in Fig. 2.5.3.

NI-MATRIXx, SystemBuild, NI-LabVIEW

SystemBuild [?] is the core of the NI-MATRIXx [?] products. It is a graphical environment for
rapid model development and simulation of complex dynamic systems, as well as specifying
and testing control and software algorithms. SystemBuild has a hierarchical block-diagram
modeling paradigm designed for simple development of complex models based on an extensive
library of primitive blocks. SystemBuild also has a graphical user interface layer that creates
interactive simulations incorporating user input, in addition to standard batch simulations.
System build uses data logging capabilities for postprocessing, analysis, and interactive visu-
alization of simulation data. On can extend the SystemBuild modeling capabilities through
additional advanced analysis and design modules. Model options include fuzzy logic design,
neural network design, optimization and control, aerospace libraries, configuration manage-
ment for use with source code control software, state transition diagram editors, and more.

NI-LabVIEW [?], another trademark of National Instrument, is the graphical development
environment for creating test, measurement, and control applications. LabVIEW is an open
environment designed to interface with measurement hardware.
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Dymola

Dymola uses hierarchical object-oriented modeling to describe the systems, subsystems and
components of a model. There are several libraries available for Electronics, Hydraulics,
Thermal, etc. The models are written in the object-oriented modeling language Modelica.
Models are usually built hierarchically and graphically by dragging component models from
libraries and connecting them. Equations are used at the lowest level, facilitating true reuse
of models in different contexts. Model details are given by (ODE) and algebraic equations,
that is DAEs. Discontinuous equations are handled by translation to discrete-time events as
required by numerical integration routines.

Symbolic processing is used to make simulations efficient. Dymola converts the differential-
algebraic system of equations symbolically to state-space form, i.e., solves for the derivatives.
The equations are then, if possible, solved symbolically or code for efficient numeric solution is
generated. Higher index DAEs, typically obtained because of constraints between sub-models,
are handled by symbolically differentiating equations [?].
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Figure 2.5.5: A physical system modeled in Dymola.

Abacuss I1

ABACUSS (Advanced Batch And Continuous Unsteady-State Simulator) [?], developed for
chemical engineering systems, supports hybrid models, model inheritance, and hierarchical
model decomposition. It facilitates guaranteed state event location, batch process simulation,
solution of high-index differential algebraic equations, dynamic and steady-state optimization,
and dynamic sensitivity and uncertainty analysis. ABACUSS II is the next generation open
modeling environment and simulator. Designed from the ground up to be as flexible as
possible, it can be used standalone or embedded within another application. Alternatively,
ABACUSS 11 can be easily and seamlessly embedded within another application (e.g., Microsoft
Excel or an automation software system).
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20-SIM

20-siM ("Twent Sim”) [?] is a modeling and simulation program that runs under Windows
and Sun-Unix. 20-SIM is used to simulate the behavior of dynamic systems, such as electrical,
mechanical and hydraulic systems or any combination of these systems. It supports graphical
modeling, allowing the user to design and analyze dynamic systems. It supports also the use
of components that allows for building a model by choosing components from the library and
interconnecting them. Fig. 2.5.6 shows a sample model built in 20-SIM.
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Figure 2.5.6: A hybrid system modeled in 20-SIM.

Chi (x)

The Chi [?] design system is a concurrent programing language based on the (Timed) CSP [?]
formalism. The Chi language can be used to express models of industrial systems. A model
expressed in Chi is simulated using the Chi simulator. In Chi, a hybrid process may have
a continuous-time part (initialization of variables determining the continuous-time state of
the process, links, DAEs), a discrete-time part (initialization of other variables, discrete-time
statements) or a combination of both. A continuous-time type declaration looks like:

type name = [SIunits]

A hybrid process programed in Chi looks like:

proc name(parameters) =

| [ local variables

; initialisations

| links

% equations

| discrete-event statements

11
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SDX

SDX [?] is Fortran based Problem Solving Environment for dynamics (continuous-time,
discrete-time, hybrid) related applications in science and engineering. It can be used for
modeling and simulation of dynamic systems characterized by differential, difference and al-
gebraic equations.

Shift and SmartAHS

Shift [?] is a programing language for describing dynamic networks of hybrid automata.
Such systems consist of components which can be created, interconnected and destroyed
as the system evolves. Components exhibit hybrid behavior, consisting of continuous-time
phases separated by discrete-time transitions. SmartAHS is a specification, simulation and
evaluation framework for modeling, control and evaluation of Automated Highway Systems
(AHS). SmartAHS is developed using Shift.
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Figure 2.5.7:  Screenshots from Shift/SmartAHS Simulations.

Sildex

Sildex [?], trademark of TNI-Valiosys, is an integrated toolset for formally specifying and de-
signing control and data-oriented real-time embedded systems. In particular, Sildex targets
safety-critical embedded software applications whose failure may lead to disastrous conse-
quences. It is used in the aerospace, automotive, energy, telecom, and defense industries.
The Sildex approach is based on the synchronous paradigm and the synchronous language
Signal. Simulation and code generation all rely on formal semantics of Signal language. The
software aspects of the Signal language are transparent to the users of Sildex. In fact, they
are not necessarily required to master the language to be able to manipulate Sildex design
specifications. Instead, they can simply use the graphical design editors while benefiting from
the formal semantics that lies in the background.
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Simcreator

SimCreator [?] is a graphical, hierarchical, real time simulation and modeling system. Sim-
Creator’s GUI interface allows the user to develop distributed simulation models. It is a block
diagram modeling simulator. Fig. 2.5.8 shows how a model in simcreator looks like.
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Figure 2.5.8: Simcreator system simulator.

EASY5

EASY5 [?], developed by Boeing corporation, offers a set of Application Libraries that are
targeted to a specific application with pre-built models of physical devices such as hydraulic
valves and actuators, internal combustion engines, electric motors, gears, clutches, heat ex-
changers, fans, and evaporators. These physical subsystems can be used to construct a
dynamic system model. Fig. 2.5.9 shows how a model in EASY5 looks like.
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Chapter 3

Scicos

The name Scilab [?] stands for Scientific laboratory. Scilab is a language for scientific com-
puting. It provides an environment to calculate, visualize, and program the problems. Scilab
was initially devoted to matrix operations, and scientific and engineering applications were
its main target. In fact, it was written to provide an easy access to matrix software such as
LINPACK, EISPACK, LAPACK and BLAS. But over time, it has considerably evolved and
currently the Scilab language includes powerful operators for manipulating a large class of
basic objects [?, ?].

Scilab is an interactive system whose data objects do not need to be declared or allocated.
This allows the user to solve many technical computing problems, especially those with ma-
trix and vector formulations, requiring less time then it would take to write a program in a
language such as C or Fortran. Scilab includes hundreds of mathematical functions with the
possibility to add interactively programs from various languages (C, Fortran...). It has so-
phisticated data structures (including lists, polynomials, rational functions, linear systems...),
an interpreter, and a high level programing language. Scilab has been designed to be an open
system where the user can define new data types and operations on these data types by using
overloading. Scilab contains several specialized toolboxes that allow the user to extend the
Scilab environment to work with particular classes of problems. A number of toolboxes are
available with the system:

e 2-D and 3-D graphics, animation

e Linear algebra, sparse matrices

Polynomials and rational functions

Simulation: ODE solver and DAE solver

Classic and robust control, LMI optimization

Differentiable and non-differentiable optimization

Signal processing

Metanet: graphs and networks

Parallel Scilab using PVM
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Statistics

Interface with Computer Algebra: Maple package for Scilab code generation, MuPAD
3.0 includes Scilab

Interface with Tcl/Tk
e Scicos: a hybrid dynamic systems modeler and simulator

Scilab recognizes several data types. Scalar objects are constants, booleans, polynomials,
strings and rationals (quotients of polynomials). These objects in turn allow the user to define
matrices which admit these scalars as entries. As an example, to define a complex matrix, it
is enough to type the following command:

--> b=23;
-=> j=sqrt(-36);
-=> A=[2 b 4;5 -8 2xj];

The row elements are separated by commas or spaces and column elements by semi-colons.
Scilab shows the result as follows:

A =
! 2. 23. 4. !
! 5. - 8. 12.i !

In addition to internal functions, the user can define their own functions. Functions are
collections of commands which are executed in a new environment thus isolating function
variables from the original environments variables. Functions can pass arguments, have pro-
graming features such as conditionals and loops, and can be recursively called. Functions can
be arguments to other functions and can be elements in lists. The most useful way of creating
functions is by using a text editor, however, functions can be created directly in the Scilab
environment using the deff primitive. This is an example of a nested function definition and
its execution from the Scilab window:

function y=foo(x)
a=sin(x)
function y=sq(x),
y=x"2,
endfunction
y=sq(a)+1
endfunction

-->foo (%pi/3)
ans =

1.75

3.1 Scicos

Scicos [?] (Scilab Connected Object Simulator) is a toolbox of Scilab and provides an envi-
ronment for modeling and simulation of dynamical systems. The underlying formalism in Sci-
cos allows for modeling very general dynamical systems: systems including continuous-time,
discrete-time and event based behaviors. Scicos could have been an independent software for
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modeling and simulation, but having access to Scilab and its functionalities brings about a lot
of flexibility and widens the range of modeling capabilities. For example, in signal processing,
it is quite easier to use Scilab functions and write a small program than writing a code for
basic signal processing functions. Furthermore, Scilab sees the Scicos model as a function.
When Scilab calls Scicos, the model is returned. This is useful when a Scicos batch process
should be run.

Scicos can be considered as a graphical editor for constructing block diagram models by
interconnecting blocks, representing predefined or user defined functions. But what is a block
diagram model?

3.1.1 Block Diagram Modeling in Scicos

The most fundamental concept for control systems engineering is the block diagram. A
classic block diagram model of a dynamic system graphically consists of blocks and links
(that represent the continuous-time signals and discrete-time events). This concept comes
from engineering fields such as Feedback Control Theory and Signal Processing. A block
within a block diagram defines a dynamic system in itself. The relationships between each
elementary dynamic system in a block diagram are illustrated by the use of signals connecting
the blocks. Collectively the blocks and lines in a block diagram describe an overall dynamic
system, for example see Fig 3.1.1.

UGs) + BN 5 - 1 Yo,

$2+35+20

Y

Figure 3.1.1: A typical control systems.

The simplest element of a block diagram system is a block. A block takes the input and
generates the output through some dynamical actions. The details of the internal workings
of each block looks like a black box to the rest of the world. In other word, all the model is
concerned with is the relationship between the input and output of the block. Each block is
connected to the others via signal lines that may represent discrete-time or continuous-time
signals. A continuous-time signal represents a quantity that changes over time and is defined
for all points in time during simulation, while a discrete-time signal is a piecewise continuous
signal that only an event changes its value. An event represents a distinct point on the time
axes that causes a change in signals.

The relationship between input and output of a block is defined by a set of continuous-
time and discrete-time equations. These equations define a relationship between the input
signals, output signals, and the internal state variables.

Discrete-time events play an important role in the design of hybrid systems. In order
to explicitly define the discrete-time events, a special link is used in Scicos. They are called
activation links, in contrast to reqular links. A discrete-time event comes from an event source
and can activates several continuous-time or discrete-time blocks. Events indicate activation
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at certain time points. A Scicos block diagram model can have several event sources. There
are two important definitions about events, i.e., Simultaneous Fvents and Synchronous Fvents.

e Two events are simultaneous only if they are activated at the same time

e Two events are synchronized only if they are activated by the same block

Two simultaneous events are not necessarily synchronized, and two synchronized events are
not necessarily simultaneous.

3.1.2 Scicos Blocks

A Scicos block is the basic constructing element of a Scicos diagram and can be a complex
entity. It can have several inputs and outputs, continuous-time states, discrete-time states,
zero-crossing functions, etc. But note that it is not necessary to have all these elements at
the same time. A Scicos block can have two types of inputs and outputs:

e Regular inputs, to receive data from other blocks through regular links.
e Regular outputs, to send data to other blocks through regular links.
e Activation inputs, to receive control information (events).

o Activation outputs, to transmit control information (events).

Activation inputs and outputs are connected by activation links. Note that it is not
possible to treat an event link as a regular (continuous-time or discrete-time) link or to
connect them.

Scicos provides a graphical editor that allows creating and connecting block types selected
from block palettes. A block corresponds to an operation and by interconnecting blocks
through links, we can construct a model, or an algorithm. These blocks represent elementary
systems that can be used as model building blocks. To get an idea what a Scicos model looks
like, the model of Fig. 3.1.1, has been implemented in Scicos, see Fig. 3.1.2.

Num(s) Num(s) Q!
_D;;(_s; ‘ : Den(s) i

outputicantrol
Controller Plant

Reference

<7 |
!
Feedbuck
Figure 3.1.2: Scicos implementation of control model of Fig. 3.1.1.

In the Scicos block diagram of Fig. 3.1.2, these block have been used:
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Num(s)
Den(s)

e a Linear system block that provides a transfer function ( ) between its input

(u) and its output (y),

two Gain block that multiply the input by a constant value (gain),

an Adder block to add its inputs and put the result in its outputs

e 3 Sinewave block that provides a sinusoid wave,

an Event Clock block that generates discrete-time events (time events) to activate the
Scope block ( Scope’s sample time),

e and a Scope block that displays its input with respect to simulation time.

In Fig. 3.1.2, The link between these last two blocks is an activation link.
These blocks are taken from Scicos libraries (palettes). Scicos provides several block
libraries, some of them are:

e Sinks: blocks used to display, write into a file,..

e Linear: linear blocks normally used in control system modeling, such as gain, linear
system, adder, etc.

e Non linear: nonlinear blocks, such as saturation, absolute value, divider, and multi-
plier.

e Sources: the signal or event source blocks, such as absolute time, read from file, step
function.

e Events: discrete-time events related blocks, such as switch, event adder, event select,
event clock, and If then else block.

e Threshold: state event generators, i.e., zero-crossing blocks.
e Branching: signal and event routers, such as multiplex, and selector blocks.

e Other blocks: some general blocks such as debugger, backlash, constraint, etc.

Scicos users can also create their own block types and use the Scicos editor to create instances
of them in a diagram. We can group these blocks into two categories: basic functional blocks
and special blocks. In the following sections, we will briefly explain some of important blocks.

Elementary Blocks

Scicos provides many blocks representing elementary systems that can be used as building
blocks. Most of the blocks are basic functional blocks, such as integrator block, gain, constant,
etc. In these blocks the following information is assumed to be known:

e Block inputs signals
e Block inputs events (time or discrete-time events)

e States (discrete-time or continuous-time states)

51



Scicos

e Parameters (information from the block dialog box)

and these values are computed:
e Block output signals

e Block event outputs

e Block states

The elementary blocks perform a computation function, the outputs are computed based
on internal states, input signals and input events of the block. An example is a Gain block,
which multiplies the inputs by some fixed value and passes the result to the output. These
blocks may have both discrete-time and continuous-time states and they may generate output
events, but they are not synchronized with input events. Fig. 3.1.3 shows the internal structure
of an elementary block.
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Figure 3.1.3: A classic Scicos block.

Time-Event Generator Blocks

A block generates a time-event either it is programed to generate an event (only one) at a
specified time, or it can delay an input event. Delaying an event means receiving an event
in and transmitting it out with a positive or zero delay. In the later case, it should be noted
that the generated event is not synchronous with the original event. The event clock block
uses these two options to generate a serie of events. It is simply a block with its output event
port fed to its own input event port with an initial pre-programed event. In Fig. 3.1.4, Delay,
Event clock generator, and Time delay block have been shown.

v

Delay Event a
0.1 time 0

Figure 3.1.4: Some time-event generators in Scicos.
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Zero-Crossing Blocks

Zero-crossing events are introduced to overcome the difficulty in the modeling of continuous-
time systems when there are some discontinuities in the system. Because discontinuities
may cause problem on the operation of continuous-time integration methods. The numerical
solvers of Scicos, offer an option to detect the state-events. Scicos uses this option in the
blocks. For ordinary uses, Scicos has introduced the Zero-Crossing block. The purpose of
this block or zero-crossing feature is to handle discontinuities in state values and switching
between system equations. Applications for zero-crossing events arise in hybrid system for
unpredictable events. For example, monitoring the liquid level in a tank and closing the
intake tap as soon as the liquid level exceeds a certain level. This can be done by use of a
Zero-Crossing block.

In some applications, in addition to the crossing time, we need to know the crossing
direction. For these purposes Scicos has provided two other blocks ’+ to -’ block and ’-
to +’ block that generate a zero-crossing event whenever the input signal crosses the zero in
positive or negative direction. In Fig. 3.1.5, Zero crossing, - to +, and + to - block have

been shown.
>|Zcr0ss >| —to+ >| +to — ‘

Figure 3.1.5: Zero-crossing event generators in Scicos.

Conditional Blocks

The basic functional blocks perform some computational functions, whereas the Conditional
blocks control the execution in the model. These blocks can conditionally activate other blocks
in a Scicos model. The If-then-Else and Event select blocks, see Fig. 3.1.6, provide

frameworks for conditional activation.

Figure 3.1.6: Conditional blocks in Scicos.

A 4

If in>0 If in>0

then else then else

The main difference between the two blocks is the number of their output events. They
are the counterpart of the If then Else and Switch: Case statements in imperative
programing languages like C. Whenever these blocks receive an event, they immediately
generate a synchronous event at their event output port as a function of the value of their
regular input. The Condition block controls the path of events. Depending on the inputs
of the condition block, output activation goes out either from the If port or from the Else
port. The two activation outputs are mutually exclusive and their sum (union of activation
times) equals its input activation.
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The condition activating can be used to conditionally activate other discrete-time or
continuous-time blocks. Here is an example to show how the If-then-Else block is used
to conditionally select the input to another system (see Fig. 3.1.7).

©

If in>0

random
generator

then else

L

sawtooth

generator
——

square wave
generator
——

Selector|

=)

Figure 3.1.7: Conditional activation.

The block Selector has two input activation ports. The block can be activated by only
one of them at a moment. Whenever Selector is activated it knows the activating port and
uses this information to update its output the first or the second input depending on the
port through which it has been activated. The output of the Selector is the sawtooth signal
generated by Sawtooth Generator block as long as the signal is positive. If it is negative or
zero, the output of the Selector is a Square Wave signal.

If an If-then-Else block does not have an input event port, see Fig. 3.1.6 (middle), it
controls the continuous-time blocks that receive the activation. In this case, the numerical
solver sees only the blocks that are in the active branch of If-then-Else.

These blocks are also referred to as Synchro blocks. Synchro blocks have built-in zero-
crossing surfaces that generate an event when the activated output port changes. These
conditional blocks are very special blocks, they do not have a computational function and
internal states, they have only one input and only one output event is activated at a moment.

Superblocks

Scicos has a hierarchical architecture, i.e., we can use it to define SuperBlocks. The Su-
perBlock mechanism provides an interactive design environment for creating and editing
complicated block diagrams. A block diagram may contain several blocks and Superblocks,
and each Superblock may contain blocks and other Superblocks. Clicking on a Superblock,
displays its contents in a separate Scicos editor window. Fig. 3.1.8 shows a SuperBlock which
is used to simplify the Scicos diagram of Fig. 3.1.2.

54



3.2 Modeling Hybrid Dynamical Systems in Scicos

@)

% Num(s) I@
e i Den(s) i

—
outputicontral

Reference trajectory -
ant

- 3

[-——————

Feedback

Figure 3.1.8: SuperBlock mechanism in Scicos.

Note that a SuperBlocks is just a graphical representation to facilitate the modeling. It
is not a real block and it does not change the simulation at all.

3.2 Modeling Hybrid Dynamical Systems in Scicos

A Scicos diagram is obtained by the interconnection of Scicos blocks. If all inputs are con-
nected and no algebraic loop exists, a Scicos diagram defines a Scicos model. Models created
in Scicos can be broadly categorized as follows:

e Discrete-time models
e Continuous-Time models

e Hybrid models (a combination of continuous-time and discrete-time subsystems).

In this section we will explain how these models can be modeled in Scicos.

3.2.1 Modeling Discrete-time Systems

In the Scicos libraries there are several blocks for modeling discrete-time systems, such as
unit delay (1/Z). These systems need to be activated by events. For example the sampling
time of a discrete-time system may be defined with a event clock block. Suppose that we
want to model this discrete-time system with sampling rate T=0.5 sec:

y(k+1) =0.8 y(k) + 1.2.

Fig. 3.2.1 shows how this system can be modeled in Scicos.
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Figure 3.2.1: Modeling a discrete-time System.
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In this model, the discrete-time state y(k) is modeled by a 1/Z block and an Event clock
block is used to generate discrete-time events to update the discrete-time state. This block
has been programed to generate its first event at ¢ = 1 and a periodic event series with
sampling time T = 0.5.

For discrete-time systems, given user-defined initial conditions and input vector, the pro-
cedure of simulating the discrete-time Scicos model or obtaining a sequence of solutions to
the system equations is fairly straightforward. Starting from the given initial conditions, the
discrete-time state equations are iterated until the specified final time. The simulation result
for the initial condition y(0) = 1, and final time Ty = 10 is given in Fig. 3.2.2.

7.5

5.0

Figure 3.2.2: Simulation result of model of Fig. 3.2.1 in Scicos.

3.2.2 Modeling Continuous-time Systems

A Scicos block diagram model is a graphical representation of a mathematical model of
a dynamic system. A mathematical model of a dynamic system is described by a set of
differential equations. For instance, Fig. 3.2.3, shows how this continuous-time system:

% = sin(t) — 0.9 z,

is modeled in Scicos.
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Figure 3.2.3: Modeling a continuous-time System.
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In this model an Integrator, a Summation, a Gain, a Sine generator, a Scope, and
finally, an Event clock have been used. The Integrator block contains the continuous-time
state of system (z), so its input should be equal to (£). In this model Event clock is used
to periodically activate the Scopes block to plot the result on Scope’s screen. So all the
connections are carrying the continuous-time signals, except for connection between Scope
and Event clock, which carries the activation signal. The simulation result for the initial
condition z(0) = 10 is given in Fig. 3.2.4.

15.0

7.5+

0.0

—7.54

-15.0 T T T T T T T T T

Figure 3.2.4: Simulation result of model of Fig. 3.2.3 in Scicos.

3.2.3 Modeling Hybrid Systems

After modeling two purely continuous-time and purely discrete-time systems, let us model
some hybrid systems in Scicos. Continuous-time operations and discrete-time event dependent
operations can interact in different ways. First, continuous-time and discrete-time signals can
be inputs to a one block. In fact, fundamentally, there is no difference between a discrete-time
signal and a continuous-time signal. In fact a Scicos signal can have discrete-time property
over a period of time and later continuous-time property. This means that in Scicos we can
perform operations (such as addition of) continuous-time and discrete-time signals. Then,
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Continuous-time signals can generate events through zero-crossing blocks. Finally, events can
create jumps in continuous-time states as well as in discrete-time states. Consider the model
of the bouncing ball system. In this case, the continuous-time state changes abruptly with an
event (discontinuity in velocity). The bouncing ball system has been modeled in Fig 3.2.5.

Figure 3.2.5: Modeling a hybrid system (Bouncing ball) in Scicos.

In this model we have used a Linear system with jump possibility block, a Gain
block to return and reduce the velocity after collection, a Constant block to provide the
downward acceleration (-10), and a Zero-cross block to generate an event and reverse the
velocity. The Zero-cross block monitors the altitude of the ball whenever it crosses zero,
an event is generated. This event is fed to linear system to make a discontinuous jump in
states. The simulation result has been shown in Fig. 3.2.6. Note the discontinuity in velocity
in the bottom plot.
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Figure 3.2.6: Simulation result of model of Fig. 3.2.5 in Scicos.

Another interesting model is activating a discrete-time system with a state event. Consider
again the example in Fig. 3.2.1, but instead of event clock, weusea+ to - zero-crossing
block to generate the events to activate the delay block, the result has been shown in

Fig. 3.2.7.
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Figure 3.2.7: Activating a discrete-time system of Fig. 3.2.1via zero-crossing events.
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3.2.4 Simulation Parameter Setting

Scicos can simulate the model from a ¢ = 0 to a specified final time. Depending on the model,
it uses an ODE solver for ordinary differential equation, a DAE solver for differential algebraic
equations, and if the model is discrete-time, none of these solvers is used. Scicos is a general
simulator, but each problem has its own particular specifications. That needs to introduce
some flexibility in simulation and treating the models. This section discusses the simulation
parameters, which the user should specify before running the simulation.

e Final Simulation Time: the start time is always tg = 0. The final time for the

simulation is set by entering new values in the final integration time fields. Its
default time is 10000 seconds.
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e Realtime Scaling: Simulation time and actual clock time are not the same. For
example, running a simulation for 10 seconds usually does not take 10 seconds. The
amount of time it takes to run a simulation depends on many factors, including the
model’s complexity, the solver’s step sizes, and the computer’s speed. Most of the
time the simulation time is less than the real time. This option increases the real time
simulation by setting Scicos unit of time to 1 second.

e Tolerances: Relative tolerance measures the error relative to the size of each state, i.e.,
a percentage of the state’s value. The default, 1076, means that the computed state is
accurate to within 10~* percent. Absolute tolerance, on the other hand, is a threshold
error value. This tolerance represents the acceptable error as the value of the measured
state approaches zero. Its default value is 1072

e Maximum Step-size: The Maximum step-size parameter controls the largest integra-
tion step the solver can take. The default value is 100001 (inf). This option is important
to limit the integration steps, in order to prevent the solver from taking large step-sizes
and missing two close zero-crossings.

e Maximum Integration Time Interval: The maximum time interval for each call to
solver, it must be reduced if the error message ”too many calls” is encountered (error
-1).

e Tolerance on Time: The smallest time interval for which the numerical solver is used
to update continuous-time states.

3.3 Scicos Block’s Architecture

Each Scicos block is defined by two functions. The first one, which must be in the Scilab
language, handles the iterations with the editor. This function specifies the geometry of block,
number of inputs and outputs the block type, etc. It is also this function that handles user
interface (updating block parameters and initialization the states). This function is referred
to as the interfacing function [?]. The second function, which is called the Computational
function, is normally written in C, but can also be in Scilab. This function defines the behavior
of the block during the simulation, see Fog. 3.3.1.

Each block can only have one interfacing function, but it may have several computational
functions. These functions, declared in the interfacing function, are selected by the user.
During simulation, Scicos can only use one of the declared computational functions.
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Figure 3.3.1: A Scicos Block.

3.3.1 Block Interfacing Function

Before explaining what this function exactly does, the block data structure should be in-
troduced. The data structure of the block is a Scilab list that contains all the necessary
information to compile and simulate the Scicos diagram. The scicos.model() function ini-
tializes this list. It is composed of the following elements:

e sim: which is a list by itself, containing the computation function name and the block-
type (computation function calling sequence type).

e state: initial state vector for explicit blocks, and initial vector of state and state
derivatives for block with DAE dynamics.

e dstate: initial discrete-time state vector.

e in: vector of block’s input, e.g., [3;2], means two inputs, the size of the first input is
3, and the size of the second one is 2.

e out: vector of block’s output.

e evtin: vector of block’s event input.

e evtout: vector of block’s event output.

e rpar: vector of real valued parameters

e ipar: vector of integer valued parameters

e blocktype: 'c’ means the computation function is written in C, and ’f* for Fortran.
e firing: initial event activation, if a block has some output event ports

e nzero: number of zero-crossing surfaces

e nmode: number of mode variables
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e label: blocks’ label

e dep_ut: input-output and time dependence. If block output can be directly affected
by a change in input, the block is dep_u=Ture. It block needs the absolute simulation
time, it is dep_t=True, it is also call always active, because it is always active via
continuous-time.

e equation: for symbolic representation of equations (will be explained in the next chap-
ters).

To set these values for each Scicos block, the Scicos editor uses the interfacing function.
In addition to initializing these values, the interfacing function is used to draw the block in
the Scicos window, define/change the block’s icon, and to modify the block’s parameters. As
the interfacing function performs several tasks, in order to specify what it should do, Scicos
calls it with an input flag job. The calling sequence is:

[x,y,typel=block(job,argl,arg?2),

where Job can take several values such as plot, getinputs, getoutputs, getorigin, set,
define, with each of these keywords, a special task can be done. Here, we only briefly explain
set, and define.

e job=’define’: The code fragment provides initialization of the block’s data structure.
The block type, number of inputs, outputs, states, etc should be set. In return, x is the
block’s data structure.

e job=’set’: After clicking on the block, block is called with this flag, so this part of code
can be used to open a dialog box for block parameters acquisition. Scilab getvalue
function is used. The interfacing function should return the block’s data structure of
the block. In return, x is the new block’s data structure.

3.3.2 Block Computational Function

The computational function is called by the simulator to perform the numerical computa-
tions such as computing the state derivatives, updating outputs, evaluating the zero crossing
functions, etc. A Scicos block may contain continuous-time states, discrete-time states, dif-
ferential equations, difference equations, root-finder functions, continuous-time signal input,
input events, continuous-time signal outputs, event outputs, and a parameter set that may
come from the simulator or belongs to the block. As the number of variables is relatively
high, it will be cumbersome if they appear in the calling sequence of the computation function.
Instead, the variables that belong to the block are collected in a structure, and the address
of the structure is passed to the function. As a result we have a compact calling sequence:

void block_toto(scicos_block *blk, int flag)

where scicos_block is the block data structure, and flag variable indicates the computational
task to be fulfilled by the block.

Computation Function Data-Structure

The scicos_block Data-Structure contains several variables and pointers.
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typedef struct {

int nevprt; /* incoming discrete-time event coding (-1 for internal events) */
voidg funpt; /* pointer to the computational function */
int type; /* type of interfacing function (calling sequence type) */
int scsptr; /* not use for C computation function. */
int nz; /* number of discrete-time states */
double *z; /* pointer to vector of discrete-time states */
int nx; /* number of continuous-time states */
double *x; /* pointer to vector of continuous-time states */
double *xd; /* pointer to vector of derivatives of continuous-time states */
double *res; /* pointer to vector of residuals of DAE x/
int nin; /* number of inputs */
int *insz; /* pointer to input */
double **inptr; /* double pointer to block inputs */
int nout; /* number of block outputs */
int *outsz; /* pointer to block outputs */
double **outptr;/* double pointer to outputs */
int nevout; /* number of output events */
double *evout; /* pointer to output events */
int nrpar; /* number of block real-valued input parameters x/
double *rpar; /* pointer to vector of block real-valued parameters. x/
int nipar; /* number of block integer-valued parameters */
int *ipar; /* pointer to vector of block integer-valued parameters. */
int ng; /* number of zero-crossing functions */
double *g; /* pointer to vector of zero-crossing functions. */
int ztyp; /* indicates if the block has zero-crossing function. */
int *jroot; /* vector indicating the crossing zero and the crossing direction. */
char *label; /* pointer to char, block’s label */
void **work; /* a pointer to workspace, used for dynamic memory allocation in block.*/
int nmode; /* number of modes. */
int *mode; /* pointer to vector of modes */

} scicos_block;

Block Dynamics Representation

The design of the Scicos block interface emphasizes a paradigm of accepting inputs and
returning updates of states and required outputs. In continuous-time systems, a Scicos block
may represent a set of ordinary differential equations (ODE) of the form:

T = f(a;‘u,t)
y = g(z,u,).

In the above equations, u is the input vector, x is the state vector, y is the output vector,
and t is the time. The Scicos block function is called from the simulator to compute £ and
y. The simulator sends = to the Scicos block function. This value should not be modified by
the block. There are two exceptions: z can be modified during the discrete-time event calls
and during initialization. If the dynamics of block is expressed with an ODE, the block type
will be 4.

A Scicos block’s dynamics can also be represented as a differential algebraic equations
(DAE). In the most general form, DAE systems are mathematically described by equations
of the form:

0 = F(z,z,u,t)
y = G('i?x’ u,t)7

where F' is a vector-valued function with dimension equal to the number of states, and G is
the output equation vector, with dimension equal to the number of outputs. In the this case,
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algebraic states of DAE should be declared, and initial value of differential states and guess
values of algebraic states and derivatives of differential states may be given. It is interesting
to note that, an ODE can be integrated with a DAE solver. So Scicos should transform the
ODE to an DAE, with reformulating the ODE as:

0 = - f(z,u,t)
y = g(z,u,1).

Notice that the DAE integrator calculates both z and #. The Scicos block function
evaluates the implicit equation F'(z,z,u,t) with the supplied z and % values. The integrator
uses F' as the local residual error and attempts to maintain it below a certain threshold. If
the dynamics of the block are expressed with an DAE, the block type will be 10004.

Simulation Time Variable

The absolute simulation time, has not been included in block data structure, since it is a
global variable. And it is not included in the calling sequence, since it is used only if the
continuous-time block needs the time variable explicitly. To access the current simulation
time, the external function:

double get_scicos_time();

can be used in the block to obtain the current simulation time. To use this function this
header file should be declared in the block computation file.

#include <scicos/scicos_block.h>;

Simulation Phase Indicator

A block can be called either by the numerical integrator or by the simulator due to a discrete-
time event. Sometimes we need to know who calls the block, either integrator, or simulator.
This global variable has value 2 If the call is made in the numerical integration, and it will
be 1 if it is due to an event. To obtain the value of this variable, the external function:

int get_phase_simulation();

is called. The need for introducing this variable will be discussed in succeeding chapters.

Continuous-time States

During integration, the numerical solver needs the value of state derivatives for explicit sys-
tems, and value of residuals for implicit systems. Whenever the solver request this value, the
blocks that contain continuous-time states are called with flag=0. During this call, the com-
putational function should compute either the state derivative or residuals, form the block
data structure. and put it either in xd, or res vectors.

Discrete-time States
In discrete-time systems, the block represents a set of difference equations of the form:
Tp+1 = f(@k, vk, tk)

yk = 9(Tk,up,tg).
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Whenever an event activates the block, the simulator calls the block with flag=2. A Scicos
block may have several input events that come from several discrete-time event sources. When
a discrete-time event arrives, the activated event port has been coded in binary in nevprt
variable. During this call, the computational function should decode the nevprt variable to
know the activating event to perform the associated action or state update. The addresses of
discrete-time and continuous-time state vectors are in the block’s data structure.

Mode variable and Zero-Crossing Functions

If a dynamical system has several configurations, each one is defined with a mode. There is a
close relationship between mode variables and zero-crossings functions. The mode variable is
used to handle the discontinuities and provide a smooth dynamical system for the numerical
solver. At the moment where the system configuration is changed, there is a discontinuity
in continuous-time states or their derivatives. So the numerical solver should be called up to
this moment. This moment is the time where a function, so called zero-crossing, crosses zero.
Provided the zero-crossing function, the numerical solver finds the exact crossing times.

The zero-crossing functions can be computed and delivered to the solver, when the block
is called with flag=9. The mode variables can be updated whenever the block is called with
flag=9 and phase=1.

If the zero-crossing function can also be used to trigger some internal actions. In this case,
if a zero-crossing function crosses zero, the block is called with flag=2 (since this is an event)
and nevprt=-1 (to distinguish it from external events).

Algebraic vs Differential States Declaration

If the DASKR solver does a cold-restart, it normally requires the consistent initial condition
to start the integration. If z; and z, denote the differential and the algebraic variables
respectively, DASKR can be called to obtain the initial condition. To inform DASKR about
the initial conditions computing option, INFO(11) should be set to:

e INFO(11) = 0: If provided initial conditions are consistent

e INFO(11) = 1: If initial conditions should be calculated with given x4, and computing
o and Zq,

e INFO(11) = 2: If initial conditions should be calculated with given &, and computing
T4 To. This case has not been implemented in Scicos.

A block whose behavior is characterized by a DAE should provide a vector to identify the
differential and the algebraic components of the DAE give in its £1ag=0 code part. In Scicos
a property vector is used to carry this information. This vector is filled in f1ag=7 as follows:

properties[i]=+1, if x[i] is a differential variable
properties[i]l=-1, if x[i] is an algebraic variable.

Then function
void set_pointer xproperty(int* pointer) ;
is called to set a global vector in simulator holding overall algebraic and differential informa-

tion.
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Block Initialization

When the first option for initial value calculation is selected, the initial value of differential
variables should be given in the flag=4 part of the computing function of the block. In this
case the given values for algebraic variables are considered as guess values during consistent
initial computing. In complicated DAEs we need, however, to provide a precise enough
solution to help DASKR find the consistent initial conditions.

At the beginning of simulation, the Scicos simulator calls all the blocks with flag=4 to
initialize them. Then the continuous-time and discrete-time states can be reinitialized (since
they have been already initialized in the interfacing function). In addition, if the block should
use an external file, it can open it during this block call. And finally, if the block needs extra
memory, it can dynamically allocate it here.

Block Job Termination

At the end of simulation, the user stop request, or in case of error, the Scicos simulator calls
all blocks with flag=5, and then exits. During this call, the opened files can be closed, and
the dynamically allocated memories can be freed.

Block Regular Output Updating

Whenever the simulator needs the block outputs, it calls the block with flag=1. During this
call, the computation function should update the output registers **outptr, based on current
time, states, inputs, etc, existing in the block data structure.

Block Output Event Updating

A block may generate events, it may be a time-event (like a event-clock generator), or
it may be s state-event (like a zero-crossing block). The events can only be generated
with time delay greater or equal than zero. The generated events can also be programed
synchronously (but with positive delay) with the incoming event. The outgoing event can be
programed whenever the block is called with flag=3.

Jacobian Matrix Evaluation

The Jacobian matrix is needed by the numerical solver. It can be either calculated numerically
by DASSL or be given by the user. In the later case, if the dynamical system is a DAE, the
block is called with flag=10 to read its Jacobian matrix. The computation function needs
also a scalar, that the solver provides. This scalar is a global variable and can be accessed
via an external function call, i.e.,

double Get_Jacobian parameter(void);

The other usages of this scaler is used to improving the integration convergence. That will
be discussed later.

3.3.3 Example 1: Finite State Machine Block

A finite state machine (FSM) or finite automaton is a model of behavior composed of states,
transitions, and actions.
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Condition 1

Transition’

Condition 2

Figure 3.3.2: State flow diagram of sticky mass.

A state stores information about the past, i.e., it reflects the input changes from the
systems start to the present moment. A transition indicates a state change and is described by
a condition that would need to be fulfilled to enable the transition. An action is a description
of an activity that is to be performed at a given moment. There are several action types:

e Entry action: execute the action when entering the state
o Exit action: execute the action when exiting the state
e Input action: execute the action depending on present state and input conditions

e Transition action: execute the action when performing a certain transition

A FSM can be represented using a state diagram (or state transition diagram) as in
Fig. 3.3.2. Besides this, several state transition table types are used. The most common
representation is shown below: the combination of current state (B) and condition (Y) shows
the next state (C). The complete action information can be added only using footnotes. An
FSM definition including the full action information is possible using state tables.

‘ Current State/Condition H State A ‘ State B ‘ State C ‘

Condition X ... State A | State B
Condition Y State C | ... .
Condition Z ... State C | State A

Finite state machines are very widely used in modeling of application behavior, design of
hardware digital systems, software engineering, and the study of computation and languages.
As an example, we present the implementation of a sticky point masses system, taken from
[?]. This sticky point mass is a simple hybrid automaton system. There are two point masses
on a frictionless table with two springs attaching them to fixed walls. Given initial positions
other than the equilibrium points, the point masses oscillate. The distance between the two
walls are close enough that the two point masses may collide. The point masses are sticky, i.e.,
when they collide, they stick together and become one point mass with two springs attached
to it. We also assume that the stickiness decays exponentially after the collision, such that
eventually the pulling force between the two springs is big enough to pull the point masses
apart. This separation gives the two point masses a new set of initial positions, and they
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oscillate freely until they collide again. The system is a finite state machine with two modes,
separated and together. In the separated state, there are two differential equations modeling
two independently oscillating point masses. There is also an event detection mechanisms,
implemented by subtracting one position from another and comparing the result to zero. If
the positions are equal, within a certain accuracy, then the two point masses collide, and a
collision event is generated. This event will trigger a transition from the separated state to
the together state. And the actions on the transition set the velocity of the stuck point mass
based on Law of Conservation of Momentum.

In the together state, there is one differential equation modeling the stuck point masses,
and another first order differential equation modeling the exponentially decaying stickiness.
There is another expression computing the pulling force between the two springs. As for the
moment the number of differential equations in Scicos should remain the same, the fourth
differential equation is just added to satisfy this criteria. The guard condition from the
together state to the separated state compares the pulling force to the stickiness. If the
pulling force is bigger than the stickiness, then the transition is taken. The velocities of the
two separated point masses equal to their velocities before the separation [?].

Transition condition: If (x1>x2)&(v1>v2)
x1=0, v2=0 Xt=x1, Vt=(v1+v2)/2

I! x2=3, v2=0 Stcking=10
Transition condition: If Force+Stic

x1=Xt, x2=Xt
vI=Vt, v2=Vt

Figure 3.3.3: State flow diagram of sticky mass.

In Separate mode the system differential equation set is

Ty = T1
il = 1- i)
To = I3
.7.73 = 4- 2.732,
and in stuck mode is
To = T
i1 = (5—3w)/2
be = —X2
3 = 0.

The system goes from separated mode into stuck mode if the condition
(xo > z2) and (z1 > z3)
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is fulfilled. Then the system goes to stuck mode and the system is initialized, i.e.,

rg = X9
. 1+ T3
1 = _—
2
ro = 10.

The system goes back into separated mode if

To +x9— 3 <0,

and then
o = Xo
Ty = I1
T2 = X2
r3 = I3.

To implement this system we use a discrete-time state, indicating the system configuration
(mode), four continuous-time states, and three zero crossing functions. Here is the interfacing
functions of a Scicos block to simulate this hybrid automaton system.

AUTOM. sci:

function [x,y,typ]=AUTOM(job,argl,arg2)
//Absolute value block GUI.
// Copyright INRIA
x=[1;y=01;typ=01;
select job
case ’plot’ then
standard_draw(argl)
case ’getinputs’ then
[x,y,typl=standard_inputs(argl)
case ’getoutputs’ then
[x,y,typl=standard_outputs(argl)
case ’getorigin’ then
[x,y]l=standard_origin(argl)
case ’set’ then
x=argl;
case ’define’ then
//
nstate=4
nin=0
nout=2
nmode=0
nzero=3
ndsate=1
model=scicos_model ()
model.sim=1list (’autom’,10004)
model.in=ones(nin,1)
model .nzcross=nzero
model .nmode=nmode
model.state=ones(nstate*2,1)
model.dstate=ndsate
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model .out=nout
model.blocktype=’c’
model.dep_ut=[%f %t]
gr_i=’xstringb(orig(1),orig(2),’’Automaton’’,sz(1),sz(2),’’£ill’’)"
x=standard_define([2 2] ,model, [],gr_i)

end

endfunction

And the computation function is

autom.c:
#include <math.h>
#include <scicos/scicos_block.h>
void autom(scicos_block *block, int flag)
{
double rpar[5];
double *x = block->x;
double *z = block->z;
double *xd = block->xd;
double *y=block->outptr[0];
double *u=block->inptr[0];
double *g=block->g;
double *res=block->res;

int *mode = block->mode;

int *jroot=block->jroot;

int nevprt=block->nevprt;

int property[5];

int phase;

double ¢t;

t=get_scicos_time();

/=== e

if (flag == 0){

if (z[0]==1){
res[0]=xd[0]-x[1];
res[1]=xd[1]-1+x[0];
res[2]=xd[2]-x[3];
res[3]=xd[3]-4+2%x[2] ;

Yelse if (z[0]==2){
res[0]=xd[0]-x[1];
res[1]=xd[1]-(5-3*x[0])/2;
res[2]=xd[2]+x[2];
res[3]=x[3];

}else if (flag == 1) {
y[01=x[0];
if(z[0]==1){
y[11=x[2];

}else if (z[0]==2){
y[11=x[0];
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}else if (flag == 9) {
if (z[0]==1){
glol=(x[0]1-x[2]);
gl1]1=(x[11-x[31);

gl[2]1=0;
Yelse if (z[0]==2){

gl[01=0;

gl[1]1=0;

gl[2]=x[2]+(-3+x[0]);
}
At

}else if (flag == 7) {
if (z[0]==1){
property[0]=1;
property[1]=1;
property[2]=1;
property[3]=1;

}else if (z[0]==2){
property[0]=1;
property[1]=1;
property[2]=1;
property[3]=-1;

}

set_pointer_xproperty(property) ;

telse if (flag ==2 & nevprt<0) {
if (jroot[0]==1){
x[0]1=x[0];
x[1]1=(x[11+x[3]1)/2;
x[2]=10;
z[0]=2;

}else if(jroot[2]==-1){
x[2]=x[0];
x[3]=x[1];
z[0]=1;

}

}else if (flag == 4) {
x[0]=0;

x[1]=0;

x[2]=3;

x[3]1=0;

x[4]1=0;

z[0]=1;

The simulation result of the system has been scketched in Fig. 3.3.4.
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Figure 3.3.4: Simulation result of sticky mass hybrid automaton system.

3.3.4 Example 2: AMESim/Scicos interface block

AMESim'.is a simulation software for the engineering systems. In AMESim, the user can

build models of engineering systems by connecting blocks in a graphical environment. The
blocks represent individual components of the system (see Fig. 3.3.5).
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Figure 3.3.5:

An engineering system using standard hydraulic and control components in
AMESim.

The standard library of AMESim provides control and mechanical components and sub-
models allowing the user to perform dynamic simulation of engineering systems. In addition,
there are optional libraries such as the Hydraulic Component Design, the hydraulic resistance,
pneumatic, thermal, thermal-hydraulic, cooling system, power train and filling libraries. Each

!This work was a part of METISSE project performed in INRIA
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component contains a set of equations defining the dynamic behavior of the block. When the
model is complete, a simulation of the system can be proceeded. During the simulation
AMESim refers to the model of the system. The model is built up from the equations of each
component within the system and the equations that connect the components.

In the past, the simulation software used for engineering design tended to be totally inde-
pendent and incapable of communicating with one another. This is no longer acceptable since
neither package can provide all the facilities needed. Modern practice is to provide interfaces
between software to enable them to work together so that the user can obtain the best features
of both. In this section we will explain how a model which is developed in AMESim can be
used in Scicos. This gives the user access to powerful controller design features, optimization
facilities, and power spectral analysis, etc. of Scilab and Scicos softwares.

The AMESim/Scicos interface enables the user to construct a model of a subsystem in
AMESim and to convert it to a Scicos block. The Scicos block can then be imported into
Scicos and used within a Scicos block diagram system, just like any other Scicos block. The
interface is designed so that the user can continue to use many of the AMESim facilities
while the is running in Scicos. In particular the user can change the parameters of the model
within AMESim in the normal way, examine the results within by creating plots just as if
they were produced in a regular AMESim run. Normally, the user will have AMESim and
Scicos running simultaneously so that the user can use the full facilities of both packages. As
an example, consider the model depicted in Fig. 3.3.6.
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Figure 3.3.6: An elevator system modeled using AMESim.

This is an elevator system that has been built in AMESim with an interface blocks to
establish two links to/from Scicos. This nonlinear system is then imported into Scicos and
can be run entirely in Scicos (see Fig. 3.3.7). The block AMEs Scicos in Fig. 3.3.7 is the block
that contains the elevator’s model.
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Figure 3.3.7: A Scicos model containing an AMESim block imported from AMESim.

Implementation

When an AMESim model, containing an interface block, is compiled in AMESim, several
files are generated. For an AMESim model that is called NAME. ame, these file will be gener-
ated: 1ibNAME_.d11, NAME_.data, NAME_.c, NAME_.la, NAME_.make, NAME_.param, NAME_.sim,
NAME_.var, NAME_.ssf, NAME_.state, and NAME_.lock. NAME_.data contains the initial value
of states of the model, 1ibNAME_.d11 contains all model information, and NAME.c contains
the C code that is used to build the interface imported AMESim block in Scicos.

The first step to import the AMESim model into Scicos is building a Scicos block with
appropriate parameters such as number of inputs or states. These information are stored in
1ibNAME_.d11 (in Windows) or 1ibNAME_. so (in Linux). To get these information, this library
files should be dynamically linked with Scilab (using ¢_1link and zilib_for_link functions
in Scilab). Then the function NAME_info, defined in the linked library file) is evoked to obtain
the block parameters. Here is the interface function of the AMEs/Scicos block.

function [x,y,typ]=BLOCKAME(job,argl,arg2)
// Copyright INRIA
x=[1;y=01;typ=11;
select job
case ’plot’ then
standard_draw (argl)
case ’getinputs’ then
[x,y,typl=standard_inputs(argl)
case ’getoutputs’ then
[x,y,typl=standard_outputs(argl)
case ’getorigin’ then
[x,y]l=standard_origin(argl)
case ’set’ then

//

x=argl;
graphics=argl.graphics;
exprs=graphics.exprs
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model=argl.model;
while %t do

//

Pathl=exprs(1)
[ok,Pathl,Fnamel,Ponofl,Pintl]=getvalue(’Set AMESim block parameters’,..
[’Path name’;’File name’;’print yes=1/no=0’;’print interval’],..

list(’str’,1,’str’,1,’vec’,1,’vec’,1) ,exprs)

if “ok then break;end //user cancel modification

if part(Pathl,length(Pathl)) ~= ’\’ then
Pathi=Pathi1+’\’;

end

Ponofl=int (Ponof1)

Pint1=int (Pint1)

Fnamel=stripblanks(Fnamel)

Pathl=stripblanks(Pathl)

mess=[]

if Ponof1<=0 then
mess=[mess; ’Print on/off should be 0/1’;’ ’]
ok=Yf

end

if "ok then
message ([’Some specified values are inconsistent:’;’ ’;mess])
break;

end

chdir (Pathil);

flag = "c";libs = [];

files = [Pathl+Fnamel+’.0’;];

libs=[];

[a,bl=c_link(Fnamel); while a; ulink(b);[a,bl=c_link(Fnamel) ;end

zilib_for_link(Fnamel,files,libs,flag);

x1ink=1ink(’1ib’+Fnamel+’.d11’, [Fnamel;Fnamel+’info’],’c’);

nx=0; nin=0; nout=0; nvar=0;

[nx,nin,nout,nvar]=call(Fnamel+’info’,"out",[1,1],1,..
’i’,[1,1],2,74i°,[1,1],3,71°,[1,1],4,°i%);

exprs(1)=Pathi;

exprs(2)=Fnamel;

exprs(3)=sci2exp(Ponof1);

exprs(4)=sci2exp(Pint1);

model.sim(1)=Fnamel

ipar=[Ponof1;Pint1]

model.in=nin

model .out=nout;

model.ipar=ipar

model .state=zeros (2*nx,1)

model.dep_ut=[%f %t]

graphics.exprs=exprs;

x.graphics=graphics;x.model=model

break;

end

case ’define’ then

Fname=’slink_’;
Path="C:\’;
nx=1; nin=1; nout=1; nvar=0;

75



Scicos

Ponof=1;Pint=0;

model=scicos_model()

model .sim=1ist (Fname,10004)

model .in=[nin]

model.out=[nout];

model .rpar=[Ponof ;Pint];

model.ipar=1

model .nzcross=1

model.blocktype=’c’

model .dep_ut=[%f %t]

model .state=zeros(2*nx,1)

exprs(1)=Path;

exprs(2)=Fname;

exprs (3)=sci2exp(Ponof) ;

exprs(4)=sci2exp(Pint);

gr_i=[’txt=[’’AMEs’’;’’Scicos’’];’; ’xstringb(orig(1) ,orig(2) ,txt,sz(1),sz(2),..

1IfF411 ));J]

x=standard_define([2 3] ,model, exprs,gr_i)
end
endfunction

After building the interface function, the computation function of the block should be
constructed. AMESim provides a template file (*.etemp) to build an interface with other
softwares. We built the scicos.etemp file. This template file is used to generate the NAME_. c
file that contains the computation function of the interface block. In the computation function
we can call several functions to get access to the nonlinear equations of the model, e.g., the
function
funcval(&t, x, u, res, y, &flagx);
receives the current value of states and inputs of the model, and returns the derivatives and
new outputs of the model.

In order to generate the residuals of the model in £1ag=0 of the Scicos block, the funcval
function is called and in return the derivatives are stored in res vector. Then the residuals
of the model is computed with res[i]=res[i]-xd[i].

The funcval function updates also the outputs of the model. Therefore this function can
be used to update the outputs of the Scicos block in flag=1.

Generating the zero-crossing functions of the AMESim block is a little tricky. The
AMESim block can only report that a zero crossing has happened or not. This report is
given each time that the function funcval is called via flagx variable. To create a pseudo
zero-crossing surface in Scicos block, the output variable flagx is monitored in flag=2 and
phase-2 (i.e., when the solver calls the block). If there is any change, we change the sign of
zerocrossingflag. zerocrossingflag can be used in flag=9 to localize the zero-crossings.
Here is the complete computation function of the Scicos interface block.

void NAME(scicos_block *block,int flag)
{

double *rpar = block->rpar;

int *ipar = block->ipar;

double *z = block->z;

double *x = block->x;
block->nx;

double nx
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double *xd = block->xd;
double *res = block->res;
double *y = block->outptr[0];
int *ysize = block->outsz;
int nout = block->nout;
int nin = block->nin;
double *u = block->inptr[0];
int *usize=block->insz;
double *g = block->g;

int nevprt = block->nevprt;
int i, flagx;

double t, AMEoutput;

int LastWasReset;

= get_scicos_time();

if(first_call)q{

DisplayMessage("first_call in through flag.0 - this is BAD \n");
}else{

SetTimeAtThisStep(t) ;

flagx = 1;// variable step solver

funcval(&t, x, u, res, y, &flagx);

for(i=0;i<nx;i++) res[i]-=xd[i];

LastWasReset = ipar[0];
if(first_call){
flagx = 0;
funcval(&t, x, u, res, y, &flagx);
SetTimeAtLastStep(t);
}elsed{
if (get_phase_simulation()==1) {
if (LastWasReset==1){
flagx = 0; //last was restart -allow Amesim model to reset states
}else{
flagx = 2; // Allow discontinuities to be reported
}
ClearStatesChanged() ;
funcval(&t, x, u, res, y, &flagx);
if( (flagx > 2) || AreStatesChanged() ) do_cold_restart();
if (flagx > 2) LastWasReset = 1;
}else{
flagx = 2; // We need the discontinuities here for the zerocrossing
funcval(&t, x, u, res, y, &flagx);
if (flagx > 2){
zerocrossingflag
}else{
zerocrossingflag

0.5;

-0.5;
}
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FinalTime = t; // Will this cause problems 7
SetIsPrinting();
flagx = 1; // This is a "print call" - flag =1 seems resonable
funcval(&t, x, u, res, y, &flagx);
ClearIsPrinting();
if (fd_results != -1){
if (PrintInt > 0.0) {
if (t < NextPrint) return; // Do not save into the result file yet
NextPrint = t + PrintInt;
}
// Write time & variables to slink_.results.
OutputResults(t);

} else if (flag==9){
gl0]=zerocrossingflag;
} else if (flag==5){

if (fd_results != -1){
OutputResults(FinalTime) ;
close(fd_results);

}
fd_results = -1;
AmeCallAtEnd(0) ;

} else if (flag==4)
first_call = 1;
points = position = 0;
fd_results = -1;//output_result_file pointer
ConstructFileNames ("NAME") ;

LastWasReset = ipar[0];
Input(x); //reading from Data file
Initialize(x); // calling blocks via Xin_ routine to initialize

AMEoutput =rpar[0]; //print yes/no
AMEoutput=0;//no output_result_file
PrintInt =rpar[1]; //print interval
NextPrint = 0.0;

if (AMEoutput == 0.0) {

outoff = 1;
}elseq{
outoff = 0;
}
if (fd_results == -1 && AMEoutput != 0.0){

AmeReadFile(&t, x);
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3

LastWasReset= 0;
}
}
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Chapter 4

Numerical Solvers

Scicos is a software environment for modeling and simulation of dynamical systems. The
underlying formalism in Scicos allows for modeling very general hybrid dynamical systems,
i.e., systems including continuous-time, discrete-time and event based behaviors. For the
continuous-time part, Scicos uses standard ODE/DAE solvers which are controlled by the
Scicos simulator which also handles the discrete-time and event driven parts of the model.
This control includes, in particular, proper management of the re-initializations and zero-
crossings.

Scicos includes a graphical editor for constructing models by interconnecting blocks, repre-
senting predefined or user defined functions, a compiler, a simulator, and some code generation
facilities. A number of blocks are available in various Scicos toolboxes. Scicos can be used to
model and simulate a wide range of dynamical systems. Modeling of physical system often
ends up to an ODE or a DAE. To integrate a continuous-time system, a numerical solver
should be used. Scicos uses two numerical solvers, one for ODE’s and one for DAEs. But
using a solver in Scicos is not just a matter of interfacing the code. ODE and DAE solvers
have many control parameters which should be used to optimize the simulation in differ-
ent situations. Indeed in the hybrid context, controlling the solver, which should be done
automatically and should remain transparent to the user, is a complex matter due to the
interactions between the continuous-time dynamics and the rest of the system. Clearly the
discrete-time part affects the continuous-time part through simple connections. A continuous-
time system driven by a digital controller is a typical example. At sampling times, the value of
the control jumps creating discontinuities in the ODE/DAE. In such situations for example,
the simulator must make sure that the ODE/DAE solver does a cold restart otherwise, since
variable step ODE/DAE solvers require continuity, it may fail or give erroneous results.

But the interaction goes also the other way around: the continuous-time dynamics can
generate an event and affect the discrete-time part of the system. For example if the level of
water in a tank is modeled as the state of a differential equation, then in a Scicos model we
have the possibility of generating an event when the level falls below a given value. In this
case, the ODE/DAE solver must know when to stop and generate a signal. This is done using
the zero-crossing facility available in most ODE/DAE solvers. Using this facility however, in
the hybrid context like in Scicos, is not straightforward and some modifications had to be
made in these codes.

Most of the problems in using standard solvers in a hybrid environment are common to
both ODE and DAE solvers. However, there is an additional difficulty with the DAE case:
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the problem of re-initialization and finding consistent initial conditions.
This chapter presents some of the problems and solutions implemented in Scicos, and
discusses in particular modifications made in the ODE/DAE solvers.

4.1 ODE/ DAE Solvers

Scicos uses two numerical solvers: LSODAR [?] and DASKR [?, ?]. LSODAR is an ODE solver
which is used when the Scicos diagram does not contain implicit blocks! which means that
the continuous-time dynamics of the model can be represented as follows

& = F(t,z),

where ¢ is the time, x the state, and & the derivative of z with respect to time. This ODE
system is solved by calling the ODE solver repeatedly. At each call the solver computes
the solution over a given period of time. The function F' may change, due to discrete-time
dynamics (events), from one call to the other requiring cold restarts.

The dynamical model of certain physical systems cannot be described in ODE form, they
are described by differential-algebraic equations (DAE). The dynamics of the system can be
represented either in fully implicit form, i.e.,

0 = fi(z,z,t,u)
Yy = fg(ii,.T,t,U),

where u, x and y represent respectively the system’s inputs, the state vector and the outputs.
We assume that DAE is of index 1. To solve such a system, Scicos calls DASKR repeatedly,
very much the same way as it does in the explicit case with LSODAR. From the user point of
view, the main difference between the ODE and DAE here is that in the DAE case, to start
a simulation, initial values for both £ and & must be provided whereas in the ODE case only
z needs to be furnished. This causes difficult and interesting problems, in particular, in the
hybrid context.

LSODAR and DASKR are very similar in many respects and in particular in terms of control
options. They are also very alike from an implementation point of view. This has been an
important factor in selecting these two solvers for Scicos. Both LSODAR and DASKR solvers
are variable-step solvers which means that they vary their step-sizes during the simulation. By
reducing the step-size to increase accuracy when the state is changing rapidly and increasing
the step-size to avoid taking unnecessary steps when the state is changing slowly, they can
improve speed without compromising accuracy. That of course creates some difficulties in
terms of their use in Scicos because the solver can take a step forward in time and then later
step back which means that the evaluation times do not constitute an increasing sequence.
But the advantages are overwhelming and worth the extra effort to make it work in harmony
with the discrete-time part of the system. The variable step behavior is also unavoidable
because of the zero-crossing detection feature which is needed in Scicos. Indeed, in order to
accurately localize a zero, the solver needs to make repeated calls around it.

Another feature of these solvers is the ability to compute numerically the Jacobian ma-
trix. Of course, they can also use a user-provided routine for evaluating the matrix. But in

"mplicit blocks that will be explained in detail in chapter 6, is a block that its physical behavior is described
by a DAE
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Scicos, the lack of symbolic representation of all block’s dynamics? makes it impossible to
evaluate symbolically the Jacobian matrix. So the solvers have to compute it numerically.
For the sake of efficiency, the Jacobian is not evaluated at every time step. This useful and
important feature poses some problems in the re-initialization phase of DAE system which
will be discussed in subsequent sections.

4.2 DAE [Re]-Initialization Problem in Solvers

4.3 Event Detection

Mathematical models of many physical systems are described naturally by a system of dif-
ferential equations. Simulation of these models is a little complicated in the presence of
discontinuities, which occur in the form of discrete-time changes of system equations. So-
lution of ODE/DAEs containing discontinuities can be formulated as a combined discrete-
time/continuous-time system or hybrid system. The ability to detect the time when a discon-
tinuity occurs, or more precisely, the time when a function crosses some given value (by default
considered zero) is of capital importance in the hybrid environment. When a zero-crossing
occurs, the solver stops the simulation, pinpoints the exact crossing time and returns.

Zero-crossings are not just used to generate events in order to communicate with the
discrete-time part of the model. In most cases zero-crossings are used to properly control the
solver to simulate non-smooth continuous-time dynamics. Consider a continuous-time model
in which the absolute value function is used, e.g.,

& = |ul
u = sin(t)
y =

This system can produce a non-smooth (derivative not continuous) signal even if the input is
smooth. If the output affects a state derivative, it is important to halt the solver and do a
cold restart at the point where the non-smoothness may appear. Of course, in this case it is
the input value zero which corresponds to the point of non-smoothness. Although powerful,
a few features were lacking in the zero-crossing mechanism of LSODAR and, in particular,
DASRT (old version of DASKR) to make them operational in the Scicos environment. Two
new features have now been implemented and some are already included in the official release
of DASKR. These features/modifications will be described in the following sections.

4.3.1 Zero-Crossing as a Function of State Derivatives

In the integration of ODEs, it is reasonable to assume that the zero-crossing function cannot
depend on state derivatives because any state derivative can be represented as a function of
other states. But in the numerical simulation of DAEs, in a sense the state of the system
contains both  and & so that it would be natural to allow the dependence of the zero-crossing
function on 4. There are also physical situations where this would occur, for example, in
simulations of a mechanical system with an acceleration based controller and an acceleration

2As we will see in chapter 6, only implicit blocks can provide their own Jacobian matrix, and this partial
Jacobian can be used to compute the overall Jacobian
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based event. This was not possible in DASRT/DASSL but this feature has been added to
DASKR. Using DASKR we can solve systems of the form

0= F(i,z,1)
Gz, z,1) Zero-cross function.

However, there are some numerical problems which need to be addressed. Consider the
above equation when the algebraic and differential equations are separated:
tq = f1(Td; Ta, )
0 = fao(xg, Za,t)
Goc(Tdy Tas Tds Tas t),
where z, is an algebraic state and z4 is a differential state. For index-1 systems 4 can be
rewritten as a function of state variables, and we will have
&g = f1(Td, Ta, 1)
0 = fo(zg, Ta,t)
G, (dq, Td, Ta,t).
Note that introducing a new variable for eliminating &, will increase the DAE index by

one, i.e.,
&g = f1(Td; Ta, t)

Ly ="
0= f2(xda$a,t)

Glzc(’U,.Td,.’L'a,t),

is a DAE index-2 system, and so an unsolvable system for certain numerical solvers.

For this system, before the beginning of integration and just after a cold-restart, the
derivative of z, is not known. It is estimated only after the start of integration. Most of the
time, the estimates will not be accurate enough and the solver would be more likely to obtain
multiple roots, see Fig. 4.3.1. If after the root finding, the solver is [hot]-restarted, since the
solver uses the history to estimate the solution, there will be no problem.

A Zero-crossing function

Four false zeros

// time

Valid zero-crossing

Figure 4.3.1: Zero sticking.
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In general, DASKR cannot be trusted to do a good job of finding roots at (or very near)
the initial time/after a cold-restart, especially if the root function(s) depend on a derivative
of an algebraic state. This is because DASKR has very little history information about the
solution when it is searching for such a root. In this case, even if it has an accurate z, and
T, at t = 0, it has no way to compute %, accurately for ¢ > 0, and the value it uses is the
same as the input initial value. That is, when it does its initial root finding, before taking any
steps, it uses &, = Z4(0) identically, where ,(0) is the input initial guess for z,. Consider
the example

x = cos(z)

_ z if(z>0)
Y7 -z if(#<0)
G,. = & zero-crossing function.

Scicos is designed to simulate hybrid systems. That means that zero-crossing surfaces
will be a feature of many of the problems that it is asked to solve. Scicos tries to not do
a cold restart whenever possible. However, depending on the particular problem, different
parts of the prior solution are most useful, and in some cases, a cold restart is necessary. The
investigation of how best to incorporate cold, warm, and hot restarts, and how to make these
capabilities available to the experienced user without complicating things for the novice users
is an ongoing investigation.

4.3.2 Zero-Crossing Direction

In some applications of zero-crossings, it is not enough to have the time that a surface crosses
zero; it is also important to know in which direction the crossing has occurred.

Consider the bouncing ball system. In the bouncing ball we need the zero-crossing direc-
tion as well. When the ball hits ground, the solver should generate a zero-crossing event to
inform the simulator. This event cannot be detected unless the ball’s altitude become nega-
tive, see Fig. 4.3.2. So in the next restart, the position would slightly negative. Starting from
a negative altitude and a positive velocity, would result in another zero crossing. This zero
crossing should be ignored, a simple solution would be looking at the zero-crossing direction
and eliminating the - to + crossing direction.

Ground time

v

ZC1 7C2

(=)

Figure 4.3.2: Bouncing ball.

85



Numerical Solvers

Here is another example that shows the importance of crossing direction in a simulation.
Orbitode is a standard test problem for non-stiff solvers that traces the path of a spaceship
traveling around the moon and returning to the earth [?]. In fact, it is a restricted three-body
problem with the following system of equations:

1 =
Ty =
T3 =
Ty =
rn =

ro =

(04 g

T3

Ly

204+ 11— (1 — @)

1

Z2 Z2
—2z3+ro—(1—a) ——a—

1 2

3
2

((x1 + k)2 + x%)
((z1 — 1+ k) + x3)
0.0121286.

3
2
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-«
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The x1 and x, variables are the x and y coordinates of the spaceship. The trajectory for
some initial conditions that produce a periodic turning has been depicted in Fig. 4.3.3.

0.8
0.6
0.4
0.2+
0.0
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—0.8—
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Figure 4.3.3:
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Spaceship trajectory.

Suppose that we need to know precisely when the spaceship has the maximum distance
from the origin. For that, the Distance function should be constructed. When this function
is at a maximum, the spaceship is in the desired position. By differentiating the Distance
function we can obtain a zero-crossing function G,. to be used as an event generator.

Distance =

GZC
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The problem with this zero-crossing function is the fact that the zero-crossing function
passes the zero point both at the origin and at the maximum distance point (see fig. 4.3.4.
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This example shows the need to specify the crossing direction is of great importance for
certain applications. In this example it is used to distinguish the origin and the maximum
distance points.

5+

Figure 4.3.4: Zero-crossing function of derivative of spaceship’s distance from origin.

Unfortunately LSODAR and DASKR did not provide this information. In the previous
versions of Scicos where this feature was not available in the solvers, the direction of the
zero-crossing was computed by storing previous values of the zero-crossing functions. But
this was very cumbersome and in some situations produced erroneous results. This problem
has been solved by slightly modifying the codes without jeopardizing backward compatibility.
In previous version of DASKR,whenever a root occurs, Integrations stops at the crossing point
and reports by sending a IDID=5. To understand which root has crossed the zero, DASKR fills
out the Jroot array on return with:

e Jroot(i) = 1; if Root(i) has crossed the zero
e Jroot(i) = 0; if not.

In the current version of DASKR, the information about crossing direction is coded in the
sign of Jroot, i.e.,

e Jroot(i) = 1; if Root(i) has a root and changes from - to +.
e Jroot(i) = 0; No Crossing.

e Jroot(i) = -1; if Root(i) has a root and changes from + to -.

Implementation

In this section, we will explain the implementation of zero-crossing in DASKR. LSODAR
uses nearly the same routines and procedures. DASKR uses two routines to detect the zero-
crossings; Drchek and Droots. The role of the root-finder module (Drchek routine) is to
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determine if any of the zero-crossing functions changes the sign during the integration time.
When the solver starts the integration, at the beginning of each integration the overall in-
tegration time is divided into several small time-intervals with variable or constant sizes,
called integration steps. The BDF Integration method is used to advance the time on each
integration step. Drchek reads all the zero-crossing functions and saves their values at the
beginning of each integration step and compares them at the end of the integration steps.
If there are any sign changes, Drchek calls the Droots routine to find the exact time of the
earliest zero-crossing. If there are any crossings, the Droots routine will find and return the
exact time (location) of the crossing. If more than one function has changed sign during the
last integration step, Droots will find the left most crossing.

The numerical algorithm used to find a zero of a function is very simple: DASKR uses a
Regula-Falsi (false position) algorithm. It has the advantage of converging for a large range
of problems, and does not require the derivative of the function. All that it needs is the
interpolating function that return the value of zero-crossing function at point between the
end-points of the last integration-step. The following simplified listing shows a sketch of the
Regula-Falsi algorithm.

t1
t2

t(n)
t(n+1)

1:£1=£(t1)
£2=F(t2)
tx = min[t1- f£1*(t2-t1)/(£2-f1)] for all zero crossing functions
If (abs(tl-tx)<tol or abs(t2-t1)>10%tol ) goto 2
fx=f(tx)

If fi*xfx <0 then t2=tx

else til=tx
goto 1
2: tz=t2
if f1> f2 direction = -1
if f1< f2 direction = +1
if fi== 0 direction = -1
if f2== 0 direction = +1

end

In this listing the t (n) and t(n+1) are two end-points of the current integration step. To
handle the multiple function case, we do one step of Regula-Falsi on the all functions in order
to find (tx). With this (tx) value, a new interval [t1,tx] (or [tx,t2] depending on the
sign of £1*fx) is considered to run another step. This process is repeated until the interval
become small compared to the tolerances.

At the end of the procedure, when the search distance becomes small enough, the zero-
crossing direction can be obtained based on the sign of t1 and t2, see Fig. 4.3.5.
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f:

zero crossing function

time

() t)
te = tn = Fam = FT)

Figure 4.3.5: Search for the earliest root in integration step interval.

sign(tl) > 0 | and | sign(t2) < 0 || Jroot = +1, istate = 5
sign(t1) > 0 | and | £(t2) =0 Jroot = -1, istate = 5
sign(tl) < 0 | and | sign(t2) > 0 || Jroot = +1, istate = 5
f(t1) =0 and | sign(t2) < 0 Jroot = -1, istate =5

4.3.3 Zero-Crossing Sticking/Masking

In some situations, in hybrid systems like at the beginning of the integration or just after
a zero crossing, the zero-crossing surface tends to remain attached to zero. More precisely,
as time advances the surface value does not change. This phenomenon is common in hybrid
systems where the system modes may change just after passing a threshold (which is, of
course, a zero-crossing surface). In a Scicos simulation, it can very well happen that the
input to a system like

T = |u|a

which contains an inherent zero-crossing and mode, remains at zero over a period of time.
This means, from the solver point of view, that one of the zero-crossing functions is stuck
on the value zero. This situation is not properly dealt with in the solvers. For example, in
DASKR, this produces the following error message:

DASKR-- R IS ILL-DEFINED. ZERO VALUES WERE FOUND AT TWO VERY CLOSE T VALUES, AT T = R1

This a DASKR message that is raised when a zero-crossing function remains at zero. In
this case, the simulation is halted and cannot be resumed unless the model is changed. But
conceptually such a case does not pose a problem. To illustrate this point, consider the
following example.

0 ifz <1
(4.3.1) G(z,z):{ (z—1)3+(x—-2)*x(x—-3)3 ifl<z<3
0 if 3 <z
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where G,.(z) is the zero-crossing function, as depicted in Fig. 4.3.6. This zero-crossing func-
tion is smooth around z = 1 and # = 3 and should not cause any problems for the solver.
However the solvers fail to simulate this system; the reason being the stuck zero.

0.2

-0.05-

011

-0.15

-0.2 L L L I L L
0 0.5 1 15 2 25 3 3.5 4

Figure 4.3.6: The zero-crossing function of (4.3.1).

As an anther interesting example, consider the backlash model. Although it is a common
object in nonlinear-control, a more precise modeling and simulation may require an implicit
solver. The BACKLASH block is a system for which a change in input causes an equal change
in output. However, when the input changes direction, because of an inherent dead-band in
backlash, the output remains unchanged until a certain moment where the input touches the
other edge of the backlash, see Fig. 4.3.7. This figure shows the backlash’s model, with the
default dead-band width of DB= M-L.

Deadband = M-L

X(outpout)
AT N
L, U (input)

Figure 4.3.7: Backlash block.

Backlash can be modeled as,
u(t)+ DB/2—z =0 if Mode=1
F(z,z,t) = ¢ u(t) —DB/2—x=0 if Mode =2
=0 if Mode =3
with three different modes, as depicted in Fig. 4.3.8
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e MODE = 1: Engaged in up position, the input is increasing (positive derivative) and
the output is equal to the input minus half of the dead-band width.

e MODE = 2: Engaged in down position, the input is decreasing (negative derivative) and
the output is equal to the input plus half of the dead-band width.

e MODE = 3: Disengaged, the output does not follows the input, and remains constant

Mode 2
Engaged-Down

Mode 1
Engaged-Up

Mode 3
Disengaged

Figure 4.3.8: Backlash mode transition.

To be able to change the mods properly the following zero-crossings can be used:

g1(z) =u(t) + DB/2 —z
G(z,z,t) = ¢ go(xz) =u(t) —DB/2—=x
g3(x) = 7.

But there is a problem with these zero crossings because g; and go are non-zero only when
backlash is disengaged. In other times they are zero, so standard LSODAR/DASKR cannot
integrate this model. The following pseudo-code shows how stuck zeros are detected and
treated in standard LSODAR/DASKR:

RT(Y,Y’,TO,R0) - Evaluate the zero-crossing functions at TO and placed them in RO
if all(RO(i) != 0) then Return;

dt=Hmin

Y(i)=Y(i)+dT*Y’ (i)

TO=TO+dT

RT(Y,Y’,TO,R0) - Evaluate the zero-crossing functions at TO and place them in RO

if any(RO(i) == 0) then Raise an error message and halt the simulation;
else Return

At the beginning of each integration step, zero-crossing stuck check is done. If there are
any zero-crossing functions with zero value, the solver advances the time for to = 9+ hynin and
new state values are calculated by an interpolation function, and then zero-crossing functions
are reevaluated. If they are still zero, an error message will be raised and the simulation will
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be halted. This method could be erroneous and halt the simulation without a real stuck, for
example consider this example

x—sin(t) =0
F(z,z,t) = ¢ g.(z) ==z
z(0) =0, £(0) =0 initial conditions.

In this example, x is an algebraic state, so at ¢ = 0 the value of the derivative of £ is
unknown and normally is set to zero. With this initial value, g(z) is zero and even after
advancing the time, it remains on zero, so a false stuck alarm is given and simulation will be
halted.

Another flaw of standard LSODAR/DASKR is imprecision in detecting of the exact time
when a zero-crossing reaches zero and stays stuck, i.e., when a zero-crossing surface is non-
zero but it becomes zero without actually crossing the zero, see Fig. 4.3.9. In the official
version of LSODAR/DASKR, the zero is announced at t,,1 which is not precise enough if the
step-size is long.

Zero-crossing function

time

tn—i—l

Figure 4.3.9: Imprecision in zero detection.

To overcome the mentioned problems, an automatic Masking/Unmasking mechanism of
the zero-crossings has been introduced in the solvers LSODAR and DASKR. With this mecha-
nism, when at the start of a simulation a surface has value zero, the zero-crossing function is
masked, in other word, it is no longer treated as a zero-crossing function. Its value, however,
is monitored continuously to detect if it becomes non-zero at some point. When this happens,
an iterative procedure like the one used to pinpoint zero-crossings is used to find the exact
time at which the surface is no longer zero (see Fig. 4.3.10). The solver stops and returns as
it finds a zero-crossing but with another flag.
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A Surface Value

Iterations in [tn, tnt1] to find £,

time

ta ot tnt1

Unmasking the zero

Figure 4.3.10: Unmasking.

The implemented mechanism for masking/unmasking sorts out the problem of imprecision
in detection of zero-crossing, depicted in Fig. 4.3.11, as well. It finds the exact time of the
crossing by use of an iterative procedure. In this case the simulation is stopped and a zero
at t, is announced and after processing the event of zero-crossing, the integration can be
resumed and if zero-crossing function is still on zero, it will be masked, see Fig. 4.3.11.

1 Zero-crossing function

Iterations in [t,, tn+1] to find £,
A,

b tott

Masking the zero

Figure 4.3.11: Masking.

Masking mechanism sorts out another problem with DASKR and LSODAR. If the integra-
tion starts exactly on zero a point of zero-crossing function, for example,

i—1 = 0, z(0) =1
G = z-—1,

this zero-crossing value is ignored. But with the modification made in these solvers, a mes-
sage indicates that a zero crossing has detaches from zero value. Then the simulator can
handle the zero. This is quit useful at the beginning of the simulation for an event such as
if (time>0)then.

The introduction of the Masking/Unmasking mechanism respects backward compatibility
by all means since it handles cases where the actual solvers stop right away with an error
message. These modifications are not yet included in the official releases of LSODAR and
DASKR but are available in the Scicos source code.
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Implementation

During the simulation, DASKR monitors the sign of zero-crossing functions at the beginning
and at the end of each integration step in order to detect the possible sign changes in the
zero-crossing surfaces. After detecting a sign change, the solver pinpoints the exact location
of the crossing by use of a Regula-Falsi algorithm. In this phase, the zero-crossing function
is interpolated between two integration-step end-points. The following listing shows how the
masking and unmasking procedure works:

t1
t2

t(n)
t(n+1)

1:f1=Ff (1)
£2=£(£2)

If ( (f1 ==0) or (£f2==0) ) then
tx=(t1+t2)/2
else
tx = min[ti- f1x(t2-t1)/(f2-f1)]; for all zero crossing functions

If (abs(tl-tx)<tol or abs(t2-t1)>10%tol ) goto 2
f£x=f (tx)

If fixfx <0 then t2=tx
else til=tx
goto 1

2: tz=t2
if (f1 > £2) direction = -1
if (f1 < f2) direction = +1
if (f1 == 0) and (£f2 != 0) unmasking
if (£2 != 0) and (f1 == 0) masking
end

To mask the stuck zeros, at the beginning of the each integration step, all zero-crossing
functions are evaluated and saved in RO to be compared with the zero-crossing functions
values at the end of step. At the same time the index of zero-crossing surfaces with zero value
are saved in an array called Mask. This array is used in the Droots routine to discard stuck
zero-crossings from root-finding process.

At the end of each integration step, where the sign of zero-crossing surfaces are compared
with the sign of RO (the sign of zero-crossing surfaces at the beginning of the step), the value
of masked surfaces are checked. If they are not zero, the root-finding process is applied to
find the exact time when it has detached from zero. Unlike the Regula-Falsi procedure where
the signs are important, here the values are important.

Like what stated in the previous section, Jroot and Mask arrays play a key role in zero-
crossing and zero masking process. Jroot is used to communicate between the solver and the
main program. The size of Jroot and Mask are Ng. Jroot is altered by DASKR/LSODAR to
announce to the main program the occurrence of zero crossing, and to report masking and
unmasking to the simulator. Jroot is filled with these conditions:

94



4.4 Jacobian Matrix

e Zero-crossing: There is at least one zero-crossing

f(t1) > 0 |and | £(t2) < O Jroot = -1, istate = 5
f(t1) > 0| and | £(t2) =0 Jroot = -1, istate =5
f(tl) < 0| and | £(t2) > 0 Jroot = +1, istate = 5

e Unmasking: No zero-crossing but there is at least one unmasking

f(t1)==0 | £(t2) > 0 || Jroot = +2, istate = 6
f(t1)==0 | £(t2) < 0 || Jroot = -2, istate

I
(o))

Beside the advantage of the masking and unmasking procedure introduced in Scicos version
of LSODAR/DASKR in preventing the unnecessary simulation stop, the solver no longer needs
to advance the time at the start of each integration step. This may be seem trivial but in
some models, it prevents some false zero-crossing detections. The flowchart of the new DASKR
root finder routine and the new code of Drchek and Droots is depicted in Fig. 4.3.12.

4.4 Jacobian Matrix

One of the most important elements in the numerical integration of an ODE/DAE is the
Jacobian matrix. In fact, the convergence rate of the Newton’s method is closely related to
the precision of the Jacobian matrix. The Jacobian matrix can be provided either analytically
or numerically to the solver. Most of the time it is a difficult to provide it analytically, so
the solver can compute it via numerical differentiating. But that may cause problem in stiff
ODE/DAE. In the following sections some problems that we encountered in integration of
DAEs will be explained.

4.4.1 Scaling Problem in Jacobian

DASKR assumes that the error in the function is on the order of floating point roundoff. If
that assumption is not valid for your problem, the difference increment must be adjusted to
reflect that. Check that you have scaled the difference increment to reflect the size of z. If
the components of z differ dramatically in size, consider a change of independent variables to
rescale them. Consider this example,

In our case the Jacobian is not available and must be computed numerically in the following
manner:

5, ARG _ R +AY) - R(y)
AY; AY;
The AY; value depends on relative and absolute tolerances (Rtol, Atol) which are solver
parameters. These parameters can be adjusted element-wise or globally, but in general pur-
pose simulation environments such as Scicos, it is not reasonable to expect the user to furnish
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these values. They are selected globally and this can create numerical difficulties if the state
variables do not have comparable sizes. Consider for example the following DAE system:

0=1go—1
DAE = 0=y, — 10106
0=y, — 10796,

If in this system Rtol = Atol = 107, then the Jacobian computation yields a singular
matrix. The reason is that AY7 is so small that using double precision arithmetic we have

fo(Y1 + AY7) = fo(Y1).

Of course, this problem does not concern just the computation of the initial condition,
but also the simulation itself. To avoid this problem, we envisage the following possibilities:

e Analytical computation of the Jacobian,

e Intelligent element-wise selection of Tolerances,

e Normalizing state vector,

e Jacobian free methods, like minimum root square.

The first possibility can be implemented if only we have a symbolic representation of the
ODE/DAE. The second and third methods can be applied if we have an estimate of the
variables, so it cannot be applied in Scicos. The only option is the fourth one that was used
in Scicos to handle the cases where the Jacobian matrix is singular.

4.4.2 Singular Jacobian at Initialization

:i:l — I

0 =
Ty — x5+ 1,

o= 0

= (o)
a—-1 0

S = ( 1 3x%)’

where « is a scaler given by solver. As a result, with this initial condition, the Jacobian
will be singular and there is no possibility to continue with regular methods. Note that
this problem only exists during initialization and is independent of numerical or analytical
Jacobian calculation and depends only on initial guess points. To sort this problem out,
a possibility is solving the initialization equation with Jacobian free methods, such as a
minimum least square method, and gradient method. Suppose that we want to compute the
consistent initial condition for

Consider this index-1 DAE

with the initial condition

Then the Jacobian matrix is

(4.4.1) 0= F(j}d, Td, .’I,'a),
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where z4 is given and z, and 4 should be computed. So if we construct the vector of
unknowns we will have
_ [Za
y - id ’

and the objective is minimizing F(y) F(y). The cost function is

(4.4.2) Cly) = F'(y)F(y).

The problem is an unconstrained minimization that can be written as a convex quadratic
minimization problem, for which different solution methods are available. The gradient of C
is

VC(y) = J(y)F(y),

where J(y) is the Jacobian matrix that is computed as follows

oF
J(y) = B_y
The minimization algorithm has been implemented in CONMIN, available in the ACM TOMS13
package. It uses a restarted memoryless quasi-Newton conjugate gradient method [?, ?]. We
used this routine for the present study. As input, it requires the value of the cost function,
C, and its gradients, i.e., VC.

It is worthwhile to note that, although we implemented this method with numerical Ja-
cobian (J(y)), using the analytical Jacobian results in a smaller minimum value. The reason
is the fact that the numerical Jacobian does not necessarily indicate the maximum descent
direction, specially when the step-size is comparable to the perturbation ¢ in the numerical
Jacobian computation.

4.4.3 Jacobian Matrix Update

In the general Newton’s method, the Jacobian matrix has to be recomputed and re-factored
with each iteration, since the matrix is a nonlinear function of variables. However, great
gains in efficiency can be obtained by only computing and factoring the Jacobian matrix
once, and using this frozen Jacobian matrix for several subsequent iterations. Since this is
an approximation to the true system Jacobian, at each iteration the same convergence could
not be reached. Actually, this is not very important since several iterations can be realized
using the frozen Jacobian in the time required for computing and factorizing a new one. It
is common practice in numerical solver codes not to call for a Jacobian matrix update at
a step unless we have an indication that using the matrix of the previous integration step
will slow down the convergence. Allowing a Jacobian matrix update more frequently does
not necessarily imply that the code becomes more expensive. Since we do this just in the
first phase of integration, where the solver attempts to find the initial conditions to start the
integration.

For most problems, however, we do not encounter this problem and the performance of
DASKR is satisfactory. In particular, when the initial guess concerning the initial condition
is not far from the actual initial condition. When this is not the case, and this does occur in
Scicos applications, the code can be slightly improved. Currently in DASKR the computation

3www.netlib.org/toms/500
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of Jacobians is not performed at every step. This, of course, is reasonable to do during
simulation for efficiency and justified by the fact that during the simulation, we have a very
good initial guess for every nonlinear problem we need to solve. But in computing the initial
condition, the initial guess, which is nothing but the previous values of the state, can be far
off due to the discrete-time behavior of the system; an event can make the state jump, for
example. In this case a more frequent Jacobian evaluation increases the chances of converges.
In fact, we have taken a conservative approach by forcing a Jacobian re-evaluation at every
step. The overhead is not considerable because this concerns only Jacobian computations for
the purpose of computing consistent initial conditions. Such computations are rare events
(cold restarts) compared to the simulation effort which is permanent.

4.5 Minimum Step Size

In DASKR, Hmin, the minimum step size, is computed as a function of ¢, the current integra-
tion time and t,,;, the solution point:

Hmin=4.0D0*uround*MAX (abs (tn) ,abs (tout))
As a result, as integration time progresses, Hmin grows. Consider the the integration of the
DAE (0 = f(&,z)), over the two distinct intervals: 77 = [0, 1] and 75 = [1000, 1001] using
the same initial condition at the starting time. The numerical solver will use two different
minimum step sizes on these two intervals even though the DAE is time invariant and the
exact solutions are identical. While this is designed to keep the value of h significant, it may
cause problems at certain points where the step size should be reduced to meet the error
criteria.

To sort this problem out, remember that Hmin is intended to be a value slightly above the
roundoff level in ¢,,, the current integration time. As such it is appropriate that it varies with
tn. In DASKR, Hmin is used in two ways:

o At the start, |toy¢ — t| is required to be at least Hmin, to guarantee that the user has
provided the direction of the integration reliably.

e If the integration has difficulty passing the convergence or the error test with step-size
h of size |h|= Hmin, it stops with an error message saying that h is at Hmin and the
error test has failed.

In contrast to the DASSL family, the ODEPACK solvers [?] have Hmin = 0 as the default
value, but the solver issues a warning when ¢t + h = t. With a software package like Scicos,
where a wide variety of problems are solved, and the users may not have much expertise in
numerical analysis, it is important to try and reduce the number of integration failures as
much as possible. The good experience reported for ODEPACK suggests that this alternative
often leads to successful integration. Thus it seems that if Hmin is set to 0, this failure mode
will be eliminated, provided |tout — t| is nonzero. In Scicos we have changed the DASKR
source code and instead of the DASKR test on the Hmin:

If (abs(h) .ge. hmin) then
we use the test:

If (t+h .ne. t) then

98



4.5 Minimum Step Size
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Figure 4.3.12: New DASKR/LSODAR root finder flowchart.
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Chapter 5

Scicos Architecture

The Scicos simulator is a hybrid simulator capable of executing discrete-time, continuous-
time, and hybrid models. It is composed of a graphical editor, an intermediate compiler
(pre-compiler), a compiler, a simulator, and a code generator facility. The Scicos general

layout is depicted in Fig. 5.0.1.

Sciocs diagram

»| C—code generation

|t

y

Precompiler

'

Compiler

l

Simulation

Figure 5.0.1:

¢

Stand—Alone program

Scicos layout.

Scicos has a graphical editor to build the hybrid dynamical systems via block diagram
formalism. To build a model, the user can get the predefined block instances in the block
library and interconnect them by regular links (signal) as well as activation links (events).

The Scicos pre-compiler (compiler front-end) translates a Scicos diagram into an interme-
diate data representation, that will be used by the main compiler. In this stage the following

tasks are done

e a flat block diagram is provided through replacing the Superblocks with their contents
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in the main diagram,
e regular and activation connection matrices between blocks are built,

e 3 consistency verification such as incompatibility between port parameters of connected
blocks and unconnected inputs is performed,

e several data such as block lists, block types, block links, and block inputs/outputs are
collected.

This stage is done by the c_passl.sci function in Scicos, and provides a verified model
in addition to a primitive collected data that will be delivered to the main compiler.

The (compiler back-end) works with the provided intermediate data to produce final usable
data for the simulator. This stage converts the Scicos diagram to a Scicos model. The Scicos
model is model that is conformed with the Scicos semantic and all event inheritances have
been done. This stage, performed by the cpass2.sci function, also determines the execution
orders of blocks. The execution orders are the order in which blocks should be activated to
update their outputs, zero-crossings, and state derivatives, etc.

After extracting the Scicos model and collecting all execution orders, the simulator can
call the blocks to obtain the desired information to perform integration. The simulator uses
ODE and DAE numerical solvers to integrate the system and produce the simulation results.

In addition to modeling and simulation, Scicos generates an equivalent C-code for a
continuous-time and discrete-time sub-model of the Scicos diagram. The generated C-code
can be used in real time applications, independent of Scicos. In this chapter we will focus on
the Scicos compiler and simulator and how a simulation is performed.

5.1 Scicos Compiler

A compiler is a computer program that translates a computer program written in one com-
puter language (the source language) into an equivalent program written in another computer
language (called the output, object, or target language). The Scicos compiler translates the
model built in graphical editor in block diagram form into a data usable by the simulator.
Compiling a whole diagram is done in two stages, i.e., pre-compiling, which flattens the block
diagram model, and the main compiler that performs several tasks such as:

e Event inheritance mechanisms and algebraic loop detection
e Synchronism and inheritance management and execution order extraction
e Optimizing the execution orders

e Critical event classifications

These tasks have considerable importance in simulation because they determine how the
blocks should be called during simulation in different situations. To start, we will explain
the inheritance and critical event mechanisms that relate the Scicos compiler to the Scicos
simulator.
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5.1.1 Inheritance

Strictly speaking Scicos provides an event driven environment. This means that the acti-
vation of each block is explicitly determined by an activation signal. However, through the
inheritance mechanism, Scicos provides to some extent a data flow behavior as well. Consider
the Scicos diagram in Fig. 5.1.1.

square wave
generator

Figure 5.1.1:  Scicos model with a discrete-time event generator.

Here we have a block which does not have activation input ports, it is activated by
inheritance. A block with no activation input port (and not always active), inherits its
activation through its regular inputs. The activation associated with a regular signal is the
activation times of the block which has generated the signal. In this example we have only
one source of activation, i.e., the Event Clock. The Gain block inherits its activation from its
regular input signal generated by the Square Wave Generator block. This latter is activated
by the activation signal from the Event Clock, so due to the inheritance mechanism, the
Gain block is also activated by this activation signal. In fact we would have exactly the same
model if the Gain block had an activation input port and the output of the Event Clock was
connected to it. Consider now the example in Fig. 5.1.2.

oE

=

_Jnum(z)
b2 "lden(z) +§

Y

1/z

sinusoid
generator
el

Figure 5.1.2: Inheritance mechanism.
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In this example the Summation works by inheritance. In such simple cases, inheritance
means that an activation input port is added to the block which inherits. Each new activation
input is connected to the same activation source that is activating the source block (block its
regular output is connected to the regular input of inheriting block). The Summation block
inherits from two input signals, and the inheritance mechanism creates two input activation
ports for the block and connects them according to the sources of the regular inputs. The
way Scicos handles the inheritance in this case can be seen in the diagram of Fig. 5.1.3, which
is completely equivalent to the original diagram but where all the activations are explicitly

G} ©)

- v
num(z)
g "lden(z)

©,

+
Y

sinusoid
generator - 1 / Z
N 4

Figure 5.1.3: Inheritance mechanism, explicit activation of diagram of Fig. 5.1.2.

The inheritance mechanism is fairly simple to understand when a single activation exists
in the model. With the presence of conditional activations or in asynchronous cases, the
inheritance still works. For example, the Scicos block diagram system of Fig. 5.1.4, after
inheritance, will be converted into diagram of Fig. 5.1.5.

Ifin>0

Y

then else

) 4

=)

sinusoid
generator S/ H

Figure 5.1.4: Block diagram system with conditioning.
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Kin>0

then else

sinusoid ‘I | &1
generator 'IS/ H

Figure 5.1.5: Inheritance mechanism with conditioning.

5.1.2 Continuous-time and Always-active Blocks

A block can be declared always active by declaring the parameter dep_t=True in its interfacing
function. This means, in particular, that the block is a continuous-time block, i.e., its outputs
and its states can vary continuously with time. The inheritence mechanism is applied for the
continuous-time block as well. Normally, the always active property should be designated by
an activation signal received on an activation input port if we are to be consistent with Scicos
formalism. However, to avoid useless complexity at the level of the editor, this property is
simply specified as a block property. There are a number of blocks in Scicos palettes which
are always active. These blocks can be used with other blocks to construct hybrid diagrams.

sinusoid
[ —pros—{ /[

1/

Figure 5.1.6: Always active blocks.

In the example shown in Fig. 5.1.6, the Sinusoid Generator and the Integrator block
(1/s) have the always active property. The Absolute value block inherits this property
from Sinusoid block. The conditional activating also works with continuous-time signals.
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Consider the Scicos diagram in Fig. 5.1.7.

sinusoid frin>0
generator then else

sinusoid
generator Vs Selector

Figure 5.1.7: Continuous-time conditioning.

In this example, the scope displays either the integral of a sinusoid wave or its amplified
signal. This is done by selecting ([ sin(wt)) or (2sin(wt)) depending on the sign of another
sine wave signal (sin(at)).

5.1.3 Scicos Formalism for Continuous-time Signal

The formalism used in Scicos is based on the formalism of synchronous languages, in particu-
lar, Signal and its extension to continuous-time systems [?]. We do not give a full presentation
of the formalism here (for more see [?, ?, ?]), we simply review some aspects which specifically
have to do with the continuous-time behavior in order to lay the ground work for presenting
the specific issues related to continuous-time simulation.

Even though there exists an inheritance mechanism in Scicos formalism which provides
a data-flow type of behavior, Scicos is fundamentally event-triggered. This has made the
continuous-time extension non-trivial. The basic idea consisted in treating the continuous-
time events just like an ordinary (discrete-time) event [?].

Events are signals which activate system components in discrete-time event-driven envi-
ronments. We extend the notion of event to obtain what we call an activation signal which
consists of a union of isolated points in time and time intervals [?, ?]. Each Scicos signal is
then associated with an activation signal specifying time instances at which the signal can
evolve, see Fig.5.1.8.
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Figure 5.1.8: A typical Scicos signal. Thick line segments represent the activation times.

The fundamental assumption is that over an activation interval, in the absence of events,
the signal is smooth. The Scicos compiler propagates the activation signals through the model
in order to obtain activation information about all the signals present in the system. This
information is valuable for the simulator which has to properly parameterize and call the
numerical solver.

It would be unrealistic to imagine that a formalism can be developed independent of the
properties of the numerical solver. That is why it is important to study these properties
and identify precisely what properties are important and must be taken into account in the
development of the formalism and the implementation of the modeler and simulator.

5.1.4 Compiler Outputs

After establishing all inherited activation links, the compiler prepares the necessary informa-
tion for the simulation of the model. The simulator needs to have several types of information
about the model at requested instants of simulation. State derivatives of ODEs (or residuals
in DAE models), new discrete-time state to update, and zero-crossing function values should
be provided for the numerical integrator. For each of these types of information that are
distributed in the model, several blocks should be called to gain valid data. The question
that arises is which blocks and in which order they have to be called in order to provide the
requested information. The Scicos compiler’s task is generating these execution orders.

Execution order is the order in which the blocks should be called to obtain the requested
data. For example, consider the Scicos diagram depicted in Fig. 5.1.9.
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Figure 5.1.9: Continuous-time conditioning.

In this Scicos block diagram, to compute the state derivatives, the output of block {(1,
4), (8), (6)} should be updated and the continuous-time states of block {(4)} read. Note that
the reading order between each set is important, e.g., calling with order{(1, 4), (6), (8)} gives
a false result. To compute the zero crossing function value, the output of block {(1)} should
be updated then zero-crossing functions of block {(5)} be read.

The discrete-time states of a system are in the blocks that contain discrete-time states.
Any block containing discrete-time states (here it is {(7)}) should have either a discrete-time
input-event port, or an internal zero-crossing to update its discrete-time states. Whenever
an event is activated, the activated blocks (clkptr, ordptr, ordclk vectors) should update
their outputs, then the discrete-time equations in activated blocks can be updated.

To each event, we associate a list specifying the blocks which are to be activated when
the event fires and the order in which they should be activated.

2 i 7
4 Abs =m
5

L

sinusoid t _ joum(s)
generator]  fden(s)

=

Figure 5.1.10: Execution order.

The same holds for continuous-time activations (as it was said before, Scicos treats the
continuous-time activation similarly to the way it handles discrete-time events). A continuous-
time activation is a call to the system to update its continuous-time components. For that,
there is an activation list and an order in which the activations must be realized. We call it
Cord list.
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For example, in Fig. 5.1.10, to update the system at the requested times, the blocks
{(1), (3, 4), (2, 5, 6)} should be called to update their outputs. During the continuous-
time simulation (when the solver is at work), the 3, 4 blocks are called to deliver their
updated residuals (f(z,z,t,u)). Note that these blocks are the blocks in Cord which contain
continuous-time states.

The Cord list can be used either for updating the continuous-time parts of the system at
specific times or during the integration by the solver. So unlike discrete events, continuous-
time events are evoked in four distinct situations:

1. In the simulator, to update the continuous-time parts at a requested time (flag=0,
phase=1).

2. By the differential equation solver, to update the continuous-time parts so that system
residuals can be correctly evaluated (flag=0, phase=2).

3. In the simulator, to update the modes variables (flag=9, phase=1).

4. By the differential equation solver, to update the values of the zero-crossing surfaces
(flag=9, phase=2).

It turns out that in the second, third, and forth cases, we do not necessarily need to
activate all the blocks in the Cord list. In the second case, we only need to update the
outputs of blocks which affect directly or indirectly the input of a state bearing block. Same
for the third case except that blocks containing zero-crossing surfaces must be considered.
For example in Fig. 5.1.10, the 2, 5, 6 blocks which are in Cord don’t have any effect on the
residuals. Thus, they can be excluded from Cord and be stored in a new list. The new list,
Oord list, is comprised of all the blocks for which their outputs may affect the input to a
block containing a continuous-time state. The blocks affecting the zero-crossing surfaces (in
this case, Abs and the Quantizer blocks) are 1,2,3,5. We call this list Zord.

The use of Oord and Zord optimizes the number of calls to each block in the integration
phase. This optimization is very important for simulation efficiency because the solver requires
many function evaluations (depending on the stiffness/nonlinearity of the system and the
required precision). In a typical application, for every evaluation due to a discrete-time event,
the solver requires hundreds or even thousands of continuous-time function evaluations.

5.1.5 Event Classification

Besides obvious solver parameterizations such as setting various error tolerances, maximum
step size, etc..., the simulator must automatically start and stop the simulation when nec-
essary. When an event occurs, the continuous-time simulation must stop so that the event-
triggered components of the system can be activated. Once this is done, the continuous-time
simulation can proceed. So event times are the times of stop and restart of the continuous-
time simulation. Although they are similar in this way, the events originating from different
sources perform different tasks. Hence they have different importances and properties. In
subsequent sections, two important properties of events will be introduced.
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Event Predictability

Events can be put into two categories: predictable and non-predictable. Consider the following

system:
i = zv/1—-1t ift<1
10 ift > 1.

To model this system in Scicos, we need to generate an event at time ¢ = 1 in order to
change the dynamics of the system. See the Scicos diagram illustrated in Fig. 5.1.11.

Relay > 1/s

0 —

Figure 5.1.11: Predictable event.

But this event is also predictable. We know ahead of time its occurrence time (¢t = 1). In
general, most events in a Scicos diagram are generated by Event Clocks and their times are
predictable.

Non-predictable events are zero-crossing events. These events are generated when a signal
crosses zero and their activation times are not known in advance. A predictable event can
be considered and modeled as a non-predictable event. For example in the above example,
the event at time 1 can be obtained by using a zero-crossing test on the function 1 — ¢. But
that would be inefficient for two reasons: first, the zero-crossing tests are additional work for
the solver. Second, to detect a zero-crossing, the solver has to go beyond the crossing and
perform iterations to pin-point exactly the location of the crossing. In the above example, this
results in an error since for ¢ > 1, /1 — ¢ is not defined. See the Scicos diagrams illustrated in
Fig. 5.1.12 and Fig. 5.1.13. In the Scicos diagram illustrated in Fig. 5.1.12, the zero-crossing
block defines a zero-crossing surface. The solver has to go beyond the surface in order to
find the exact time of crossing. That is why it attempts to evaluate the value of /1 — ¢ for
t larger than 1. The same system is implemented in a slightly different way as illustrated in
Fig. 5.1.13. In Fig. 5.1.13, the If-then-Else block redirects its activation signal to one of its
output activation ports depending on the value of its regular input. If this latter is positive,
the activation goes through the If port, if not, it goes through Else. The If-then-Else
and the Event-Select blocks are the only blocks which redirect activation signals without
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creating delays. These blocks have built-in zero-crossing surfaces that generate an event
when the activated output port changes, because such a change may produce discontinuity
and thus the solver must be informed. The presence of this zero-crossing forces the solver to
step beyond the ¢ = 1, and as a result, the simulation fails again.

Event at
time 0

1/s

Figure 5.1.12: The simulation fails in this case.

If in>0

then else

Oy Lo~
SHTEL
T e %?; smcm+» s T

Figure 5.1.13: The simulation fails also in this case.

Event Criticality

Although all events force the simulator to stop and restart the integration, they are, however,
not equal in importance. Consider the Scicos diagrams in Fig. 5.1.14 and Fig. 5.1.15. In
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Fig. 5.1.14, the event generated by the Event Clock drives the Scope. The integrator block
(1/s) receives on its regular input port the sine function which is generated by the ever-active,
sinusoid generator block (ever-active means the block is always active). The output of the
integrator is sampled by the Scope at its activation times (times at which it receives an
activation on its activation input port, (i.e., the times of the events generated by the Event
Clock). In this case, the solver must be stopped at each of these times, however, since the
corresponding events do not produce any non-smoothness on the input of the integrator, there
is no reason to re-initialize the solver (do a cold restart). We say this event is not critical.

G

sinusoid Us
generator \/

Figure 5.1.14: Non-critical event.

In diagram of Fig. 5.1.15, the event activates the random generator block which outputs
a random variable. This output remains constant until the next event reactivates the block.
The integrator then receives a piecewise constant signal to integrate. Thus the event in this
case creates a discontinuity at the input of the integrator. Clearly in this case the solver must
be re-initialized. This event is critical.

(D

random s
generator \/

Figure 5.1.15: Critical event.

Furthermore, an event can be critical in another way: an event can cause a jump in the
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internal state of a block. One such example is the integrator with reset on event. Clearly if
a jump is produced in the state, the solver must be restarted cold.

In Fig. 5.1.13, if the event is treated as predictable, the simulator, using the fact that the
upcoming event at time 1 is critical, sets the critical time to 1 preventing the solver to step
beyond ¢t = 1.

Critical Event Classification

In the previous sections the importance of Critical events has been shown. Here the definition,
and the classification algorithm of Event in terms of criticality will be discussed.

Definition: A discrete-time event is critical if upon activation, either an input of a block,
containing zero-crossing surfaces or continuous-time states, is updated, or the continuous-time
states of a block jump.

Before explaining the critical event classification algorithm, the following items should be
noted.

e The critical property concerns only discrete-time events. Therefore to avoid considering a
continuous-time event as critical, all purely continuous-time activation links must be excluded
from the classification procedure.

e Block having direct input-output relationships (direct feed-through) and ever-active
blocks can pass on the discontinuities arriving at their inputs to the following blocks. These
blocks are called DTB (Discontinuity transmitting block).

e Synchro blocks that do not have an input event port and inherit the continuous-time
activation, are referred to as Continuous-time Synchro (CS) blocks.

B

ALp; ALnj

Bi RLij Bj — Bk f———

Figure 5.1.16: Event inheritance.

Algorithm:

1. Propagate the events through DTB’s to determine the blocks that are potentially subject
to discontinuity at their inputs. For example in Fig. 5.1.16, if block B,, activates block
B; (here i.e., ALy;), and if a regular link between blocks B; and Bj exists (i.e., RL;;),
and if the block B; is a DTB, then an explicit activation link between block B, and
block B; (i.e., ALy;) is established!. Repeat this process until no more activation link
can be established.

2. Find all CS blocks (Synchro blocks not activated explicitly) and store them in CS-list.

! All the changes made in the diagram are discarded at the end when the critical events are identified so
that other phases of compilation can be carried out normally
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3. Identify all the blocks activated by CS blocks and add them to the list of DTB’s. For
example, in Fig. 5.1.17, the B; block is activated by C'S,. so it should be added it to
the list of DTB’s. The reason is that the block B; receives a continuous-time activation

through C'S,, therefore it can pass the eventual discontinuities at its input port into the
By, block.

I CSn

B; B B,

Figure 5.1.17: Continuous-time Synchro Block.

4. Remove all activation links originating from CSs (e.g., in Fig. 5.1.16 all AL; links) and
then remove C'Ss from the diagram.

5. Go to step 1 and repeat until in step 2 CS-list becomes empty.

6. For each event source, search through all the blocks it activates. If any of them contains
continuous-time states or zero-cross surfaces, then flag the event as critical.

At later stages of compilation, Synchro blocks (i.e., If-then-Else and Event-Select)
are duplicated if they have multiple sources of activation. So each Synchro, at the end, is
activated just by one activation source. This process is done after critical event classification
and the newly generated events inherit the property of the original events.

5.2 Scicos Simulator

The simulator of Scicos is supposed to generate the behavior of the Scicos model, that is
very often a hybrid system. A hybrid system simulation should be able to perform, discrete-
time event scheduling, continuous-time integration, and discrete-time and continuous-time
part interactions (state events and event handling). Since a hybrid system can be a purely
discrete-time or a purely continuous-time system, the simulator should perform its normal
operations even for a purely discrete-time or a purely continuous-time system, as well. In this
thesis the discrete-time simulation is not treated in detail (interested readers are referred to
[?, 7], but the discrete-time event scheduling in the simulator is outlined in order to be able
to understand the general timing of hybrid model simulations. In the following sections, first
we study the structure of a purely discontinuous-time simulator, then a simulator that uses
a numerical solver to integrate a system, and at the end, we add them up together to obtain
a hybrid simulator.
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5.2.1 Purely Discrete-time Simulator (Event Scheduler)

The discrete-time part of a hybrid model is defined by the discrete-time variables, the discrete-
time equations, and the simulation time. A discrete-time signal is changed only with discon-
tinuous jumps over time and its states remain unchanged until the next event arrives. At
each event time, discrete-time equations are activated to update the state of the system. The
simulator’s role is the scheduling and activating the events to advance the simulation time.
The overview of the Scicos event scheduler simulator has been given in Fig. 5.2.1.

Read the initial programmed events
and put them in the event queue

Discrete | Activation
Events | Times
/ e
- Execute the first es
event in the queue
Advance simulation tim4 Activate blocks e
n
A associated with event
'
vents
If a block programms other events ueue
put the new events in the queue . .
€i Time based
€; ordering
'
NO There is no event in the queue
or next event is beyond the final time

Yes

Figure 5.2.1: Discrete-time simulator/Event scheduler.

In Scicos, a simulation is started by reading the pre-programed events in the interfacing
function of the blocks. The execution time of programed events are inserted in the tevts
vector. To manage the event scheduling, Scicos uses an event queue (evtspt vector). The
events are arranged in the vector according to their execution time. A pointer (pointi)
indicates the next event to be executed.

Each event has an associated list that indicates the blocks to be activated. When an event
is fired (activated), the blocks in the associated list are called in an order defined by ordptr
and ordclk vectors. The blocks in the list are called two times; First, they are called with
flag=3 to program the future events. If there are any, the new event is programed in the event
queue. Then, the blocks are called with flag=2 to update their discrete-time states. This
process is done in the ddoit function in scicos.c. The flowchart of ddoit is in Fig. 5.2.14.
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5.2.2 Pure Continuous-time Simulator

Simulation of a continuous-time system is nothing but calling a numerical solver with ap-
propriate parameters and inputs. Scicos uses two numerical solvers for ODEs and DAEs.
ODEs can be considered to be an special case of DAEs. But DAE and ODE solvers are quite
different in several aspects such as convergence, initial conditions specification and speed.
So although ODEs can be integrated by DAE solvers, we preferred to use another solver to
integrate ODEs efficiently.

In Scicos, LSODAR is used as a ODE solver and DASKR is used as a DAE solver. Since the
BDF methods used in DASSL family solvers are designed to solve index-1 full implicit DAEs,
and index-2 semi-explicit DAEs, we have confined ourself to model and simulate the index-1
fully implicit problems. So at this time the Scicos simulator needs to receive an index one
DAE. If the user formulates a problem which results in a DAE of higher index than one, the
resulting Jacobian matrix will be singular and the DASKR integrator will most likely return
a (-8) error message i.e.,

IDID = -8
-- The matrix of partial derivatives appears to be singular (direct method).

To get an idea of how DASKR works, this is the calling sequence of the DASKR solver in
Scicos:

C2F (ddaskr) (C2F (simblkdaskr) , neq, told, x, xd, &t, info, &rtol, &Atol,

&istate, &rhot[1],&nrwp, &ihot[1], &niwp, rpardummy, ipardummy,
C2F (Jacobian), rpardummy, C2F(grblkdaskr), &ng, jroot);

where

e simblkdaskr is the name of a subroutine that provides the residual values of the DAE
system,

e neq is the number of equations in the system,

e told is the current value of the simulation time,

e x contains the solution components at told,

e xd contains the derivatives of the solution components at told,
e t is the next event time or final time,

e info is an integer array used to communicate details of how the solution is to be carried
out,

e rtol, Atol represent absolute and relative error tolerances,
e istate indicates what the code did,

e rhot is a real work array of length nrwp which provides the code with needed storage
space,

e ihot is a integer work array of length niwp which provides the code with needed storage
space,
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e rpardummy, ipardummy are real and integer parameter arrays which you can use
for communication between your calling program and the Residual, root functions, and
Jacobian subroutines,

e Jacobian is the name of a subroutine which can optionally be provided for calculating
Jacobian data involved in solving linear systems,

e grblkdaskr is the name of the subroutine for defining root functions. The number of
root functions is ng,

e jroot is an integer array of length ng for output of root information.

In a purely continuous-time system, the told and t are the start and final simulation
times, but in a hybrid system, they define the time interval between two consecutive events.

The simblkdaskr subroutine is called to compute the residuals of the DAE set at solution
points. The diagram in Fig. 5.2.15 shows a simplified flowchart of reading continuous-time
states in the simblkdaskr routine of the Scicos simulator. To guarantee that inputs of all
blocks are updated when the residuals are read, the blocks should be called with £1ag=0 in
an order which is stored in oord vector. So, the simblkdaskr routine calls the block in the
oord list with flag=1 to update the block outputs, then it calls them again with flag=0 (in
the same order) to read their residuals.

The grblkdaskr subroutine is called to compute the zero-crossing function values to detect
the roots. The diagram in Fig. 5.2.16 shows a simplified flowchart of reading zero-crossing
surfaces in the Scicos simulator. To compute the zero-crossing functions, the block containing
the zero-crossing surfaces should be read. To read them, the grblkdaskr function calls the
block in an order which is defined in the zord vector. First, they are called with flag=1
to update their output, then they are called with £1ag=9 to read their zero-crossing values.
Whenever DASKR finds a root, it stops the integration and returns with Idid=5, and the
crossed surfaces are indicated in the jroot vector. This option is used in hybrid simulator to
generate state events.

When the numerical solver stops integration, it returns with flag (istate) indicating the
integration situation. The flag can have several values. Some of them that happen more
frequently are:

e 1: A step was successfully taken in the interval-output mode. The code has not yet
reached t and current time is told.

e 2: The integration to T,y was successfully completed (T=Ty;,,) by stepping exactly
to Tstop-

e 3: The integration to t was successfully completed (told=t) by stepping past t. x and
xd are obtained by interpolation.

e 4: The initial condition calculation, with INFO(11) > 0, was successful, and INF0O(14)=1.
No integration steps were taken, and the solution is not considered to have been started.

e 5: The integration was successfully completed by finding one or more roots at told.
The valid roots are indicated by setting 1 or -1 in the jroot vector.

e 6: The integration was successfully completed by finding a root, detached from zero.
The unmasked roots are indicated by setting 2 or -2 in the jroot vector.
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-1: A large amount of work has been expended (about 500 steps).

e -2: The error tolerances are too stringent.

e -7: The nonlinear system solver in the time integration could not converge.
e -8: The matrix of partial derivatives appears to be singular (direct method).

A major problem in simulating a DAE system, is to provide a consistent initial condition.
This happens only one time at the beginning of simulation in a purely continuous-time system.
But in discontinuous DAEs, this will be far from a trivial problem. To have a better control
on DAE initialization, DAE consistent initial condition finding and DAE integration are
separated. First a solver is called to find a consistent set of initial condition, then the same
solver or another is called to perform the integration. This has been shown in digram of
Fig. 5.2.2. This subject will be studied further in the coming sections.

Continuous From t=0
Simulation to Tf
———————
Consistent
state
Daskr Simblkdaskr
Initialization

Y
Daskr

Integration Grblkdaskr

Simblkdaskr

i

Told=continous

NO

YES

Figure 5.2.2: Continuous-time simulator.
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5.2.3 Hybrid Simulator

Simulation of a hybrid system is composed of two phases; the discrete-time phase and the
continuous-time phase. In the discrete-time phase, event scheduling, event activating and
state updating (discrete-time and continuous-time) can be done, but the simulation time
does not advance. In the continuous-time phase, the numerical solver integrates the differ-
ential equation, the simulation time advances, and an event detecting process is performed.
Integrating of the continuous-time system is done from one event time to the next event time.
The continuous-time phase and discrete-time phase are interlaced.

In Scicos a discrete-time phase starts when an event occurs, and lasts until all blocks in
ddoit or zdoit (depending on event type, time-event or state-event) are called and achieved in
a consistent continuous-time state, in the sense that no further discrete-time actions can take
place before a continuous-time phase has elapsed. This is important when dynamical system
contains If-then-Else or Switch blocks. Between each two adjacent discrete-time phases a
continuous-time phase takes place. A continuous-time phase starts after a discrete-time event
and ends when another event (either predictable or unpredictable) arrives.

In previous sections, we learned how a discontinuous-time event and continuous-time
simulator work. A hybrid simulator has the structure of discontinuous-time event simulator
and a continuous-time integration is run in between two consecutive discrete-time events. The
rest of the simulator is detecting and activating state events and some optimization strategies.
The flowchart of the Scicos simulator has been given in Fig. 5.2.17, 5.2.18, 5.2.19, and 5.2.20.
In the following sections we will focus on zero-crossing events and the initialization problem.

5.2.4 Zero-Crossing Management

The continuous-time part of a hybrid system can influence the discrete-time parts only via
discrete-time events. In integration phase, if the solver detects a zero-crossing, it stops the
integration and returns with flag (istate=5). The crossing time is stored in told, and crossed
roots are indicated in jroot. Using these information, the associated zero-crossing event will
be programed in the event queue. It will be the next event to be executed before resuming
integration. The solver stops also when a masked zero detaches from zero. In this case the
corresponding flag is (istate=6).

Numerical Solver Restart Control

There are many events in a hybrid system, such as the events of a clock that provides a
sample time for the scope or sub-sampling clocks. Most of them do not have any effect on
the system. For example, a clock event updating the scope does not cause any discontinuity,
so it is not necessary to restart the solver at each clock event. As cold-restarting the solver
is costly and time consuming, solver should be cold-restarted as few times as possible. The
classification of the events allows us to avoid unnecessary cold restarts. Without it, at every
event time, the solver should be cold restarted to make sure that the numerical solver uses
consistent information.

The lack of consistency is avoided in two ways. If the critical event is fired immediately,
a cold restart is performed. Because in such a case, a discontinuity may occur in a signal (or
in its derivative) fed to a block containing continuous-time states or zero crossing surfaces.
This discontinuity may cause the solver to fail during restart. This is particularly a problem
in Scicos because Scicos uses a BDF (backward differentiating Formula) method to integrate
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the continuous-time systems. In order to implement this method, the critev vector stores
the critical events. Whenever an event is fired in ddoit, it’s criticality is checked. If it is a
critical one, the next call to the numerical solver will be a cold-restart.

Another situation where inconsistency can occur is when a critical event is programed
for a future time. If the solver had been allowed to look beyond this time, the new critical
event may affect values which are already used by the solver, i.e., values beyond this time.
This change of model can result in a failure of the solver which expects to receive consistent
information. To see more precisely what happens in this case, note that after each event at
time £(7), when the integration resumes, the start-time ¢(¢), the end-time #(i+1), and the time
beyond which the solver is not allowed to explore g0 (%) are passed to the solver to integrate
the system from (%) to t(i + 1). Note that the solver may advance the time beyond ¢(i + 1)
and compute the solution at ¢(i + 1) by interpolation. Let ¢max be the largest value of ¢ for
which the solver has requested an evaluation of the function; clearly ¢(i +1) < tmax < tstop(i)-
After the processing of the event(s) at time ¢(¢ + 1), the integration resumes from ¢(i + 1). If
the events at t(i + 1) program a critical future event at a time ¢, earlier than ¢p,,x, then the
function evaluations done in the previous integration period are no longer valid. One way to
make sure that such a situation does not occur is to force a cold-restart if ¢, < tsop(é). Note
that in this case we set tsiop (2 + 1) = tc if N0t tsop (4 + 1) = tstop ().

In addition to automatic management of solver cold restarting, the user can directly forces
the solver to perform a cold-restart by evoking the external function:

void do_cold_restart()

This function forces the simulator to do a cold-restart. From the simulator’s point of view,
calling this function in a block specifies that a discontinuity occurs (or has occurred) and the
state needs to be re-calculated. When such a statement is executed, a new initial condition
is re-calculated at the beginning of the next integration.

5.2.5 Multi-Model System and Discontinuous DAE

Modeling a physical system very often leads to a DAE with discontinuities or a multi-model
DAE. A multi-mode formulation is a way of describing non-smooth multi-model systems in
terms of a finite number of smooth systems. The idea is to divide the state space of the
system into different regions and associate a mode to each region. It is assumed that the
system is described in terms of a single smooth model within each region. A simple example
of a multi-mode DAE is:

If (z >0) then
fl(.'E,i'E) =0

else
f2(.’E,£'E) = 0.

Unless clarity requires that we include it, we have omitted the time parameter ¢ from the
equations. In this example, the DAE has 2 modes: the first one is on when > 0 and the
second is on when the first one is not true. In general, a multi-model system is defined via
some conditional statements (If-then-Else, Switch). In other word, a hybrid model may be
composed of several models such that each model is valid in a certain region. As a physical
example, consider a water tank with an open outlet.
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Watre level
Water tank atre feve

Figure 5.2.3: A water tank as a multi-model system.

In this system, x, the water level in the tank Fig. 5.2.3, can be expressed as a function of
Q, outgoing water flow:

j::lea

where kq is constant. () can also be expressed as a function of z:

{ kaovx — Hoygter it T > Hoyprer

0 if z < Houtlet-

Hence the behavior of this simple model is described by a multi-model system composed
of two ODEs. This regional separation with smoothness assumption in each region is very
important because non-smooth systems cannot be fed directly to the solver. Numerical solvers
assume that the state variables and their first derivatives are continuous. If this assumption
is not true, special precautions have to be taken at the discontinuity points. Because of the
discontinuity, the discontinuous ODE/DAE cannot directly be fed to the numerical solver for
integration. Since the linear multi-step method used by LSODAR/DASKR uses state variables
and theirs derivatives over several integration steps to estimate the solution behavior, using
two functions with previous Jacobian estimation deteriorates the convergence and most of
the time will causes a failure in integration.

To avoid this problem, the numerical solver should use only one ODE/DAE up to the
discontinuity point and then use the next ODE/DAE. In most cases the discontinuity is
unpredictable, and it should be detected. To detect and localize the discontinuity time,
solvers use zero-crossing functions that cross zero over the discontinuity point. For example,
for the tank example we can use:

Gzc(m) =1z — Hoygies-

With this discontinuity function, the solver can find the exact discontinuity time. However,
to localize this point, the solver should step over this discontinuity point. Using the second set
of ODEs beyond the discontinuity point, normally results in repeated step failure and a reduce
in integration step-size to obtain a coherent derivative and to meet accuracy requirements. For
some problems the solver gives up with an error message when the step gets too small, and in
some other cases the solver may continue with an erroneous result. For example, consider the
simple system modeled in Fig. 5.2.4. In Fig. 5.2.5-left we have the simulation result without
considering the discontinuity and zero-crossing. On the other hand in Fig. 5.2.5-right, we
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have the correct simulation result. To sort this problem out a mode variable is associated
with each zero-crossing function of a multi-model system in Scicos.

Ifin>0

Y

then else

sinusoid
generator

S/H

) 4
\ 4

1/s Q{

Mux

Figure 5.2.4: A model with discontinuity.
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Figure 5.2.5: The erroneous (left) and correct (right) simulation results of model of Fig. 5.2.4

Mode Variable and Zero Crossing

We use the mode variable to assign and fix an equation set for every time interval between
each two discontinuities. As an example, consider this ODE,

T =

{ filz) if g(z) =0
fo(z) if g(z) <O0.

A general solution has been illustrated in Fig. 5.2.6, where z, indicates the discontinuity
point where g(z,) = 0.
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Figure 5.2.6: Water flow as a function of time.

Before reaching z,, the solver is in mode 1 , i.e., it uses £ = fi, without considering
the fo equation even when the solver needs to compute f; for £ > z, (the thick dashed
line). The solver employs the fi equation to integrate until it detects a zero-crossing. Then
the solver localizes the crossing point and stops just over the discontinuity point (i.e., at
z =z} and t = t]). After detecting the zero crossing and stopping the integration, the mode
variable should be updated in order to feed another equation set (i.e., f2) to solve. For any
discontinuity in the ODE/DAE we assign a mode variable to indicate which equation should
be used before and after the discontinuity.

In general, when the numerical solver is called, the system of equations should not be
changed. The solver should see a smooth set of ODE/DAE during integration. Instead, the
zero-crossing functions that are the conditions to change the system of equations are examined
by the solver to check whether they have changed or not. In case of any change, the mode
variables should be updated to feed another set of equations to solver.

In Scicos, to integrate any ODE/DAE model with discontinuity, we assign systematically
a mode variable to each discontinuity point, characterized by an If-then-Else block. For
example, to simulate this system

fild,z) if g(z) >0
0 =
fa(z,2) if g(z) <O,
we rewrite it in this form:
0 = fl(wax) if mode ==
a f2($a$) if mode == 2’

if (g(z) >0) then mode=1
else mode = 2.

It should be mentioned that any If-then-Else, not resulting in a discontinuity, can be
used without the mode variable. That is why there is a parameter in If-then-Else blocks

123



Scicos Architecture

that lets the user define whether the block is used with or without zero-crossing. For instance,
in this system the mode variable is not necessary.

) 2+z+1 if z>1
€Tr =
202 —z 42 if z<1.
The use of the mode variables, eliminates the difficulties over discontinuities but there are
still some problems concerning mode fixing and mode initialization that will be addressed in

the following sections. But first, the phase variable which plays an important role in mode
handling should be introduced.

Phase Variable

Using the mode variable to handle the discontinuities makes the block’s mechanism a little
complicated. For instance, consider the saturation block which is a common modeling object
in control systems. The input/output characteristics of this block is plotted in Fig. 5.2.7.

y (output)

Lmaz

u (input)

Figure 5.2.7: Input/output characteristic curve of saturation block.

This block doesn’t have any state to disturb the solver with its possible discontinuity, but
its output is characterized by piecewise continuous equations:

Lyin it u> Ly,
Output = U if Lpin < 4 < Lipgg

Loz it u < Lipgg.

The output of this block can be connected to the input of another block such as a block
with internal continuous-time state which may result in a discontinuity during integration,
see Fig. 5.2.8. To avoid this possible discontinuity, the saturation block or in general a block
with discontinuous behavior should be used with a mode variable. In fact, its output function
should be defined with a mode variable to provide a smooth input for the integrator block in
Fig. 5.2.8.
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&
e/

Saturation 1/S

Figure 5.2.8: Saturation block feeding an integrator.

The saturation block can also be used without introducing a risk of causing discontinuity
at the input of a block with internal continuous-time state, see Fig. 5.2.9.

Q

sinusoid x / Q{
generator

square wave
generator

i

Figure 5.2.9: Saturation block with discontinuous input.

Here at any clock event time, there is a jump in the input of the saturation block. In
this case the output should follow input changes without considering the mode variable. It
seems that using mode variable in output updating should depend on who has requested the
update. In general a Scicos block can be called by two sources; By the Numerical solver, and
By the simulator.

To handle the problem of output updating in presence of mode, it would be reasonable to
know who has requested the output update. We use the phase variable to indicate it. The
phase variable has been introduced to distinguish these two cases.

Definition: Phase is a global variable that indicates the current situation of the simulation.
If the numerical solver is running, then the phase value is 2, else 1.

With the phase variable, the output of the Saturation block can be written as follows :
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( ( Lpin if u > Lpin
if (phase==1) } if Lpin < 4 < Liag

u
Loz if u < Lipgg
L

Output = |
( Lin  if mode==1
if (phase==2) ¢ u if mode==2
{ | Lmae if mode==3,

that meets with all of the requirements.

Mode Fixing

The mode variables have been introduced to be used in conjunction with If-then-Else blocks
to provide a smooth system for the numerical solver. The mode variables should be initialized
and fixed before the numerical solver reads the ODE/DAE set. To initialize and fix them, the
zero-crossing values are read. Suppose that g;(z) is the corresponding zero-crossing function
of mode [i], then modes [0] is initialized to 1 if g;(z) > 0 and to 2 if g;(z) < 0, i.e.,

if Gi(r) >0 then mode; =1
else mode; = 2.

To explain how this has been implemented in Scicos, recall that the simulation function of
a Scicos block is called with a special f1ag indicating the task to be performed. For instance,

e flag 0: Compute and Return the ODE function or DAE residuals.
e flag 1: Block output updating.

e flag 9: Compute and return zero crossing functions.

To integrate a model in Scicos, the numerical solver invokes the blocks containing the
ODE/DAE, with flag=0. If the ODE/DAE contains any discontinuity, corresponding zero-
crossing functions should also be defined in the block in Flag=9. The solver can read the zero-
crossing functions by invoking the block with £1ag=9 to detect and localize the discontinuity
points.

The task of the mode setting can be performed by introducing a new flag, but it will
not be a good choice. To do it in an efficient way it should be noted that the zero-crossing
functions are used also by the numerical solver to locate the discontinuities and as we need
to read the zero-crossing functions before mode fixing, it seems reasonable to set them just
after reading the zero-crossing function inside the flag=9. But the zero-crossing functions
are called by two sources:

1) Numerical solver, to detect and localize the discontinuity points
2) Simulator, to set and fix the block’s mode variables before running the numerical solver.

During integration, the numerical solver calls the block with f1ag=9 to monitor the zero-
crossing functions, at the same time modes should not be changed. To avoid this undesirable
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mode setting, we use the phase variable. In fact, it is used to exclude access of the solver to
mode settings.

Hence, in f1ag=9, modes can be set only if phase is 1. This pseudo-code illustrates what
is inside a simulation function of a typical Scicos block.

Block(...)
if (flag == 0) {

res[i]=Fi(xd,x,t,mode[j])
}
if (flag == 1) {
1f (phase==1){
output [k]=H(xd,x,t)
Yelse{
output [k]=H(xd,x,t,mode[j])

}
}

if (flag == 9) {
glil=Gj(xd,x,t)
if (phase==1){

if (glj]l >= 0) mode[jl=1;
else mode[j]=2;

5.2.6 Multi-Mode DAE Initialization

Computation of consistent initial conditions becomes particularly difficult when the DAE is
not smooth and, in particular, when it is a multi-mode system (defined with several modes).
The search for the initial condition in this case is not just the classical problem of finding
zeros of smooth functions but it is interlaced with searching for the correct mode set. Indeed,
each mode set implies a smooth function and the solution of this function may imply another
mode set.

The classification in terms of differential and algebraic is also a key element in the study
of multi-mode DAEs, and in particular, the problem of finding consistent initial conditions
since the classification specifies which variables are solved for. Consider, for example, the
following multi-mode DAE

T =sint
if x<1lthen y=2 else y=3,

where in Scicos, we rewrite it as:

% = sin(t)
ODE :
if mode[1]==1 then y=2 else y=3,

Zero-crossing :  if £ <1 then mode[1] =1 else mode[1] = 2.
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In this example, clearly z is differential variable and its initial value is given (chosen freely).
On the other hand, y is an algebraic variable and its value is directly obtained from that of
2. This multi-mode DAE is well-posed and it is easy to find consistent initial conditions for
it. Indeed, in this case, the condition that needs to be tested involve the variable z which is
given. Now consider the following multi-mode DAE

T=z+y+=z
if y<1lthen z=0 else z =3

if z<1then y=0 else y=3,
where in Scicos, we use:

T=zT+y+z
ODE : if mode[1]==1then z=0 else z=3
if mode[2]==1then y =0 else y =3,
if y <1 then mode[1]=1 else mode[1]=2
Zero-crossing :
if 2z <1 then mode[2]=1 else mode[2]=2.

This problem is more complicated because the conditions are based on the values of y
and z (both algebraic variables), and the solution cannot be obtained without considering
multiple scenarios. In fact, this system doesn’t even have a unique solution for the algebraic
variables in terms of the differential variables. If x is given a value, then (y, z) can be either
(0,0) or (3,3). The discontinuity function may be a function of differential and algebraic
variables and their derivatives, for example in general we may have:

If Gi(%q,74,%q,Tq,t) >0 then model[i]=1
else mode[i]=2,

where z4 and z, are the differential and algebraic states respectively and %4 and £, are their
time derivatives. In Scicos it is assumed that differential variables are known and the other
variables should be computed. As a result, based on the dependence of discontinuity functions
on these variables and derivatives, mode initialization can be divided into three cases:

e when G;(z4), i-e., zero-crossing function is a function of z4
e when G;(x4,Z4,%q), i.€., zero-crossing function is a function of z4, =4, Z4,

o when Gi(x4,%4,%q,%q), i.€., zero-crossing function is a function of x4, 4, Z4, Zq,

In the following sections we will explain these cases and the way Scicos treat them.

Mode Inmitialization for G(z,)

When the discontinuity functions depend only on differential states, it means that their dis-
continuity function values will not change during initialization. This case can be compared
with the initialization of ODEs. In ODEs, all initial states are known, and in fact, just
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evaluation of discontinuity functions (zero-crossings) is enough to initialize the modes. If the
discontinuity function is in the following form

If Gi(zg) >0 then model[il=1
else mode[i]=2,

this initialization procedure can be used to select the initial mode set.
e 1) Assigning the differential states, i.e., z4
e 2) Evaluation of zero-crossing functions and fixing the modes
e 3) Invoking DASKR to compute consistent initial conditions, i.e., 4, Zq.

e 4) modes and states are consistent. End.

Mode Imitialization for G(z4, x4, Zq)

In this case mode initialization is not as easy as the preceding case. In fact, this situation is
the most frequent case in dynamical hybrid initializations. When the discontinuity functions
depend on all existing variables in the DAE, the situation would become complicated. Because
the value of the algebraic and the derivative of differential states may not be fixed during
initialization. Furthermore, the initial value of z, and 4 are not known, hence a dynamical
system which contains n modes, say characterized by n If then else statements, can start in
any of the 2" possible modes. For the systems with large n and especially when the conditions
are functions of algebraic variables, it is practically impossible to find the starting mode via
trial and error.
If the discontinuity function is in this form:

If Gi(zg,74,%q) >0 then model[i]l=1
else mode[i]=2.

The following pseudo-algorithm can be used to initialize the modes:

e 1) Assigning the differential states (z4) and take the guess values of z, and &4
e 2) Based on x4 values and current z, and %4 guess values, fix the modes

e 3) If number of iteration exceeds nmod, Error -17, exit.

e 4) Save the current modes

e 5) Invoke DASKR to find the consistent initial conditions, i.e., 4, Z4

e 6) Reevaluate the zero-crossing functions and fix the modes

e 7) Compare new modes with stored ones, If there is any change, go to step 3

e 8) The modes and states are consistent, End

This procedure has been implemented in Scicos, but there are examples for which this
algorithm does not converge.
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Mode Imitialization for G(z4, 24, <4, Za)

There are problems that need the derivative of an algebraic state to initialize the system. But
in DASKR the derivative of an algebraic state is estimated only when integration is running
and, of course, starting the integration needs consistent modes and initial conditions.

Backlash is such an example that its mode depends on a derivative of an algebraic state.
When the backlash is in the engaged-up position and does not move, the initial mode depends
on the direction of input, if input goes up, backlash follows the input, i.e., mode=Engaged- Up,
and if input goes down, backlash’s output doesn’t move, i.e., mode=DisEngaged.

When the mode initialization depends on the derivative of an algebraic variable, i.e., the
discontinuity functions to fix the modes are in the form :

If Gi(zg,%q,%4,%q) >0 then model[i]l=1
else model[i]=2,

the derivative of the algebraic variables can be obtained in two different ways:

1) Differentiation of the algebraic equations
For the first case, suppose that we have the following DAE :
0 = f("tda Zd, 370.)
0 = glzg,zq).

Differentiating the algebraic equations yields
0 = f(:tda Zd, CCa,)
0 = g(l'd, -'L'a)
0 = z4 gxd(xdawa) + Zq Gz, (.’Bd,.’Ba),

that is enough to compute z,, ©4, and z,. Now, the trial and error procedure can be used
to initialize the modes. In this method, it is required to know the algebraic equations. This
can be done automatically or can be defined by the user. Furthermore, we may need the
derivative of input time dependent signals.

2) Integration to obtain an estimation

If differentiation is not applicable on the problem or we don’t distinguish the differential
and algebraic equations, another possibility is running the solver for a very short time to
obtain an estimate of derivatives of variables. The following procedure has been implemented
and tested in Scicos.

e 1) Assigning the differential states z4 and take the guess values of z, and Z4
e 2) Based on z4 and current z, and Z4, fix the modes

e 3) Save z in z;

e 4) Save the current modes for comparison

e 5) With the fixed modes, invoke DASKR to find the consistent initial conditions, to
obtain x,, 4
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6) Run DASKR (disabling zero-crossings) for a short time to obtain %z,

7) Restore z5 to x

8) With the new state variables, reevaluate the zero-crossing functions and fix the modes
e 9) If there is a change in mode values, go to step 4

e 10) The modes and states are consistent, End

Non-Convex Problems and (-17) Error Message

Although the trial and error method is often successful, this simple method may fail in some
non-convex problems. As an example consider the DAE index-1 problem (5.2.1) whose z,— x4
curve has been plotted in Fig. 5.2.10. Here we have three conditional statements, so we could
have up to 23 modes but since the conditions are not independent, we have only 3 modes,

Tqg—1
(5.2.1) 0 = F(q,74,Tq) = Tg—Ta—2 i 3 < -1
Tq+ Tq if —l<z,<1
Tg—Tq+2 if 1< xg.
b,

(-1,1) 1
guess value xg

T T T 41 N >

’) Tq

a
s

N

(17 _1) \'..\‘//”,,

guess value z;

Figure 5.2.10: The algebraic part of the DAE (5.2.1).

In this case, the conditions are in terms of an algebraic variable (z,) which is not known
before complete initial condition calculation. Suppose we have a value for x4 and a guess value
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for z,. If we start with (z4 = 2, z, = 0), the solver (DASKR) cannot find the consistent initial
condition, which is (x4 = 2, z, = 4), using the above initialization routine, it falls in an infinite
loop. If we begin with 4y = 2, and initial guess for z, = 0. At the beginning, the second
condition is correct, i.e., mode =2, which results in x, = —2. This value is not consistent
with current mode and another calculation needs to be done. In the next calculations, with
T, = —2 mode is 1 and xz, = 0 will be found. This value is also inconsistent with mode=1 and
another calculation needs to be done. In the subsequent tries the solver switches between
the first and second mode without ever converging. Thus the solver falls into an infinite loop
and switches between two adjacent conditions. To exit from this infinite loop, in the Scicos
simulator, the number of consistent initial condition computation is counted and in the case
where it becomes greater than the number of modes, A (-17) error message will be raised.

During integration, the zero-crossing surface can be used to detect the discontinuous point
and switch between the equations. In initialization phase, however, an intelligent way to select
the proper initial guess (or condition) does not always exist. The situation would be more
complicated if the number of 'If then Else’ conditions increases or the conditions become
statements, as we have in our problems. In these cases, the convergence strongly depends on
the initial guess. Note that in practical situations, often conditions depend only on differential
variables which are supposed to be known thanks to the continuity assumption. In these
situations, there is no problem. The problem is when the conditions depend on algebraic
variables. In what follows, we show how to use the homotopy and piecewise-linear methods
to compute consistent initial conditions in this case. In particular, we show how they can be
used successfully on the above example.

5.2.7 Path Following Methods

Computing consistent initial conditions for DAEs involves solving a system of nonlinear equa-
tions. The usual methods used in DAE solvers for solving these equations are based on gradi-
ent methods and assume smoothness and a good initial guess. In the multi-mode framework,
these methods often fail or exhibit convergence difficulties.

Recent application of continuation or homotopy techniques have shown them to give pow-
erful methods for solving nonlinear equations when the initial guess is far from the solution.
These methods are applied, in particular, to electric circuit models [?, ?, ?].

The homotopy method is used to solve a set of nonlinear algebraic equations F'(x) = 0.
To see how this applies to the problem of finding initial conditions for DAEs, let us assume
that we have a semi-explicit index one DAE system which as we have seen in the previous
section is characterized as follows

{ Tq = f(Td,Za)
0= g(xda Ia)'

Here we have separated the state vector x into a vector z4 of size ng, called the differential
vector, and a vector x, of size ng, called the algebraic vector. In general, we can assume that
the differential vector is known (it corresponds to physical states of the system which satisfy
continuity properties). So what needs to be computed are the algebraic vector and the
derivative of the differential vector. As noted earlier, we do not need a value for z,.

We are thus led to solving the following nonlinear system in n = n, 4+ ng equations and n
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unknowns:
(5.2.2) T = ( ;”: )

and

(5.2.3) Fz) = ( f ;”’(‘;d“"fv Sa) ) 0.

The idea of the continuation method for solving F'(z) = 0 is to introduce a continuation
parameter to embed the problem into a larger system. This is done in such a way that this
augmented system reduces to the original problem when the parameter is set to one; and
when this parameter is set to zero, the augmented system is reduced to one that can easily
be solved or has a known solution. This solution is used then as a starting point for solving
the augmented system as the continuation parameter goes from zero to one.

The augmented system H : R**! — R™ is defined as follows

(5.2.4) H(z,\) = (1= NF%z) + A\F(z) X€o,1],

where H(z,0) = F°(z) is chosen to be a simple function such that its root can be found
easily. For example it can be (z — zo) where z( is the selected starting point. At A = 0, the
problem to solve is

H(z,0) = F'(z),

which is easy to solve, and at A = 1,
H(z,1) = F(z),

and the original problem is recovered. As A moves from 0 to 1, numerical continuation
methods trace the paths that originate at the solutions of the starting system toward the
solutions of the target system.

To trace the solution from A = 0 to A = 1, there are several methods [?]. We will describe
in brief the Predictor-Corrector and the piecewise linear methods.

Predictor-Corrector (PC) Method

The basic idea in Predictor-Corrector methods is to numerically trace the solution curve of
H(z,\).

(5.2.5) H(z(s),A(s)) = 0 s: arc length parameter.

The solution curve is a Y (s) trajectory

(5.2.6) Y(s) = ( o) ) .

A predictor-corrector algorithms is performed in two steps:

1. Predictor: By use of current z and A and their derivatives, their new values are predicted
at t + At.
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2. Corrector: The obtained estimates are corrected so that they remain on the H(z, )
curve.

So, it is enough to solve the following ODE
(5.2.7) —H(z(s),A(s)) =0,
with the following initial conditions:
AO0) =0, 2(0) = 70, A >0, | % o= 1.

If the Jacobian matrix (5.2.7) is full rank, then we have a unique solution [?, ?].
This formulation is a DAE
Ni?=1

2.
(5 8) { H(.’L‘, >‘) =0,

with the following initial conditions:
A(0) =0, z(0) = zg, A > 0.

In the case where a DAE is smooth (no discontinuity) we can use any appropriate DAE
solver to solve it. But in the multi-mode context, the nonlinear problem we have at hand
is often not smooth. Fortunately the information about the points of non-smoothness is
available. This allows us to still use a DAE solver but by making sure that the solver is
restarted at the points of non-smoothness. This is done by introducing zero-crossing surfaces
associated to these points as stopping tests for the solver. Note that while integrating each
stretch, the mode must be fixed so that the solver does not see any non-smoothness.

It is desirable to use the integrators and the problem formulation already present in
Scicos. A powerful DAE solver which can be used for implementing this homotopy method
is DASKR [?] which is already used for simulation in Scicos. It has been used to implement
the multi-mode homotopy technique described above with success on a number of problems.
This technique may seem very time consuming and thus, not practical for simulation but
it should be noted that Scicos keeps track of critical events (events which may cause non-
smoothness) and issues a request for re-initialization only if such an event occurs. In general,
events requiring a homotopy or other algorithm in place of the pseudo-algorithm are not very
frequent.

As an example, Problem (5.2.1) is given to DASKR, with z4 = 5 and the algebraic guess
value (starting point) z, = —10. As it’s been depicted in the fig.5.2.11, the A\ value starts
from zero when z, = —10. As A increases, z, moves toward 0. At the discontinuity point
(zq = —1), DASKR stops the integration and homotopy is reinitialized with the new values of
z, = —1 and A = 0. As it can be seen in the fig.5.2.11, the solution is z, = 7 which has been
reached at A = 1. The homotopy method has enabled us to initialize this problem that the
usual DASKR initialization failed on.
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Figure 5.2.11:  The X variation for a homotopy solution of Problem (5.2.1).

As another example take This algebraic equation for which DASKR fails to obtain a solution
with guess solution [0,0,0].

0 = 333—1
0 = o1+ F(F(z+3)— F(—xz3))
0 = z3—m9,

where
F(z) = z sin(z) exp(—z).

To solve this equation with DASKR, we delivered the following code to be integrated until
L crosses 1.

delta(1)=(1-L)*(x1) + L*x(x20-x3)
delta(2)=(1-L)*(x2) + L*(x1+F(F(x3)-F(-x3)))
delta(3)=(1-L)*(x2) + L*(x3-x2)
delta(4)=xd1*xd1+xd2*xd2+xd3*xd3+Ld*Ld-1.

Here the initial solution and directions are [0,0,0] and [+1,+1,+1] respectively. At
t=14.07 the solver reaches L=1 and the final solution is [-13.128, 1.0, 1.0, 1.0].

The Piecewise Linear (PL) Method

The piecewise linear continuation method is an alternative method to the classical PC meth-
ods. Whereas the PC method traces the exact solution curve of (5.2.4), in a PL method,
a piecewise-linear curve approximates the solution curve. The piecewise linear methods re-
quire no smoothness of the underlying equations and hence may have a more general range
of applicability than PC methods [?]. They are also well suited when the evaluation involves
solving a set of inequalities.

The piecewise linear algorithm was originally introduced by Lemke and Howson [?] to solve
the Linear Complementarity Problem (LCP). LCP arises in many fields such as quadratic
programing and linear programing.

The problem is the following: Given a matrix M € R¥*¥ and ¢ € R¥, find u,y € R* such
that
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0<ylu>0.

This problem is denoted by LCP(g, M) and plays a major role in LCP theory [?]. We
can interpret this system as a linear system with k switches. There are several methods for
solving the LCP problem, see [?, ?].

To get an idea of how a PL method approximates the solutions, these two definitions are
cited from ([?]).

Definition: Let vi,ve..vn41 € RNYT! be affinely independent points. Then the con-
vex hull [vi,v2,....,un+1] is the N-simplex in R with {vi,va,...,un41} vertices. The con-
vez hull [wi,w,...,wry1] of any subset [wi,ws,...,wry1] C [v1,v2,...,uNn+1] S an r-face of
[’Ul, V24 -ey ’UN+1].

Definition: A triangulation T of RN*! is a subdivision of RNT! into (N+1)-simplices
such that

{y=q+Mu

1. any two simplices in T intersect in a common face, or not at all;
2. any bounded set in RNT1 intersects only finitely many simplices in T

After triangulation in RV*! space, for H(z, ) a starting point and a proper simplex are
chosen. To move from the starting point to the solution point, the algorithm must ” traverse”
through the neighboring simplex. There are several algorithms for finding the next simplex
[7,?,7,7].

As an example of an implementation of the PL homotopy method of Eaves [?] and pro-
gramed as an algorithm in Scicos, Problem (5.2.1) has been solved with this method. In
Fig. 5.2.12, the produced simplices and the tracing path have been shown. Note that the
algorithm stops around z, = 7, which is the solution.

2

Lambda

il x

-11 -9 -7 -5 -3 -1 1 3 5 7 9

Figure 5.2.12: The simplices used to initialize Problem (5.2.1) with PL method.

Current Scicos Initialization Algorithm

In the previous section some of the issues involved with the implicit simulation of hybrid
models, in particular, the problem of reinitialization and mode initialization were discussed.
Three algorithms were presented. Some examples were given to show how the homotopy and
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PL algorithms can successfully initialize where the simpler trial and error algorithm fails. But
these methods are not good for every initialization problem.

The homotopy and PL method have also their own flaws and limitations. We used homo-
topy software introduced in [?] and HOMPACK90 [?]. In this software the initial direction is
selected based on the initial derivative, which is not always a good choice. In one dimensional
systems there are two direction, increasing or decreasing and just one of them yields the so-
lution. The problem will be more complicated for multi-dimensional problems. For example,
the last example explained in the P(C method, will fails to reach A = 1 if the initial direction
[-1,+1,+1] is used, i.e.,

delta(1)=(1-L)*(-x1) + L*(x20-x3)
delta(2)=(1-L)*(x2) + L*x(x1+F(F(x3)-F(-x3)))
delta(3)=(1-L)*(x2) + L*(x3-x2)
delta(4)=xd1*xd1+xd2*xd2+xd3*xd3+Ld*Ld-1.

For the homotopy PL method, we implemented PLALGO [?] in Scicos. In this software
there are three possibilities for initial direction, (i.e., I, -I, and Initial Jacobian). But we
observed that because of direction problem for ordinary problems, the trial and error method
is more robust than PL and PC methods.

5.2.8 Scicos Simulator Flowchart

In this section, the Scicos simulator flowchart will be decomposed and given in several
flowcharts.

EDOIT(ei)

EDOIT Output Updating

Y
Store ei in IWA list

Call all blocks (biﬁ activated
by event ei (ordclk list) Y

Block (bi)

Y
Call block bi with flag—1

*

If block bi is a synchro
and active output event is (&j)

then | Edoit(ej)

Figure 5.2.13: Scicos Simulator Flowchart: edoit function.
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ddoit(Ev)

DDOIT y Discrete State updating

N Update outputs and store
[ WA EDOIT(EVﬁ acrt)ivated e\rl)ents in IWA

Yes Is it

Critical even)
Hot=0

Cold restart
y Forall events (¢j) in IWA

call the block (having output event)
with flag=3

having continuous or discrete state
or internal workspace
with flag=2

|

|

|

| |
| ! |
| ! |
| ! |
| ! |
| ! |
- |
| ! |
! } call the block (having output event) !
| ! |
| ! |
| ! |
| ! |
| ! |
| ! |
| ! |
| ! |
|

|

|

Figure 5.2.14: Scicos Simulator Flowchart: ddoit function.
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SimblkDaskr Reading the continuous
states of model
ODOIT
Update the output of
blocks in OORD list
[Update the output] [Update the oulputl 0OZDOIT
R of activated blocks | ——
of the block J Store the activated
block in IWA vector

Read the continuous

states of OORD list

Read the continuous
states of IWA block list

Figure 5.2.15: Scicos Simulator Flowchart: odoit function.
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GrblkDaskr Reading the zero—crossing
surfaces of model
ZDOIT
Update the output of
blocks in ZORD list
IIQ Is it
If~then-Else,
Yes
Update the output Update the outputw OZDOIT
of the block of activated blocks J Stoire the activated
block in IWA vector

Read the zero—crossing

surfaces of ZORD list

Read the zero—crossing
surfaces of IWA block list

Figure 5.2.16: Scicos Simulator Flowchart: zdoit function.
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[ Phase=1; Hot=0; ihot(.)=0; rhot(.)=0.0 ]

[ Save Blocks containing zero crossing in ZCROS j

[ Idoit,(Propagate Constant Blocks Through the Diagram)

Main Loop

Told <? Tf NO - END '

XWindows event handling
[

T = Load the time of the next event

If no—event then T=Tf

[ If abs(T-Told) < ttol => T=Told J

Told< T

Continuouis Time integration
from Told to T
LSODAR / DASKR
Told <— NewT

Execute the Event located at Told
DDOIT(told)

YES

Zero—crossing Programme the ZC event

'

Figure 5.2.17:  Scicos Simulator Flowchart: cossimdaskr function.
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Continuouis Time integration

Diagram contains C—states is there any
Continuous State

In Model

No Continious State

l Solver Calling l ‘ Time Evolution without restriction
if T< Told+DetlaT+ttol => NewT=T

if T>= Told+DeltaT+ttol => NewT=Told+Delt:

Told=NewT

CDOIT( Told ) DOIT
Update the output of continuous Blocks

Figure 5.2.18: Scicos Simulator Flowchart: cossimdaskr function (continue).

142



5.2 Scicos Simulator

Solver Calling

HOT

N o ,
Fill out ’scicos_xproperty’ vector

Algebraic and differential variables

Tstop=Tf+ttol
Ter <— activaton time of the nearest critical event
If (previous Tstop >Tcr) then Hot=0
Rhot(1)=Min(Tf+ttol, Tcr)

'

T=min(Told + deltat,min(t, Tf+ttol))

HOT

Cold

DAE Initialization

Hot=0 L N
Inconsistent initial condition

Info(1)=Hot, Phase=2

DASKR SimblkDaskr

Integration from Told to T
Told <— Integration termination time GrblkDaskr

}

Phase=1

" e
* -

‘e

“an?®

CDOIT(Told) L
updating the inputs of the blocks ‘,bOIT‘\‘
for calling them by Flag 7 s ’

Call the correspondinf block
with Flag=2 and nevprt=—1

pr(gram Zero crossing event
in Event Queue

Figure 5.2.19: Scicos Simulator Flowchart: cossimdaskr function (continue).
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DAE Initialization

Diagram contains C—states

i No convergence
Ni>Nmode _17 Error

Fill scicos_xproperty

DDASKR: Initialization

Phase=2, Cold start, Inconsistent
Initial condition, Return after

Store current modes
in Mode_save

Mode Updating
Zdoit, phase=1

'

comprare new modes with
Mode_save

Figure 5.2.20: Scicos Simulator Flowchart: cossimdaskr function (continue).
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Chapter 6

Scicos Extension

Modern technical systems like integrated circuits, mechatronic systems or distributed au-
tomation systems can be characterized as complex heterogeneous systems. Typically they
show some of the following features:

e mixed-domain (mechanical, electrical, thermal, fluid, ... phenomena),

Coupling between these domains, side effects, cross coupling,

distributed and lumped (concentrated) elements,

discrete-time and continuous-time signals and systems (in electronics: analog and digi-
tal),

e very large and stiff systems of differential equations to describe the continuous-time
subsystems.

Depending on the level of abstraction, PDE and ODE/DAE are the mathematical models
(system equations) of continuous-time subsystems. Many algorithms and computer programs
are available for the numerical solution of the system equations. However, there is a demand
for more and better assistance in finding the system equations. A powerful interdisciplinary
modeling methodology is necessary to analyze real-world problems. Basically, the modeling
process can be divided into two fundamental steps

e Modeling in the original physical domain: such as writing down the Kirchhoff laws in
electrical circuit analysis.

e Transformation of the physical system model into a common mathematical form, i.e.,
Continuous-time and discrete-time equations (PDE, ODE/DAE).

At present, the second step is mostly well supported by simulators. So we will put our
emphasis on the first step, the physically-oriented modeling of complex heterogeneous systems.
The term physically oriented means: it is a goal of the modeling approach that as much as
possible modeling steps be closely related to the design process of technical systems and to
the intuitive procedure of the design engineer [?]. To achieve this objective, the capabilities
of the hybrid dynamic system simulator Scicos has been extended to allow natural modeling
of physical components. This chapter discusses these new features, the way they have been
implemented in Scicos, and the new challenges that they bring in simulation.
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6.1 Causal vs Acausal Modeling

Modular model construction can be classified in two major categories: causal and acausal. To
make an analogy with computer programing languages, causal modeling corresponds to the
use of assignment statements where the right-hand sides of the equations are evaluated and
the result of the evaluation is assigned to the variables on the left-hand side of the equations.
This corresponds closely to the evaluation of the outputs based on the inputs in a causal
module. Acausal modeling on the other hand is closer to equations in the mathematical
sense of the term. For an equation in a set of mathematical equations, it is not possible to
classify (at least a-priori) its variables as inputs and outputs. In this case, for constructing
the solution to the set of equations, the choice of the variable which should be computed
in terms of the rest of the variables, in one particular equation, depends on the complete
set of equations. In other words, a mathematical equation contains potentially a number of
assignment statements; the choice of the statement which should be used for constructing the
solution of the complete problem depends on all the equations. An acausal module is like a
mathematical equation. It has ports of communication with other modules but these ports
are not labeled a-priori as inputs and outputs.

Most physical components are more naturally modeled as acausal modules simply because
physical laws are expressed in terms of mathematical equations. Consider a resistor in an
electrical circuit. If the resistor is to be used as a module, it can only be an acausal module
because depending on the way the resistor is used, the input can be a current and the output
a voltage, or the input a voltage and the output a current (see Fig. 6.1.1).

v = iR
A
= =
1
(O RVAVAVAYR ©)
+ v -

Figure 6.1.1: The electrical resistance symbol

In most modeling and simulation softwares, only causal modules (blocks) are considered.
This situation is not only easier to implement but it provides a stronger notion of modularity
which corresponds closely to the notion subsystem used by systems and control engineers.
This is the reason why that way of modeling is referred to as system level modeling, as
opposed to component level modeling where acausal modules (blocks) are used.

It is often possible to convert a component level model into a system level model by
rewriting the equations and finding the appropriate causality structure in each module, but
this task is time consuming, and error prone. Furthermore, the resulting (system level) model
has very little resemblance with the original model making subsequent modifications difficult
to realize. Indeed, a small change in the original model may require a complete redesign of
the system level model.

To illustrate the difference between component level and system level modeling, consider
the simple electrical circuit shown in Figure 6.1.2.
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R=0.2 L= 0.0001
Alternateur Pl

C=0.1

Figure 6.1.2: An electrical system to be modeled.

The circuit in Figure 6.1.2 clearly corresponds to a component level model. This is what
an electrical engineer would like to work with. This circuit contains a voltage source, a
resistor, an inductor, and a capacitor. To model and simulate this diagram, and display the
voltage across the Capacitor in Scicos, we have to express the dynamics explicitly. We can
use Kirchhoff’s law which states that the loop voltage around a circuit must add up to zero,
and using elementary models for each electrical component, we obtain:

0 = Vi+Ri+o,
. dv,

= g%
e dt

(6.1.1) vy = v
diy

= [—
Y dt
IL‘ - Z.c + 'Ll,

where V; is the alternator’s voltage and ¢ the current that passes through it. Where its
corresponding equivalent system level model is depicted in Figure 6.1.3.

}v

1/s

1 I [ dl/ dt@
I - -

/s

sinusoid
generator

Figure 6.1.3: The system-level (causal) implementation of the model in Fig. 6.1.2.

We see clearly an important drawback in using such a model: there is no one to one
correspondence between the original circuit elements and the blocks in the diagram. It is not
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difficult to see that, for example, replacing the resistor with a diode, would require starting
over the construction of the system level model. This is an important point because even for
this very simple example, the analysis to convert the intuitive physical model to a system
level model is non-trivial and cumbersome.

It turns out, however, that in many situations, in particular in systems and control ap-
plications, the use of causal modules is very useful. As an example in Fig. 6.1.4, the F14
flight control system has been illustrated. This system is composed of several parts such as
actuator, aircraft, control, feedback and some other dynamics. In such control systems it is
much easier for the control engineer to have a system level model to use for the design of the
controller and to optimize the control parameters.

F14—-Flight control model

v
square wave | num(s) + num(s) num(s) [ ooy, |
: den®) | | -E +|den<s) "Jden(s) g s

PILOT
CONTROLLER AIRCRAFT NZ PILOT
ACTUATOR

Y

B0

Y

Iﬁ'

WIND MODEL

I

FEEDBACK

A A

Figure 6.1.4: A system level modeling and design.

Even though causal models can in some sense be considered as special cases of acausal
models, the restrictions imposed by causality implies that the behavior of the module can
be implemented using an almost black box program which evaluates its outputs as a func-
tion of its inputs. The implementation of the behavior of the module in the acausal case is
more complicated and requires either the construction of multiple causal modules or a for-
mal description. In the latter case, the construction of the complete model requires formal
manipulation of equations obtained from the description of acausal modules and their con-
nection topology. It is for this reason that in Scicos we allow the co-existence of both type of
modules: causal and acausal. So we can use both benefits of acausal and causal modeling in
Scicos, e.g., we can design an acausal model controlled by a causal controller. To implement
acausal models, implicit blocks has been introduced in Scicos, that will be explained in the
next section.
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6.2 Implicit Block vs Explicit Block

Implicit blocks have implicit ports. An implicit port is different from an input or an output

port in that connecting two such ports imposes a constraint on the values at these ports but

does not imply the transfer of information in an a-priori known direction as is the case when

we connect an output port to an input port. For example, the implicit block Capacitor used

in diagram of Figure 6.1.2 has current and voltage values on its ports but there is no way

a-priori, without analyzing the full diagram, to designate any of them as input or output.
The behavior of an explicit block is given by an ODE or more generally a DAE:

{ 0= F(&,z,u)

y=G(Z,z,u).

— | O

'D[EII est. X
S

Sinusoid
generator

i

random
generator

Demux

Figure 6.2.1: A system modeled in Scicos.

The model of Fig. 6.2.1 is composed of ”explicit” blocks, i.e., block with explicitly iden-
tified inputs and outputs. Implicit blocks give the the user the ability to model physical
systems without worrying about simplifying the equations and making them explicit; it is
done automatically. All that the user should do is selecting the components and connecting
them. Component level modeling allows the use of ”implicit” blocks which are blocks with
port connections which a-priori are not labeled as inputs or outputs [?]. Implicit blocks are
essential for constructing models which include physical components such as resistors, capac-
itors, etc., in electricity, or pipes, nozzles, etc., in hydraulics. They are also useful in many
other areas such as mechanics and thermodynamics. Implicit blocks are also called acausal
blocks [?].

Contrary to explicit blocks, implicit blocks cannot be modeled as black box objects. The
equations realizing the behavior of an implicit block must be available to the compiler for
system reduction and code generation. To describe the behavior of implicit blocks and the
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construction of diagrams based on these blocks in Scicos, the Modelica language has been
adopted [?].

6.3 Modelica Language

To extend the capacity of Scicos to allow component level modeling, we needed a language for
describing the algebraic-differential constraints imposed on the input/outputs of the acausal
blocks. We found Modelica [?] to be an excellent choice.

Modelica is primarily a modeling language that allows specification of mathematical mod-
els of complex natural or man made systems, e.g., for the purpose of computer simulation of
dynamic systems where behavior evolves as a function of time. Modelica is primarily a model-
ing language, sometimes called a hardware description language, for specifying mathematical
models of physical systems, in particular for the purpose of computer simulation. Modelica
is a modern object-oriented programing language based on equations instead of assignment
statements (it can thus be classified as a declarative language) This permits component level
modeling to have a better reuse of classes since equations do not specify a certain data flow
direction. Modelica has a multi-domain modeling capability, e.g., electrical, mechanical, ther-
modynamic, hydraulic, and control systems can be described by Modelica [?, 7].

Modelica programs are built from classes, also called models. From a class definition,
it is possible to create any number of objects that are known as instances of that class. A
modelica class contains elements, the variable declarations, and equation sections containing
equations. The equations specify the behavior of instances of that class. An example is a
class specifying the model of a pendulum, composed of five equations:

T
. _ _*p

miy T

mu = Yp_ mg
Y L

T = Vg

] = Uy

2?42 = L2

This example is actually a mathematical model of a physical system, a planer pendulum, as
depicted in Fig. 2.3.2. The equations are the Newton’s equation of motion under influence of
gravity, together with a geometry constraints. This is the Modelica model of the pendulum,

class pendulum ‘‘Planer Pendulum’’
constant Real PI=3.1416;
Parameter Real m=1, g=9.8, L=0.5;
Real F;
output Real x(start =0.5), y(start=0);
output Real vx,vy;

equation
m¥der (vx)=-(x/L) *F;
m*der (vy)=-(y/L) *F-mg;
der (x)=vx;
der (y)=vy;
X" 2+y~2=L"2;

end Peldulum;
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6.3.1 Some Modelica Programing Features

Modelica is an object oriented programing language for modeling physical systems. To provide
a software component model, Modelica includes the following three constructive elements:

e Components
e A connection mechanism

e A component framework

Components are connected via connection mechanism, which can be visualized in connec-
tion diagram. The component framework realizes components and connections, and ensures
that communication works and constraints are maintained over the connections. For the sys-
tems composed of components or acausal blocks, the direction of data flow (the causality) is
automatically deduced by the compiler at code generation time.

In this section we will explain some features of the Modelica language that are used to
model hybrid dynamical systems. We will focus on those features who have been already
implemented or are going to be implemented in Scicos.

Basic Language Elements

The basic structure element of Modelica is a class. There are seven restricted classes such as
model, type and connector. All properties of a class are identical to the properties of all
kinds of restricted classes. In Scicos only the class keyword is used.

In Modelica, basic data types are Real, Integer, Boolean, and String. They are built in
type classes, with all properties of a class and the attributes are just parameters of the class.
So far, Scicos accepts only the Real variables. With a specifier like parameter or constant,
a component can receive a constant value and will keep being constant during simulation
run-time. It can be changed when a component is reused or when the simulation is restarted.

The variables defined by Real keyword are continuous-time. The discrete keyword is
used to define the discrete-time variables. The start keyword is used to assign an initial
value to the variables. Here is an example of a class with different variable types.

class Myclass

Real x, y (start=2.4);

discrete Integer zl ’’a discrete variable’’;

discrete Real z2;

parameter Real U=1 ‘‘constant parameter’’;
equation

der (x)=12*x-3*y;

x-12=U+z2;

end Myclass;

Connections

The connector keyword is a restricted class which can be used to define a physical connec-
tions, e.g., for the electrical circuits the Kirchoff’s laws! are needed and some similar laws

!The currents of all wires connected at a node are summed to zero
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are applied to flows in a piping network and to forces and torques in mechanical systems. By
default, the connected variables are set equal. Such variables are called across variables. Real
variables that should be summed to zero are declared with prefix flow. Such variables are
also known as through variables, in Modelica we assume that such variables are positive when
the flow (or corresponding vector) is into the component. The connect keyword is in the
standard library and generates the equations by taking into account what kind of variables
that are involved. Consider the definition of a pin in an electrical circuit:

connector Pin
Voltage v;
flow Current ij;
end Pin;

Using this definition, we can define an electrical connection, i.e., a node.

Pin Pinl, Pin2;
connect (Pinl, Pin2);

This connection connects two pins so that they forms one node. This indicates a connection
between two pins of two components. There is a built-in function cardinality(C) that
returns the number of connections that has been made to a connector (C). It is also possible
to get information about the direction of a connection by using built-in function direction(C)
(provided cardinality(C)=1).

Partial Models and Inheritance

A very important feature in order to build reusable classes is to define and reuse partial
models. Since there are models which includes same types of components a class can be
defined as a base for all these models using the keyword partial model. Using the keyword
extends such a partial model can be extended or reused to build a complete model.

partial model TwoPin
Pin p, n;
Voltage v;
equation
V = p.v - n.v;
p.i + n.i = 0;
end TwoPin

model Inductor

extends TwoPin;

parameter Real L ( unit = ’H’);
equation

L * der(i) = v;
end Inductor

The feature is similar to inheritance in other languages. Modelica even supports multiple
inheritance, i.e., several extends statements. Modelica does not use inheritance for classifi-
cation and type checking. By inheriting all components of the base class, an extends clause
can be used for creating a subtype relationship. But it is not the only way to create it. For
example, if a class A is defined to be a subtype of class B and class A contains all the public
components of B. B contains a subset of the components declared in A. This kind of subtype
relationship is especially used for class parameterization.
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Equations

Unlike most general purpose programing languages, the Modelica language is not primarily
based on algorithms, but uses equations instead. For every model the programer can define
a number of equations describing the properties of the model. The equations defines the
relation between the different quantities in the simulation. The biggest reason why Modelica
uses equation is the fact that every simulation problem in fact is a mathematical problem. It
also give the language a high abstraction level, because an equation is often more intuitive than
an algorithm. When Modelica compiles a model (which may consist of many interconnected
models) it will put all these equations together in one equation system, making it possible to
solve any variable. Modelica supports also the DAEs.

Matrices and Arrays

Besides solving equations using scalars it is also possible to use matrices and vectors. This
makes it possible to define equations of matrices and lets Modelica solve them. This is very
powerful in many applications such as PDEs. The usual algebraic operators +, —, %, / works
in the same way for matrices and vectors as for scalars, but division is only defined with
scalars as denominator. To define a multidimensional variable (i.e., a vector or a matrix) the
following syntax is used:

Real v[3]; // Defines a real vector of size 3.
Integer i[3][3]; // Defines a 3x3 integer matrix.

v ={1,1,1};

i = [1,0,0;
0,1,0;
0,0,11;

The ’For’ Loop

In Modelica a sort of for-loop construct can be used to define the equations. It does not
operate in the same way as a loop construct in an imperative language. Instead, it expands
the equations in the loop to N equations (where N is the number of repeats in the loop). This
is an example that shows how a value is assigned to the an array elements:

Integer a[5]

al1] = 1;

for i in 2:5 loop
ali]l = ali-1]*i;

end for;

The above for loop will be expanded to the following code:

al1] = 1;

a[2] = a[1]1*2;
a[3] = a[2]*3;
a[4] = a[3]*4;
a[b] = al[4]x5;
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Discontinuous Models

It is possible to define discontinuous models in Modelica. Sometimes it is necessary to use
different equations in different situations in a model. For example, one may need to set a
limit to a variable or use a special case of a formula for a certain value. This can be done by
using the If-statement in the equation clause. An example shows how the abs() function
can be defined with the If-statement.

x2 = if x1 < 0 then -x1 else x1;

An If-statement often causes a discontinuity and the some precautions should be done to
treat them and perform a simulation. There are, however, some If-statements that do not
cause any discontinuity, so the numerical solver does not need to stop at these points. The
noEvent () keyword is used to indicate this kind of If-statements, i.e.,

der(x2) = if noEvent(x < 1) then x
else x*x-x+1;

Discrete-time models

Modelica provides some specific features in order to model discrete-time systems. An impor-
tant concept in discrete-time models is the notion of event. An event can, for example, be
generated by the built-in function sample. The sample function takes two arguments, one
start time and one interval and generates the events at specified time, i.e., the predictable
events. An event is then generated at time instants time=start+n*interval. In order to
generate unpredictable events the when-statement is used. In fact, to perform an actions at
occurrence time of a certain event when statement is used. For example, the statement

when (x>2) then

defines a zero-crossing events (unpredictable or zero-crossing event). When the value of x
becomes greater then 2, an event takes place and some actions will be done.

A specific built-in function that is used in discrete-time models, is the pre() function.
This function will return the value of its argument (which is a discrete-time variable) before
the sampling or the event. The Modelica code that returns the number of whole seconds
passed since the start of the simulation follows:

model Seconds

discrete output Real s = 0;

parameter Real TO=1, Ts=1;
equation

when sample(T0,Ts) then

s = pre(s) + 1;

end when;

end Seconds

At the initial time when simulation starts, pre(z)=z.start is identical to the start at-
tribute value of its argument. Certain Modelica variables can be declared as constants or
simulation parameters by using the prefixes constant and parameter respectively. Such vari-
ables do not change value during simulations. For a constant or parameter variable c, it is
always c=pre(c); [?].
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Discrete-time Event handling

To define zero-crossing events when-statements are used. When the event condition be-
comes true, a piece of code is activated and then executes certain actions, e.g., consider the
when-statement in the following Modelica code.

model disc
discrete Real z(start = 0);
Real x(start = 0);

equation
x=Modelica.Math.sin(time) ;
when (x> 0.1) then

z =0.5*pre(z)-1;

end when;

end disc;

This is a Modelica model for
z(k+1)=0.52(k) — 1,

whenever the sinusoid signal (x=sin(t)) crosses 0.1 (in the positive direction), the value of 2
is updated. When-clauses are used to express equations that are only valid (become active) at
events instants, e.g., at discontinuities or when certain conditions become true. In the body
of when-statements discrete-time expressions can be used since they become active only at
event instants. For example, two equations in the when-clause below become active at the
event instant when the Boolean expression x>2 becomes true.

when x > 2 then

z2 = zl+1;
z1l = pre(zl)+1;
end when;

In this example, at event times, the previous value of z1 is used to compute the new value
of z1, then it is used to compute z2.

The discrete-time variables in Modelica only change value at discrete-time points, i.e.,
at event instants, and keep their values constant between events. This is in contrast to
continuous-time variables which may change value at any time, and usually evolve contin-
uously over time. when-statement is used to update the discrete-time variables, but the
continuous-time variables can also be reinitialized at event instants. The reinit () keyword
is used to reinitialize the continuous-time variables.

when x > 2.0 then
reinit(x,4.0);
end when;

When x becomes greater than 2, the reinit statement assigns x=4.0.
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Initialization Equations

A dynamic model describes how model variables evolve over time. For a well specified model,
it must be possible to define the variable values at initial time in order to compute their
value at time>0. To initialize the variables, a system of equations are used that are called
initialization equations. These equations are used at time=0 and assigns consistent initial
values to all variables in the model, including derivatives of the continuous-time variables and
pre of the discrete-time variables.

The start keyword is used to assign an initial value to the variables. In fact, x (start=x0) ;
adds the equation (x=x0;) to the initialization equations. Consider this model,

class init
Real x (start=2.4, fixed=true);

equation
der (x)=5-2%*x;
end init;

During the initialization, the following equations are the initialization equations that
should be solved.

der (x)=5-2%x;
x=2.4;

For the discrete-time variables the z (start=z0) statement adds the equation (pre (z)=z0;)
to the initialization equations. Sometimes there are some constraints in the model that we
cannot initialize all the variables of the system at the same time. For example, consider this
model:

class init
Real x (start=2.4);
Real y (start=12);
equation
der (x)=5-2%*x;
y=2%x;
end init;

In this model the statement (y=2*x) is a constraint, so the value of x and y cannot be
initialized freely. In Modelica the boolean fixed keyword is used to specify which variable
should be leaved constant during initialization. With the fixed=true we can select the
variables that should left constant during initialization. For example, in the following model
the value of y remains 12 and the value of x will become 6 after initialization.

class init
Real x (start=2.4, fixed=false);
Real y (start=12, fixed=ture);
equation
der (x)=5-2%*x;
y=2%Xx;
end init;
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It should be noted that the derivative of continuous-time variables and the pre value of
discrete-time variables cannot be initialized with start keyword. They can be initialized
in Initial Equations construct. The initial equations construct provides a way to
initialize all continuous-time variables. During initialization der(.) and pre(.) are treated
as variables with unknown values. Complete initialization requires all equations used during
simulation as well as initial equations to be solved. The following code is used to specify
the derivative of a variable.

class init
Real x (start=2.4, fixed=true);
initial equation
der (x)=2%x-1;
equation
der (x)=5-2%*x;
end init;

In this model the initial values are computed with these equations:

der (x)=2xx-1;
x=2.4;

initial() statement is used to define the discrete-time equations that should be used
in initialization equations. For example, this is a model for a monostable block. At the
beginning of the simulation the block’s output becomes 1, if the input is 1 and the output
value becomes 0 after two seconds. This initialization cannot be performed with the start
keyword.

when initial() then

y=u;

Tr=if u=1 then t=2 else t=0;
elsewhen u=1 then

y=1;

Tr=time+2;
end when

when time>Tr then
y=0;
end when

External functions

In Modelica, the user can use the functions that are in the library, e.g., in this code fragment
some Mathematica functions are used in the equations.

y = Modelica.Math.asin(0.5);
der(x)=Modelica.Math.cos(y*time) ;

It is possible to call an extern function which has been implemented in C or Fortran.
The body of an external function is marked with the keyword external in the Modelica
external function declaration. The external function interface supports a number of advanced
features such as in-out parameters, local work arrays, external function argument order,
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explicit specification row-major versus column-major array memory layout, etc. Here is an
example that shows how the joint external C function of multiply.mo is defined and used in
a Modelica class.

multiply.mo:
function multiply
input Real x, y;
output Real z;
external
end multiply;

multiply.c:
#include "multiply.h"
double multiply(double x, double x) {
Z=X*Y;
return z;

}

calling multiply() in a Modelica model
class Use_multiply
Real x1,x2,y;
equation
y=multiply(x1,x2);
end Use_multiply;

6.3.2 A Modelica model Example

Here we explain how a complex system can be modeled in Modelica. As an example, suppose
that the electrical system given in Fig. 6.3.1 has to be modeled.

220k §
Opamp
— o
* w1 33|
ni [l B
¢ I YWy 1k
7.9e-7 10k
“: 100mv 290k 1001k
| kHz — A —=
- 50 Ohm 220p
i
d

Figure 6.3.1: An audio amplifier stage with an Opamp.
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The first step is the modeling of the very basic components, then connect them to construct
a greater model or component. Therefore, the first step to model the electrical circuit is to
model the basic electrical components in modelica. The Modelica model of ground, capacitor,
operational amplifier, and sinusoidal voltage source follow.

connector Pin
Voltage v;
flow Current i;
end Pin;

class Ground "Ground"
Pin p;

equation
p.v = 0;

end Ground;

class Capacitor
Pin p, n;
Real v;
Real i;
parameter Real C=0.1 "Capacitance";

equation
Cxder(v) = i;
V = p.v - n.v;
0 =p.i+n.i;
i=p.i;

end Capacitor;

class IdealOpAmp3Pin
Pin in_p "Positive pin of the input port";
Pin in_n "Negative pin of the input port";
Pin out "Output pin";

equation
in_p.v = in_n.v;
in_p.i = 0;

in_n.i = 0;
end IdealOpAmp3Pin;

class VsourceAC "Sin-wave V-source"
Pin p, n;
Real v;
Real ij;
parameter Real VA=220 "Amplitude";
parameter Real f=50 "Frequency";
parameter Real PI=3.1415926 "PI";
equation
v = VA*2*%PIxf*xtime;
V = p.v - Dn.V;
0 =p.1i+n.i;
i=p.i;
end VsourceAC;

To construct the complete model, the component are connected as they are connected in
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a real electrical circuit. This can be compared to the way an engineer models an electrical
circuit in SPICE [?]. The following listing is the Modelica program for the model of Circuit
of Fig 6.3.1.

class Opampcircuit

Capacitor B1(C=7.9e-7, v(start=0));
Ground B2;
VoltageSensor B3;
VsourceAC B4(VA=0.1, f=1k);
IdealOpAmp3Pin B5;
Resistor B6(R=50) ;
Resistor B7(R=10k) ;
VoltageSensor BS;
Resistor B9 (R=220k) ;
Capacitor B10(C=220p, v(start=0));
Resistor B11(R=220k) ;
Battery B12(V=33v) ;
Resistor B13(R=100k) ;
Resistor B14(R=1k) ;
equation

connect (B11l.p,B2.p);
connect (B4.p,B2.p);
connect (B3.p,B2.p);
connect (B8.p,B2.p);
connect (B14.n,B2.p);
connect (B12.n,B2.p);
connect (B13.n,Bl.n);
connect (B5.out,Bl.n);
connect (B8.n,Bl.n);
connect (Bl4.p,Bil.n);
connect (B10.p,B9.n);
connect (B3.n,B9.n);
connect (B5.in_p,B6.n);
connect (Bl.p,B6.n);
connect (B13.p,B6.n);
connect (B7.p,Bl1.n);
connect (B5.in_n,B11.n);
connect (B9.p,B4.n);
connect (B6.p,B10.n);
connect (B12.p,B7.n);
end Opampcircuit;

6.4 Component level modeling in Scicos

To be able to use implicit blocks in addition to explicit ones in Scicos, several new features
have been added to Scicos. So far, only two palettes with implicit blocks are available for
testing purposes: the electrical and the thermo-hydraulic palettes. The thermo-hydraulics
and electrical toolboxes and their available blocks are shown in Fig. 6.4.1 and 6.4.2.
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Figure 6.4.1: Thermo-hydraulics toolbox.

Figure 6.4.2: Electrical component toolbox.

Since the information available on the links connecting acausal models corresponds in
general to physical quantities such as (voltage, current), (flow, pressure), etc, and are very
different from information on links connecting causal models which transport signals, even a
simple derivation placed on a link has a very different significance in two cases: a link that
splits in two in the causal setting simply means that the information is duplicated whereas
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in the acausal setting, say in an electrical circuit, such a split must be implemented using
the Kirchoff’s voltage and current laws. Clearly it would be meaningless to allow the direct
connection of a port of an acausal model to that of a causal model. That is why, special blocks
were introduced in Scicos to be used as interfaces between the causal and the acausal world.
Such blocks which have very clear physical significance, may have input ports, output ports
and “acausal ports” An example of such a block is a voltmeter. This block has two acausal
ports; physically they correspond to the place where the two wires are to be connected. But
it also has an output where the measured value of the voltage is sent out of the block. In
general, sensors and actuators make the interface between the component level part of the
model and system level part.

Implicit blocks or components are interfaced via special links associated with physical
quantities such as current or voltage in electronics, or, flow or pressure in hydraulics. As it
is meaningless for a link representing a voltage to be connected to another link representing
the output value of a PID controller, to distinguish between these two, two different link
types have been defined: explicit and implicit links that interconnect explicit and implicit
ports respectively. In Fig. 6.4.3 we have a hydraulic container which has four implicit ports
(marked IP) representing liquid outlets and an explicit port (marked EO) representing a liquid
level sensor output.

IP IP : Implicit Port
EO EO : Explicit Output

IP

Figure 6.4.3: An implicit block can have implicit and explicit ports.

Implicit and regular Scicos blocks can be used in the same diagram. The addition of
implicit blocks has been done without changing significantly the Scicos formalism. Even
though implicit blocks can be used anywhere inside a Scicos diagram, they are grouped
and replaced with a single block in a precompilation phase [?]. The mechanism, which can
be compared to the way an AMESim [?] or Dymola [?] model is integrated in Simulink, is
completely transparent to the user.

Consider for example the Scicos diagram in Fig. 6.4.4. Here we have a fluid level control
system. To model this system in a natural way, a hydraulic source, a regulated valve, a
container, a tube, and a well have been used. The container has a built-in level sensor which
makes the interface with the explicit part of the system, similarly the valve is regulated
through an input signal from the explicit part of model. The controller and the display
mechanism have been implemented using explicit blocks and the blocks in gray are implicit
blocks that have been developed in the Modelica language.
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Figure 6.4.4: Scicos diagram containing both types of blocks.

6.4.1 Mixed Diagram Compiling

The way implicit blocks are handled by the Scicos editor is similar to the way regular blocks
are. The compilation is again transparent for the user, however, the compiler performs a first
stage compilation by grouping all the implicit blocks into a single internally implicit block,

see Fig. 6.4.5 and 6.4.4. This is done by generating a Modelica program for the implicit part
of the diagram.
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Figure 6.4.5: Scicos diagram of Fig 6.4.4; implicit parts are grouped into one explicit block.

For example, for the model of Fig. 6.4.4, all implicit block are grouped into a single block,
see Fig. 6.4.5. The generated code expresses the behavior of the implicit part and is saved in
a temporary file. For this model, the automatically generated Modelica code is:

class imppart_Hydraulics
parameter Real P1;

parameter Real P2;
parameter Real P3;
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parameter Real P4;
parameter Real P5;
parameter Real P6;
parameter Real P7;
parameter Real P8;
parameter Real P9;
parameter Real P10;
parameter Real P11;
parameter Real P12;
parameter Real P13;
parameter Real P14;
parameter Real P15;
parameter Real P16;
parameter Real P17;
parameter Real P18;
parameter Real P19;
parameter Real P20;
parameter Real P21;
parameter Real P22;
parameter Real P23;
parameter Real P24;
parameter Real P25;

Source B1(P0=P1, TO0=P2, HO=P3, option_temperature=P4);
VanneReglante B2(Cvmax=P5, p_rho=P6);
Bache B3(Patm=P7, A=P8, zel=P9, ze2=P10, zs1=P11, zs2=P12, z0=P13, T0=P14, p_rho=P15);
PerteDP B4(L=P16, D=P17, lambda=P18, z1=P19, z2=P20, p_rho=P21);
Puits B5(P0=P22, T0=P23, H0=P24, option_temperature=P25);
OQutPutPort B6;
OutPutPort B7;
InPutPort B3;
equation

connect (B2.C1,B1.C);
connect (B3.Cel,B2.C2);
connect (B4.C1,B3.Cs2);
connect (B5.C,B4.C2);
B3.yNiveau = B6.vi;
B3.yNiveau = B7.vi;
B8.vo = B2.0uv;

end imppart_Hydraulics;

The generated Modelica file is then processed by the a Modelica compiler which translates
the Modelica code into a target code (in Scicos it is a C code). The generated C code describes
the behavior of the implicit part of the model. Once the C code is compiled (this requires a
C compiler) and incrementally linked with Scilab, Scicos sees this new block as a standard
explicit block. In fact the new explicit (internally implicit) block replaces the implicit part of
the diagram.

At the end of this procedure, the model is composed of only explicit blocks and can be
compiled and simulated as usual. To illustrate our method, a flowchart given in Fig. 6.4.6
shows the compile process in Scicos. Modelicac is the Modelica compiler that is used in
Scicos. Modelicac receives the automatically generated Modelica code for the Implicit part
of the model and generates an equivalent C code for the implicit blocks.
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Figure 6.4.6: Scicos’ Compiling and simulation flowchart.

6.5 Modelicac, a Modelica Compiler

Modelicac which stands for Modelica Compiler is a compiler for the subset of the Modelica
language to cover the needs of simulating hybrid models in Scicos. Modelicac is an external
tool, i.e., it is independent of Scilab, so one may use it like an ordinary compiler, e.g., like a C
compiler. By default, Modelicac comes with a module that generates C code for the Scicos
target. However, since Modelicac is free and open-source, it is possible to develop other
code generators for other targets as well. Modelicac has been developed in Objective Caml
which is a functional programing language developed at INRIA since 1985. This language
is distributed with two compiler-development tools (Ocamllex and Ocamlyacc) which offer
facilities to build compilers. Furthermore the Objective Caml compiler is free and open-
source, that is why we adopted it to develop Modelicac [?, ?].
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Modelicac is invoked for two purposes: compiling basic models from libraries and gen-
erating code for the target simulation environment. To fulfill the first task, like generating
an object file with a C compiler, Modelicac is invoked with the appropriate options from
the command line to generate an object file with ”*.moc” extension. The second task of
Modelicac is compiling the ”main” Modelica model (here provided by Scicos) and generating
a code for the target (here, a C code). In this phase instead of generating an object file,
Modelicac performs several simplification steps to generate a code as compact as possible.
In Fig. 6.5.1 a flowchart shows how Modelicac generates a C file from Modelica model of a
Scicos diagram.
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Figure 6.5.1: Modelicac translation flowchart.

6.5.1 Supported Modelica subset

The latest version of Modelicac (1.x.x) that has been used in this thesis does not support the
full set of Modelica language constructs. It actually allows only the description of physical
models at ”equation” level. A physical model is built as the aggregation of sub-models or basic
types with constraints between variables, and explicit event declarations (When). Currently
Modelicac has the following main limitations:

e Only Real data type is supported.

e There is a minimum support for discrete-time variables, i.e., a discrete-time variable
can be defined and updated in the when-statements.

e Inheritance is not currently supported.

e Algorithm is not supported but it can be defined as an external C function.
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e pre and fixed keywords are not currently supported.

e initial equation construct is not currently supported. The user can only define the
initial value for the differential variables and a guess value for the algebraic variables.

e The size of an array should be constant and cannot be a parameter.

e The cardinality and direction keywords are not supported.

6.5.2 Modelica Source Files

Modelica source files must contain only one class declaration, introduced either by the class
keyword or by the function keyword. So a Modelica source file may define one of the following
things:

e An open model is a model with free variables. There are more variables than equations
(e.g., the model of a resistor in the electrical library). The open models are introduced by
the class keyword,

e A close model is a model with an equal number of variables and constraints. It is also
introduced by the class keyword,

e An external function, introduced by the function keyword.

It should be noted that only closed models can be simulated. To compile the close
model Modelicac searches the libraries used in the current compilation directory and also in
user-defined directories.

6.5.3 Model simplification

The following tasks are fulfilled by modelicac to simplify and generate a C source file from a
Modelica source code and library object code files:

e Obtaining a flat model by replacing an aggregation of sub-models by the set of all their
variables and equations merged together and replacing connection equations by ordinary
equations. Symbolic manipulations in modelicac are performed using classical acyclic graph
manipulation techniques

e Simplification of trivial or unnecessary equations using symbolic manipulations, e.g., in
the following system

cos(z) + sin(y) =0
cos(z) —sin(y) =0
z—x—y=0
f(x7y7z71]) = O

the first two equations are fully nonlinear and only the numerical solver can solve the system
for z and y. But the third equation is trivial and z can be obtained in terms of z and y, so in
the rest of equations z is replaced by x + y. Most of the variables used to connect Modelica
components (”connection variables”), are eliminated in this way.

e Causality analysis, i.e., computation of system’s Jacobian matrix. It will be explained
further in the next section. s

Causality analysis

Causality analysis performs a few operations in order to find the so-called ”strongly connected
components” of a system of equations viewed as a directed bipartite graph [?]:
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1. Constructing a bipartite graph whose nodes on the left represent variables in the system
and whose nodes on the right represent constraints between variables (i.e., equations).
There is an edge between a left-side node and a right-side node if and only if the variable
represented by the left-side node appears in the equation represented by the right-side
node.

2. Finding a coupling (using the Ford and Fulkerson method for instance)

3. Giving the edges an orientation depending on the results of the previous step. Edges
that link two coupled nodes are all oriented in a given direction (either left-to-right or
right-to-left) and the other ones in the opposite direction.

4. Finding strongly connected components in the resulting oriented graph (using Tarjan’s
algorithm for instance)

5. Sorting the resulting nodes in a topological order.

Each strongly connected component represents a subsystem of the whole system and it
is now possible to perform symbolic simplification steps in order to reduce the number of
variables in the system.

Modelicac simplification strategy

Symbolic simplifications typically involve variants of the Gauss method (to solve linear sys-
tems) and simple symbolic simplification methods based on a set of predetermined patterns
(for efficiency reasons) to try to solve the remaining equations. In modelicac we focused on
the second class of simplification methods. The problem when trying to solve a set of nonlin-
ear equations is to determine a coupling in the bipartite graph described above that triggers
as many simplifications as possible. So the Ford and Fulkerson (or equivalent) method is not
enough for our purposes: instead of taking the first encountered coupling, we want in addition
that the coupling satisfy a given criterion (e.g., maximizing the potential number of simplifi-
cations in the system) [?, ?]. Hence the use of a variant of the Hungarian method which can
be seen in modelicac as a method for finding a coupling based on an additional constraint
called the ”satisfaction” [?, ?]. Practically, that is done in modelicac by associating a set of
pairs (variable, weight) with each equation: given an equation, each weight indicates whether
the equation is "easy” to solve with respect to its associated variable or not. For instance,
if an equation contains only one variable, the weight associated with that variable is low
whereas the weight associated with any other variable is infinite. Since modelicac associates
low weights with variables that appear in linear systems, the Hungarian method ” discovers”
linear systems by itself and symbolic substitution techniques, when applied to those linear sys-
tems, achieve the same effect as Gaussian elimination. Even though the Gaussian elimination
algorithms is not considered in modelicac, the results are satisfactory.

6.5.4 Scicos vs Modelica

In chapter (3), we discussed about Scicos and internal architecture of a Scicos block. Here
we will see the correspondence between Modelica constructs and the Scicos blocks.

Variables and Equations: The variables defined by Real keyword are continuous-time
variables in a Modelica code. These variables are equivalent to the continuous-time states
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that are defined in the ODE or DAE equations in a Scicos block. The derivative of a variable,
defined with der operator, is equivalent to the the derivative of a continuous-time state. The
discrete keyword is used to define the discrete-time variables in Modelica. The variables
declared with Real discrete in Modelica are equivalent to the discrete-time states in Sci-
cos. During code generation, Modelicac uses this correspondence to generate differential and
difference equations.

If-statement: A discontinuity in model is modeled with an If-statement in Modelica and
If-statements that do not cause discontinuity are used with a noEvenet. In a Scicos block,
a discontinuity should be used with a mode variable and a zero-crossing function to locate
the discontinuity. The mode variable is update in flag=9, phase==1. For a Modelica code
such as

f3 = if x1 < 2 then f1 else f2;

Modelicac generates the following code:

res[.] = £3 - (mode[0]==1)7 f1; f2;

ié‘(flag==9){
gl01=-x[0] + 2;
if (phase==1) then{
if (g[0]1>0) mode[0]=1; else mode[0]=2;
}
}

If this If-statement is specified with noEvent, then the following code will be generated.
res[.] = -x[0]+2>0 7 f1; f2;

when-statement: when-statements are used to define unpredictable or zero-crossing
events. A when construct has two parts: a condition and an action to perform when the
condition becomes true. This construct is in fact used to generate an event and then do some
actions. In Scicos, a zero-crossing function can be used to generate such an event. When this
event is activated, the block is called with flag=2. In order to distinguish between a call due
to an external event and a call due to an internal zero-crossing event, the block is called with
flag=2 and a negative nevprt (external event have always a positive nevprt that indicates
the activating input event port). Here is an example of a when-statement and the C code
that has been generated by Modelicac.

// Modelica source code:
when x > 2.0 then
z1l = z1+1;
reinit(x,2.0);
end when;

// the generated C code:

if (flag == 2 && nevprt < 0) {
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if (jroot[0] == 1) {
x[0]=2.0;
z[1] = 1.0+z[1];
}
}

if (flag == 9) {
gl[0]1=x[0];
}

Modelica programs do not generally contain sequences of commands like program written
in classical programming languages such as FORTRAN. Most of the time, statements in Mod-
elica denote constraints to be verified during simulation, except when explicitly introduced
by the algorithm keyword?. Therefore, there are some points that the user should be aware
about. That is the execution order of statements in a when-statement and the execution
order of the when-statements that may be executed at the same time. For example, for this
Modelica code,

discrete Real z0 (start=0);
discrete Real z1 (start=0);

when (time>2) then
z0 = z1+1
end when;

when (time>2) then
z1l = z1+1
end when;

the generated Scicos code can be either

if (flag==2 & nevprt < 0){
if (jroot[0]==1){
z[1]=z[1]+1;
}
if (jroot[1]==1){
z[0]=z[1]+1;
}
}

or

if (flag==2 & nevprt < 0){
if (jroot[0]==1){
z[0]=z[1]+1;
}
if (jroot[1]==1){
z[1]==z[1]+1;
}
}

2Algorithm is not discussed in this thesis
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In this example, two when-statements are executed at the same time, so their execution
order is undetermined. After executing the event, the value of z0 can either be 2 or 1.

6.5.5 A Code Generation Example

First, we present the Modelica source code of a few electrical models from electrical library
and then show how to use these models to construct and compile elaborated electrical models
with modelicac.

Connectors

In Scicos libraries ”connectors” are the most basic open models. Each particular domain
(e.g., electrical, hydraulic, etc.) has a its own connectors that connect two or more models

and exchange quantities. The are two connector types:
e Internal connectors, that allow connection of two Modelica components, such as ”p”
and "n” pins used in electrical resistor model.

class Pin
Real v;
flow Real i;
end Pin;

e External connectors, that allow communication of a Modelica component with an ex-
ternal environment (Explicit part of model in Scicos environment, for instance). Instances of
”InPutPort” and ”OutPutPort” are examples of these connectors types

class InPutPort
input Real vi;
end InPutPort;

class OutPort
output Real v;
end OutPort;

These types of connectors are used in sensor and actuator blocks that can be seen in
Fig. 6.4.4 and 6.5.2.

Main class

In order to use these models to construct and compile elaborate electrical models with
Modelicac. In order to perform the simulation of an electrical circuit one normally has
to describe the circuit using Modelica by defining the components involved (i.e., giving their
names and the value of their parameters) and the connections to establish. Then, Modelicac
should be invoked with the appropriate options and arguments. This task is done by Scicos,
provided that the appropriate library exist in Scicos.

Like other compilers, Modelicac can generate intermediate object files with * .moc suffixes.
These files contain all necessary information about the compiled Modelica file. These object
files are used to generate a target C file for Scicos. Modelicac can be evoked form command
line as follows,
modelicac [-c] [-o <outputfile>] <inputfile> [options]
where
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-c, to compile the file without C code generation, i.e., generate * .moc file.
-0 <outputfile>, to give a name to the output file.

-keep-all-variables, to generate the code without simplification.

[}
[ J
e -jac, to generate the analytical Jacobian of the DAE.
[ J
[ J

-L <directory>, to indicate the directory of library files (*.moc).

e -hpath <directory>, to indicate the directory where the external function files have
been stored.

In Scicos, all the process of calling Modelicac is automatic. In fact, it is not necessary
to write any Modelica code to build a model. The user can assemble components using the
Scicos editor and then Scicos automatically builds the Modelica source code from the graphical
specification and invokes Modelicac to convert Modelica code into C code. Fig. 6.5.2 shows
the model of electrical circuit of Fig. 6.3.1 implemented in Scicos using implicit blocks.

Alternatgur

C=220e-12

c- —
R=50

N

R=220e3

C=7.96—7 1-1083

:{?.

—-
= | MScope
R=220e3 F{T

€

Figure 6.5.2: Scicos’ Implementation of electrical circuit of Fig. 6.3.1.

For this model Modelicac generates a C code. The generated C code is composed of several
'sections’, defined by flag value and perform a predefined task. For example, in section where
(flag==0) the residual or DAE is defined. This C code is incrementally linked with Scicos to
be used as a standard block. The computation function, beside an automatically generated
interfacing function, defines the new explicit block to be replaced by implicit blocks. Here is
the generated code for the model in Fig. 6.3.1.
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number
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I/0 direct dependency = false
*/

#include <math.h>
#include <scicos/scicos_block.h>

/* Utility functions */

double ipow_(double x, int n)

{
double y;
y=n%4%27x:1;
while (n >>= 1) {
X = X % X;
if Mm% 2) y=y *x;
}
return y;
}
double ipow(double x, int n)
{
/* NalNs propagation */
if (isnan(x) || x == 0.0 & n == 0) return exp(x * log((double)n));
/* Normal execution */
if (n < 0) return 1.0 / ipow_(x, -n);
return ipow_(x, n);
}

/* Scicos block’s entry point */
yp

void imppart_opamp2(scicos_block *block, int flag)

{
double *rpar = block->rpar;
double *z = block->z;
double *x = block->x;
double *xd block->xd;
double **y = block->outptr;
double **u = block->inptr;
double *g = block->g;
double *res = block->res;
int *jroot = block->jroot;
int *mode = block->mode;
int nevprt = block->nevprt;
int property[6];

/* Intermediate variables */
double vO0, vi;

if (flag == 0) {

res[0] = xd[0]*rpar [0]+x[2]+x[4];
v0 = -x[1]*rpar[9];
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} else

} else
} else

} else
} else

} else
}

return;

vl = Get_Jacobian_parameter();
res[1] = (rpar[10]+vO-rpar[5]*x[1])*v1;
res[2] = (sin(6.28318530718*get_scicos_time()*rpar [3])

xrpar [2]+x [3]+x[1] *rpar [9] -rpar [6]*x[2] -rpar [4] *x[2]) *v1;

res[3] = x[2]+xd[3]*rpar[7];

res[4] = (x[4]*rpar[11]1-x[0])*v1;

res[5] = (x[0]+vO-rpar[12]*x[5])*v1;

if (flag == 1) {

if (get_phase_simulation() == 1) {
v0 = -x[1]*rpar[9];
y[0]1[0] = vO+rpar[4]*x[2]-x[3]; /* main.B15.vo */
y[11[0] = x[0]+v0; /* main.B16.vo */

} else {
v0 = -x[1]*rpar[9];
y[0]1[0] = vO+rpar[4]*x[2]-x[3]; /* main.B15.vo */
y[11[0] = x[0]+v0; /* main.B16.vo */

}
if (flag == 2 && nevprt < 0) {
if (flag == 4) {

x[0] = rpar[1]; /* main.Bl.v */
x[1] = 0.0; /* main.B7.n.i */
x[2] = 0.0; /* main.B9.n.i */
x[3] = rpar[8]; /* main.B10.v */

x[4] = 0.0; /* main.B13.p.i */

x[5] = 0.0; /* main.B14.n.i */

if (flag == 6) {

if (flag == 7) {

property[0] = 1; /* main.Bl.v (state variable) */

property[1] = -1; /* main.B7.n.i (algebraic variable) */
property[2] = -1; /* main.B9.n.i (algebraic variable) */
property[3] = 1; /* main.B10.v (state variable) */

property[4] = -1; /* main.B13.p.i (algebraic variable) */
property[5] = -1; /* main.Bl14.n.i (algebraic variable) */
set_pointer_xproperty(property) ;

if (flag == 9) {

6.6 Jacobian Matrix Evaluation

The introduction of implicit blocks has had two consequences for the numerical solver:
e The global system to be simulated is a DAE (with explicit blocks the resulting global

system was an ODE),

e The implicit part of the dynamics, defined in Modelica, contains symbolic expressions

which can be used to obtain an analytical expressions for the Jacobian.

Mostly, system models with spatially lumped elements appear as implicit nonlinear DAEs.
Only in special cases their formulation as explicit state equations is possible [?]. The simula-
tion of such systems requires specific numerical software such as DASSL. Jacobian evaluations
are needed by these solvers. They can either be done numerically or symbolically. The ana-
lytical expression for the Jacobian obtained through symbolic computation is more accurate
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and leads to better simulation performance. So if the system description is available symbol-
ically, Jacobian evaluation by symbolic manipulation should be performed, if possible. There
are situations, however, where symbolic information is only partially available. This happens
in particular when the system is defined in a modular way, for example by a block diagram,
and only the dynamics of some of the blocks are available symbolically, the others are defined
by computer programs. Consider the Scicos diagram illustrated in Fig. 6.6.1. This model
contains both explicit and implicit blocks.

Voltmeter Voltmeter I@

| MUX -
- =l
C=.0001
— O j—=—
Source R=500
- Full Bridge RECTIFIER

Figure 6.6.1: A system consisting several implicit blocks (components).

In this case all of the continuous-time dynamics is in the implicit parts so that when Scicos
generates the Modelica program for this part, it generates a C code from Modelica program
and replaces this part with an explicit block whose internal dynamics is described by this
program, the resulting explicit Scicos model is given in Fig. 6.6.2.

=6

Figure 6.6.2: Replacing Implicit blocks of Fig. 6.6.1 with an explicit block.

In this case the continuous-time dynamics is in the block MBlock and the DAE equations
are symbolically available. This means that the expression of the Jacobian can be computed
analytically and made available to the numerical solver. Unfortunately, this is not always the
case as it can be seen in the example illustrated in Fig. 6.6.3.
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MScope

e
Display

\—’_/

Figure 6.6.3: Selection of implicit blocks in a mixed-model Scicos diagram.

In this case, after the substitution of the implicit part by an explicit block we obtain the
diagram in Fig. 6.6.4. Note that in this case the explicit part contains also continuous-time
dynamics (in particular, a linear system defined in terms of its transfer function). So symbolic
information is not available for the computation of the Jacobian, or more specifically only
partial information is available.

[ oot ©

> Eisco pe

e—
MBlock - Display

Mux

Figure 6.6.4: Abstraction of implicit blocks into one explicit block.

Replacing all the explicit parts also with a single explicit block, we obtain the diagram in
Fig. 6.6.5 or more simply the me in Fig. 6.6.6. In general, this is the type of system that the
numerical solver has to deal with [?, ?].
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| Feedback |« @
xd=Ax+Bu I

y=Cx+Du L. num(z)
den(z)

&

Y

Actuators

= éé Sensors

C=01
\r a

Implicit part grouped in one explicit block

Figure 6.6.5: Abstraction of model in two explicit blocks.

Blocks without analytical Jacobian

Explicit
Blocks J™

MBlock

¥

Block with analytical Jacobian

Figure 6.6.6: Abstraction of model in two explicit blocks.

In Scicos mixed-models, we have only the analytical expression of the Jacobian matrix of
the implicit part of the model, and the Jacobian of the rest of the model should be computed
numerically. In this section we will explain how this partial information can be exploited to
improve the accuracy of the global Jacobian.

6.6.1 Jacobian Evaluation of Mixed-Model Systems

Consider the mixed-model DAE system illustrated in Fig 6.6.7. This system can be repre-
sented as follows:

(6.6.1) 0 = ¢(&,x),
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where z, the state vector, is given by

(6.6.2) z = (g) ,

we assume the analytical expressions of F' and G are available and thus can be differentiated
symbolically. On the other hand H and L can only be evaluated numerically.

Y1 0= H(fi)l, r1, ul) U1
= L(i‘l,l‘l,“l)

locks without Analytical Jacobian

0= F(iz,l’g,’llq) E S
Yo = G(&3, 23, ug) V2

block with Analytical Jacobian

Figure 6.6.7: Scicos model from simulator’s view.

Solving this system numerically requires the evaluation of the Jacobian
o 04
J=a—+
9i * ox’
for any parameter «.
Theorem:

Consider the DAE system illustrated in Fig 6.6.7 and assume that it contains no algebraic
loop, i.e.,

oM
(6.6.3) aa, O
ON
6.6.4 >— =0
( ) Oug ’
where
M = G(&2,x2, L(&1, 71, u1)),
N = L(i'l,xlg G(i‘g,.’L'Q,'U/Q))-
Let
0 0¢
T = T o

178



6.6 Jacobian Matrix Evaluation

Then
where
([ J11 =
Jio =
6.6.5 <
(6.6.5) Ty =
Jog =
\
Proof:

J =

(Jn J12>
Jor Jan)’

9H 0G oL
awl + O‘axl + dui Ousy (0w1 ta awl)

OH
dur (63:2 +a 612 )

Busy

OF
St afi + S AL (09 o bl

OF oL
(81'1 +a 83:1)

OF OL

Note that the system equations are the followings

from which we obtain the following expressions

(6.6.6)

(6.6.7)

(6.6.8)

(6.6.9)

out

Jo1

Joo

0 = H(i,z1,u1)
0 = F(z9,12,us)
1 = L(&1,z1,u1)
yo = G(Z2,12,u2)
ur = Y2
U2 = Y1,
_ oH oH  oHow
0x1 01 Oup 0x1
_ OH 0uy
Ouy Oy
_ OF ow
Oug 011
OF OF  OF 0Ousy

3—x2+a6—j:2+6—w8—w2'

n (6.6.6), the term 7! can be rewritten as

6’U,1

omy

%2
6371

8:(/2 0

oG

Ouy Omy

9 9 T

U3
Z1

oL OL  OL Ou
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From (6.6.3) we have oG oL = 0, thus we obtain
Oug Ouq
Ouy 0G 0L oL

6.1 wm _ 0G oL oL,
(6 6 0) 6331 BUQ (81121 a&i:l)
Hence from (6.6.6) and (6.6.10) we obtain the Jj; expression in (6.6.5).

For Jy, (6.6.7) can be rewritten as

g, = Hom
2= 6u1 B.TQ
_ OH oy
B 8u1 8.’E2
_ O 0G| 0G 9GO
B (9’!1,1 (9.’1)2 6.T2 (9’!1,2 8162
_ OH 0G| 0G| 9G OLow
~ Quy Oxo 0o  Oug Ouq Oza””
Since 9G oL = 0, the desired expression for Ji2 in (6.6.5) can be obtained.
8U2 8u1
To obtain Jo;, (6.6.8) can be rewritten
. oF 8’[1,2
J21 N 6u2 (9.’131
_ 9Fom
" OQug 011
_ OF 0L 0L, 0Low
N BUQ 8.’131 6.’1'31 Bul 8371
_ OF 0L 0L 0L 0G0
N BUQ a.’L'l 65)1 E)ul 8u2 8:172 )
0L 0G . . . .
From (6.6.4) we have P B 0, thus we obtain the desired expression for Js; in (6.6.5).
U1 dug
To obtain Ja9, the term % in (6.6.9) can be rewritten as
2
Oug _ Oy
3:62 N 3{172
_ Iy owm
- aU1 8.’172
_ LG 0G| 9G ou
N 8u1 8332 8.’1'32 au2 8.’172 '
Since g—ig—i = 0 we have
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Oug oL  0G 0G
6.11 ouz _ oL oG, 9L,
(6 0 ) 6902 (9’!1,1 (8162 aaig)
Combining (6.6.9) and (6.6.11) we get Joo expression in (6.6.5). O

6.6.2 Scicos Implementation and Simulation

The numerical solver in Scicos needs the Jacobian obtained in (6.6.5). In (6.6.5), the following
can be computed analytically because their expressions are symbolically available:

(6.6.12) OF OF OF 0G  0G - 0G
e 8.’BQ ’ 8.7.32 ’ 811,2 ’ 8.’E2 ’ 3:&2 ’ 811,2'

These expressions are indeed computed by the Modelica parser and compiler integrated
in Scicos. On the other hand, numerical differentiation is used to obtain the following expres-
sions.

(6.6.13) oM | OH oL 0L 0H L
e 8.’131 6&:1 ’ 8.’1)1 8.’1'31 ’ 8u1 ’ 8u1'

OH OH oL oL . 3 :
To compute 7+ + agz- and 5= + azz numerically, 1 and &; are perturbed in one of

their elements (keeping the others constant) and H and L are evaluated and compared with
their previous values (when z1 and & are not perturbed). Thus the approximate value of the

ij*" element of g—z + ag—g and gTLl + ag—i[’l are

Hz'(.’in + aoj,x1 + aj,ul) — Hi(a'vl,m,ul)

7

Q

9j

Li(i1 + aoj,z1 + 0j,u1) — Li(E1, 21, u1)

Q

gj

To compute the remaining terms of 6.6.13, the inputs of explicit blocks (outputs of gener-
ated explicit block) are disconnected and perturbed and H and L are evaluated and compared
with their previous values (when wu; is not perturbed). Thus the approximate value of the
ij*" elements of g—g and 5_151 are

OH;  Hi(d1,71,u1 +0y) — Hi(d1,21,u1)
Ouy g ’
oL; - Li(il,.’Bl,’u,l—i—Uj) —L,‘(j]l,.’lfl,’u,l)

E)ulj oy '

The size of the perturbation is obviously important for the accuracy of the approximation.
The choice of perturbation is a trade off between making the perturbation as small as possible
to improve the theoretical accuracy, while at the same time not making it so small that
the accuracy of the computer becomes limiting. A ¢ not smaller than the square root of
the inaccuracy in z minimizes the total error (truncation error plus condition error) in the
numerical Jacobian, that is,
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oj = Ve,

where € is the smallest positive value such that

1.04+€e=1.0.

In DASKR, the following code is used to determine the size of perturbation.
DEL=SQUR*MAX (ABS (Y (I)) ,ABS(H*YPRIME(I)) ,ABS(1.DO/EWT(I)))

In Scicos, since in most cases nonlinearities and stiffness are found in the implicit part,
the use of exact expressions improves a great deal the precision of the evaluated Jacobians
furnished to the solver. This results in more accurate simulation and can even avoid simulation
failures in some cases.

An Example

Introducing analytical Jacobian reduces the error and in many stiff cases it helps the solver
to integrate the models that it was not able to integrate with a numerical Jacobian. The
example shown in Fig. 6.6.1 is simulated in Scicos for two cases. First we use the numerical
Jacobian calculated by DASKR. In this case, the solver stops integration at 0.0012 with this
error message

IDID = -7 -- The nonlinear system solver in the time integration could not converge.

For the same example but using the analytical Jacobian, the integration finishes success-
fully at 0.1, as shown in Fig. 6.6.8.

240

180

120~

60—

—120—

_180

240

T T T T T T T T T
0.00 0.01 002 0.03 004 0.05 0.06 007 0.08 009 0.10

Figure 6.6.8: Simulation result of model of Fig. 6.6.1 with analytical Jacobian.
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6.7 Condition Number Improvement

In section 2, we saw that for a semi-explicit DAE

i = f(z,y,1)

0 = g(a:ayat)a
if we scale the DAE by a, i.e.,

T = f(x,y,t)

0 = ag(x7y’t)’

where « is a coefficient provided by the solver, then the condition number of the Jacobian
matrix can be reduced. A reduced condition number results in a less round-off error and a
higher accuracy. In order to implement this feature, we need to have a DAE in a semi-explicit
form and know the algebraic and differential equations of the DAE. Modelicac code generator
was modified to to generate a DAE of the form,

Mz = f(‘T,yat)
0 = aglzyt),

where M is a linear non-singular matrix.

6.8 Numerical Difficulties, an Open Problem

Modelica builds a DAE set from the Modelica model provided by Scicos. This DAE is delivered
to the numerical integrator, which is DASKR. The obtained DAE may be a large system of
equations. For example, the electrical circuit model in Fig. 6.6.1 may generate about 20
states. This may be more than what is necessary to describe the system.

The person using a simulation package has some leeway in how they describe the problem.
The developers of the simulation package also have some leeway in how they choose to take the
user’s description and formulate the DAE that is to be integrated. Selecting and eliminating
auxiliary states may be important as the size of the system grows. However, this must be
done carefully. Reducing system size may reduce sparsity of the coefficients and actually
slow down the simulation. Selecting different subsets of states to eliminate may result in
different sets of equations. Although from a mathematical viewpoint all these equations are
equivalent, the result of simulating the models may be quite different. In the following we
examine some difficulties raised in simulation concerning alternative model formulations. The
main difference when using implicit blocks, as far as the simulation is concerned, is that the
resulting global system is very often given as a set of DAEs. In extensive testing during
the development of Scicos, we have found that for some surprisingly simple problems, the
formulation can make a big difference in ways that cannot always be predicted.

An Example

For instance, consider the bridge rectifier of Fig.6.6.1. The final DAE provided by the Scicos
parser that would be integrated by DASKR when simulation is requested of Scicos is:
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ro = 220

r1 = 50

ro = 0.0001
r3 = 500

rqg = 20

v = 1o sin(nryt)
v1 =r3(z3 — f(—22) — f(z1 — 22))
(6.8.1) vo = 14(f (z2 + v1) — f(—x2))

v3 = T2 + Vg + v1 + V2

0=x14+v9+ v

O=z4+1

0= f(z1 — 22) + f(—z2) — fz2 +v1) — f(v3)
0 =roty — 3,

where the function f(z), which is the characteristic curve of an electrical diode, is defined as:

R=10%
I, =106
Vi = 0.04
N =15
‘o) L _ g+ e if <NV,
€T =
L — Ig+ 1(M=2)eN i z>= NV,

The graph of f(z) is shown in Fig.6.8.1. For z > 0.6 the graph is linear.

fix) 10

Figure 6.8.1:  f(z) (Diode I-V characteristic).

This example is a DAE composed of 4 equations. The 4 states are given by the z1, x2,
x3, and x4, of which z4 is a differential variable and z1, xo, x3 are algebraic variables. The
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Scicos parser has greatly reduced the problem size from more than 20 states to 4. This model
of a bridge rectifier is a stiff system at the points where conducting diodes turn off and the
two others turn on. To simulate this model, it was fed to DASKR with the initial conditions

z(0) = 1[0,0,0,0]
z(0) = 10,0,0,0],

but DASKR cannot integrate the DAE and stops at the first stiff point (i.e., t = 6.12E-3) and
raises the following error message

Error Flag: -7

DASKR-- AT T (=R1) AND STEP SIZE H (=R2) THE NONLINEAR SOLVER FAILED TO CONVERGE
REPEATEDLY OR WITH ABS(H)=HMIN
In above, R1 = 0.6127527006389E-02 R2 = 0.2065780285931E-12

However, by replacing v; by —z4 (see the second DAE equation in (6.8.1) ) and substituting
it in the rest of equations, the system becomes

v = 1o sin(nryt)
v1 = r3(z3 — f(—22) — f(21 — 22))
ve = ra(f(z2 — 74) — f(=122))

V3 = T9 + vg — T4 + V2
(6.8.2)
0=1z14+vg+ ve

O0=x4+v
0= f(z1 —x2) + f(—x2) — f(z2 — z4) — f(v3)

0=rox4 — x3.

This second model (6.8.2) for the model of Fig. 6.6.1 can be successfully integrated by
DASKR. Note that this reformulation does not change the index of the DAE nor the fact that
it is semi-explicit index one.

In order to examine this example more carefully we computed the Jacobian used by DASKR
analytically. With the analytical Jacobian and a smaller time intervals (for (6.8.1)), DASKR
can integrate both of the DAEs (6.8.1) and (6.8.2). However, for the modified one it uses a
larger step size specially at stiff points which results in a faster simulation. For instance, at
t =6.16E-3 the step sizes are

e For (6.8.1), H=0.46609E-07
e For (6.8.2), H=0.13031E-05

The number of calls to Residual and Jacobian functions for integrating at t=[0, 0.1] are

e For (6.8.1): Ny, = 165345, and N, = 81140
o For (6.8.2): Ny, = 18498, and N, . = 1879
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These results show a remarkable difference between integration of the two DAEs. The
reason may lay in the condition number of the Jacobian of iteration matrix of the DAEs. The
condition numbers are

e For (6.8.1), CN=14172
e For (6.8.2), CN=1140
Another interesting point is the sensitivity of the condition number in term of state vari-

ables. The first DAE is mush more sensitive than the second one.

ACN;

= 6.160F
|=5 = 6160 +09
ACN;y
|=5=21 = 13706.

6.8.1 Location of Nonlinearities

To more easily discuss the roles of nonlinearities, we consider some small, but illustrative,
types of DAE models. These examples show how a simple substitution can change the diffi-
culty of a problem. Here f is a general nonlinear function. The first example is:

T — T2
0 = .7'31+f(.’132).

With is a highly nonlinear function f(z), it may be difficult to find consistent initial
conditions if z1(tg), 1(tg) are given and we need to find z2(tg). However, upon replacing o
with z1 in the second equation, the DAE becomes

1 — T2
= o1+ f(-Tl);

which is no longer hard to find initial conditions for.
For example, for the DAE

0 = z9—x3
0 = z1+g(g9(z3) — g(—x3)))
= :Eg—.’tg,

where
9(z) = z sin(z) exp(—z),

and with initial condition
z(0) = [2,1,-1]
‘T(O) = [Oa _27 0]7

DASKR cannot find the consistent initial condition and raises this error message:
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Error Flag: -12
DASKR-- AT T (=R1) AND STEPSIZE H (=R2) THE INITIAL (Y,YPRIME) COULD NOT BE COMPUTED
In above, R1 = 0.0000000000000E+00 R2 = 0.9999999974752E-13

On the other hand, if we substitute x5 for z3, to give

0 = zo—x3
= 21 +g(9(z2) — g(~22)))
= T2 — .’1.32,

DASKR will succeed in finding the consistent initial condition and then integrating the DAE.
Here, the problem lays in finding the consistent initial conditions. In the first DAE, given zo,
DASKR should find z3 then z; which is not trivial, while in the second, it’s just evaluating
the g(x9) and assigning it to z.

For nonlinear problems like this one, depicted in Fig. 6.8.1, at < 0.3, f(z) is nearly flat
which makes it difficult for the solver to find the initial condition while for z > 0.6, it is easier
for the solver.

As another example, consider the index one DAE

(6.8.3) 0 = 22+
(6.8.4) = Z9+ f(z1 + Z2)
(685) 0 = :tg — I3,
where
f(z) = 2.
With this consistent initial condition
z(0) = [2,1,-1]
‘T(O) = [0,_1,0],

DAskKR will have problem and stops the integration with this error message

Error Flag: -7

DASKR-- AT T (=R1) AND STEPSIZE H (=R2) THE NONLINEAR SOLVER FAILED TO CONVERGE
REPEATEDLY OR WITH ABS(H)=HMIN
In above, R1 = 0.6999999823165E-06 R2 = 0.7629394338515E-12

To improve the situation, we note that from (6.8.5) it is deduced that &5 = z3. As a
result, we can replace @9 by z3 in (6.8.3) and (6.8.4), and we will get

(686) 0 = z3+x9
(6.8.7) = z3+ f(z1+ 23)
(6.8.8) 0 = 29— x3.

This problem can be integrated easily by DASKR. Notice that in the above substitution
the new system (6.8.6)—(6.8.8) only has nonlinearities in terms of the state variables. When
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solving a system such as (0 = F(z£,z,u)), the Jacobian used by DASKR takes the form of
2 Fy + Fp where h is the step size. Since h is usually small, we have that error in the
computing of F,s gets amplified much more than error in F,. Thus making (F(.)) simpler in
terms of £ can increase the accuracy of Jacobian and their conditioning. In general, in the
original implicit formulation,

= f1(u,v)
0 = f2(ll:ll’lu7 u)’
and the alternate (semi-explicit) form
u=fi (ua U)

0= f2(f1(u,v),v,u),

the semi-explicit form is expected to do better numerically. The two are equivalent, at the
level of the nonlinear systems being solved for the BDF method. But the Newton iterations
are not the same, because the predicted and subsequent iterate values of % in the equation
fa(d,v,u) = 0 are not the same as the predicted and subsequent values of the function
% = fi(u,v). Between the two, the f; value is expected to be more accurate, hence the
semi-explicit form is expected to have better convergence properties. As the iteration matrix
is the same for the integration and initial value calculation, we expect that the second DAE
will provide a better result in consistent initial condition computing as well.

The inclusion of implicit blocks makes it easier to derive and formulate a wide variety of
problems. These models naturally lead to differential algebraic equations. However, as the
examples show, mathematically equivalent models can have different numerical properties.
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Chapter 7

Applications

In this chapter, three models will be presented that have been selected to illustrate the
potential application fields of hybrid systems simulation with Scicos. The purpose of these
examples is also to demonstrate the flexibility of Scicos to simulate the models developped in
Modelica language.

In Section 7.1, a multi body dynamic system is presented to illustrate multi-mode and
discontinuity handling in the Modelica language. This system is from [?]. In Section 7.2, a
heat transfer system is modeled with Modelica and then simulated in Scicos. The example
shows the possibility of solving PDEs in Scicos. Finally, in the Section 7.3, the use of Modelica
language in modeling a real physical system is illustrated. An intermidiate cooling system for
auxiliary machines used in a power plant is modeled nad simulated in Scicos. This model is
taken from EDF!.

7.1 Example 1: Sticky balls

In chapter (2), we modeled a sticky mass system in a Scicos block using the finite state
machine method. In this example, we model the same system using the Modelica language.
Here is the model written in Modelica.

class Balls

parameter Real cl=1 "mass of 1st ball";

parameter Real c2=2 "mass of 2nd ball";

parameter Real bl=1 "equilibrium distance for mass 1";
parameter Real b2=2 "equilibrium distance for mass 2";
parameter Real joint=1;

parameter Real disjoint=-1;

Real x1(start=0);

Real vi(start=0);

Real x2(start=3);

Real v2(start=0);

Real yi;

Real y2;

Real Adh(start=0);
discrete Real z(start=1);

!Electricité De France
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equation

der(x1)=v1;
der(x2)=v2;

der(v1l)=if (z>0) then cilx*(bil-x1)
else (clxbl+c2%b2-(cl+c2)*x1)/2;

der(v2)=if (z>0) then c2x*(b2-x2)
else (cl*bl+c2*b2-(cl+c2)*x2)/2;

der (Adh)=if (z>0) then 0O
else —-Adh;

when (x1-x2)>0 then
reinit (v1, (v1+v2)/2);
reinit (v2, (v1+v2)/2);
reinit (Adh,10);
z=joint;

end when;

when (Adh-3+x1)<0 then
z=disjoint;
end when;

yil=x1;
y2=x2;

end Balls;

z is a discrete-time variable that is used to indicate the current status of the balls (joint
or disjoint). When the balls collide, they stick. The collision is defined by when (x1-x2)>0
then. In the when-statement, the state variables should be reinitialized and z become joint.
When the adherence force becomes weak, the balls disjoint and as the state variables are
identical for two balls, no reinitialization is required, just the z should be disjoint. The
dynamic of each ball has been defined with two ODESs; one for position and one for speed.
The ODEs are discontinuous and they change as a function of z.

In order to use this Modelica code in Scicos, a Scicos interfacing function should be created
and associated with the Modelica code. The following listing is the interfacing function of
the block. Here the position of two masses are defined as the explicit outputs of the block.
Then we can visualize them with a Scope block (see Fig. 7.1.1 and Fig. 7.1.2).

function [x,y,typl=Ballsi(job,argl,arg2)
x=[1;y=01;typ=1[1
select job
case ’plot’ then
standard_draw(argl)
case ’getinputs’ then
[x,y,typl=standard_inputs(argl)
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case ’getoutputs’ then
[x,y,typl=standard_outputs(argl)
case ’getorigin’ then
[x,y]l=standard_origin(argl)

case ’set’ then

x=argl;

case ’define’ then
model=scicos_model()
model.in=[];
model.out=[1;1];
model.sim=’Balls’
model.blocktype=’c’
model .dstate=[1]
model.dep_ut=[%t %f]
mo=modelica()
mo.model=’Balls’
mo.inputs=’"’;
mo.outputs=[’y1’;’y2’]
model.equations=mo
exprs=[string([1])]
gr_i=[’txt=[’’Balls’’];’;

’xstringb(orig(1l) ,orig(2),txt,sz(1),sz(2),’’£ill’’)’]

x=standard_define([2 2] ,model,exprs,gr_i)
x.graphics.in_implicit=[]
x.graphics.out_implicit=[’E’;’E’]
end

endfunction

}

This block has been used in a Scicos diagram in Fig. 7.1.1, and the simulation result has
been shown in Fig. 7.1.2.

LRy

y2

Figure 7.1.1: Sticky balls written in Modelica and modeled in Scicos.

191



Applications

3.00

2257
150

0757

Figure 7.1.2: Simulation result of model of diagram of Fig. 7.1.1.

7.2 Example 2: Solving a PDE via Finite Difference Method

In mathematics, a partial differential equation (PDE) is an equation involving partial deriva-
tives of an unknown function. In fact, a function is indirectly described by a relation between
itself and its partial derivatives, rather than writing down a function explicitly. The rela-
tion should connect the function and its derivatives at the same point. A solution of the
equation is any function satisfying this relation. Since a PDE usually has several solutions,
a problem often includes additional boundary conditions which constrain the solution set.
Partial differential equations are ubiquitous in science, as they describe phenomena such as
fluid flow, gravitational fields, and heat propagation. In the special case of heat propagation
in an isotropic and homogeneous medium in the 1-dimensional space, this equation is used,

up = kugg,

where u(t,z) is temperature as a function of time and position, u; is the rate of change of
temperature at a point over time, u,, is the second spatial derivatives (thermal conductions) of
temperature in the z directions, and k is a material-specific constant (thermal diffusivity). To
solve a PDE, there are several methods. We use finite difference method. The approach taken
by finite difference methods for partial differential equations is to approximate differential
operators such as uz(z) and uz, by two difference operators such as

uw(x) ~ U(x) — Z(‘T — h)a

and
u(z + h) — 2u(z) + u(z — h)

h? ’

for some small but finite h. Doing this substitution for a large enough number of points in
the domain of definition (for instance 0, h,2h,...,1 in the case of the unit interval) gives a
system of equations that can be solved by the numerical solvers.
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For a case study, consider a metal rod with length L, heated from both ends. The
temperature of every point along the rod at time ¢ = 0, is given with,

u(z,0) = g(x) for 0<z<L.

This function is known as the initial temperature distribution. Since heat can only enter
or exit the rod at its boundaries we must define some ”"boundary conditions,” for the rod.
Therefore we need to define the conditions of the rod at the boundaries of the rod (0, L),

w(©0,8) = fo(t), u(L,t)=fr(t) forall &> 0.

Combining the heat equation with the initial conditions and boundary conditions, we get

ut(z,t) = kugg(z,t), for 0<z <L and t>0,
u(z,0) = g(z), for 0<z<L,

u(0,t) = fo(t), for t>0,

u(L,t) = fr(t), for t>0.

For a rod of length L = 2, and k = 0.02, setting the initial temperature distribution,
g(xz) =0, and fo(t) = 25 + 20sin(0.27t) and fr(¢) = 100, then we can write a Modelica code
to model this PDE system. The rod is divided into 20 sections and the difference equation is
written for the each section. The dynamic model for each section is then

du ku(w + h) —2u(z) + u(z — h)
dt h? '

Here is the Modelica Code:

class fdm
parameter Real k=0.02 "Thermal diffusivity";
parameter Real L=2 "The rod’s Length";

Real u[21] "The rod element’s temperature";
PortH inl,in2;

Real h;

Real measure;
equation

measure = u[10];

inl1.T = u[1];

in2.T = ul[21];

h=L/20;

for i in 2:20 loop
der (ul[il)=k*(u[i+1]-2*ul[i]l+uli-1])/h"2;
end for;

end fdm;
class SourceCi
PortH C ;

Real u "input";
equation
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C.T=u;
end SourceCi;

class PortH
Real T;
end PortH;

The temperature of the two ends of the rod are given by external signals inl and in2.
This is quit useful because the user can easily modify the fy and f; in Scicos environment,
without touching the Modelica code. The desired output is the temperature of the middle of
the rod, i.e., measure=u[10]. The Scicos block diagram for this system has been depicted in
the Fig. 7.2.1.

23

sinusoid QZ
generator

Figure 7.2.1: A PDE, written in the Modelica language, modeled in Scicos.

This is the generated C code for the model:
/*

number of discrete variables = 0
number of variables = 19

number of inputs = 2

number of outputs =1

number of modes = 0

number of zero-crossings = 0

I/0 direct dependency = false

*/

#include <math.h>
#include <scicos/scicos_block.h>

/* Utility functions */

double ipow_(double x, int n)

{
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double y;
y=n%27x:1;
while (n >>= 1) {
X = X * X;
if m%2)y=y*x;

}
return y;
}
double ipow(double x, int n)
{
/* NalNs propagation */
if (isnan(x) || x == 0.0 & n == 0) return exp(x * log((double)n));
/* Normal execution */
if (n < 0) return 1.0 / ipow_(x, -n);
return ipow_(x, n);
}

/* Scicos block’s entry point */
yp

void imppart_PDE(scicos_block *block, int flag)
{

double *rpar = block->rpar;

double *z = block->z;

double *x = block->x;

double *xd block->xd;

double **y = block->outptr;

double **u = block->inptr;

double *g = block->g;

double *res = block->res;

int *jroot = block->jroot;
int *mode = block->mode;
int nevprt = block->nevprt;
int property[19];

/* Intermediate variables */
double vO, vi1, v2, v3, v4, vb, v6, v7, v8, v9, vi0, vil, vi2, v13, vi4, vi5;
double v16, vi7;

if (flag == 0) {
v0 = ipow(0.05*rpar[0], -2);
vl = -x[1];
res[0] = xd[0]+rpar [1]*vO*(v1i+2.0*x[0]-ul1][0]);
v2 = -x[2];
res[1] = xd[1]+rpar[1]*(v2+2.0*x[1]-x[0])*v0;
v3 = -x[3];
res[2] = xd[2]+rpar[1]*(v3+2.0*x[2]+v1)*v0;
vd = -x[4];
res[3] = xd[3]+rpar[1]*(v4+2.0%x[3]+v2)*v0;
vb = -x[5];
res[4] = xd[4]+rpar[1]*(v5+2.0*x[4]+v3)*v0;
ve = -x[6];
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res[5] = xd[6]+rpar[1]*(v6+2.0*x[5]+v4)*v0;

v? = -x[7];

res[6] = xd[6]+rpar[1]*(v7+2.0*x[6]+v5)*v0;

v8 = -x[18];

res[7] = xd[7]+rpar[1]*(2.0*x[7]+v6+v8) *v0;

v9 = -x[9];

res[8] = xd[8]+rpar[1]*(v9+2.0*x[8]+v8)*v0;

v10 = -x[10];

vil = -x[8];

res[9] = xd[9]+rpar[1]*(v10+2.0*x[9]+v11)*v0;
vi2 = -x[11];

res[10] = xd[10]+rpar[1]*(v12+2.0*x[10]1+v9)*v0;
v13 = -x[12];

res[11] = xd[11]+rpar[1]*(v13+2.0*x[11]+v10)*v0;
vid = -x[13];

res[12] = xd[12]+rpar[1]*(v14+2.0*x[12]+v12) *v0;
vis = -x[14];

res[13] = xd[13]+rpar[1]*(v15+2.0*x[13]+v13)*v0;
vié = -x[15];

res[14] = xd[14]+rpar[1]*(v16+2.0*x[14]+v14)*v0;
v17 = -x[16];

res[15] = xd[15]+rpar[1]*(v17+2.0*x[15]+v15)*v0;
res[16] = xd[16]+rpar[1]1*(2.0*x[16]+v16-x[17]1)*v0;
res[17] = xd[17]+rpar[1]*v0*(2.0*x[17]+v17-u[0] [0]);
res[18] = xd[18]+rpar[1]*(v11+v7+2.0*x[18])*v0;

} else if (flag

1) {

if (get_phase_simulation() == 1) {

y[01[0] = x[18]; /* main.B4.vo */
} else {
y[0]1[0] = x[18]; /* main.B4.vo */

}

} else if (flag == 2 && nevprt < 0) {

} else if (flag == 4) {
x[0] = 0.0; /* main.B3.ul[2] = heat */
x[1] = 0.0; /* main.B3.u[3] = heat */
x[2] = 0.0; /* main.B3.u[4] = heat */
x[3] = 0.0; /* main.B3.u[5] = heat */
x[4] = 0.0; /* main.B3.u[6] = heat */
x[5] = 0.0; /* main.B3.u[7] = heat */
x[6] = 0.0; /* main.B3.u[8] = heat */
x[7] = 0.0; /* main.B3.u[9] = heat */
x[8] = 0.0; /* main.B3.u[11] = heat */
x[9] = 0.0; /* main.B3.ul[12] = heat */
x[10] = 0.0; /* main.B3.ul[13] = heat */
x[11] = 0.0; /* main.B3.ul[14] = heat */
x[12] = 0.0; /* main.B3.u[15] = heat */
x[13] = 0.0; /* main.B3.u[16] = heat */
x[14] = 0.0; /* main.B3.u[17] = heat */
x[15] = 0.0; /* main.B3.u[18] = heat */
x[16] = 0.0; /* main.B3.u[19] = heat */
x[17] = 0.0; /* main.B3.u[20] = heat */
x[18] = 0.0; /* main.B4.vo */

} else if (flag == 6) {
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} else if (flag == 7) {
property[0] = 1; /* main.B3.u[2] = heat (state variable) */
property[1] = 1; /* main.B3.u[3] = heat (state variable) */
property[2] = 1; /* main.B3.u[4] = heat (state variable) */
property[3] = 1; /* main.B3.u[5] = heat (state variable) */
property[4] = 1; /* main.B3.u[6] = heat (state variable) */
property[5] = 1; /* main.B3.u[7] = heat (state variable) */
property[6] = 1; /* main.B3.u[8] = heat (state variable) */
property[7] = 1; /* main.B3.u[9] = heat (state variable) */
property[8] = 1; /* main.B3.u[11] = heat (state variable) */
property[9] = 1; /* main.B3.u[12] = heat (state variable) */
property[10] = 1; /* main.B3.u[13] = heat (state variable) */
property[11] = 1; /* main.B3.u[14] = heat (state variable) */
property[12] = 1; /* main.B3.u[15] = heat (state variable) */
property[13] = 1; /* main.B3.u[16] = heat (state variable) */
property[14] = 1; /* main.B3.u[17] = heat (state variable) */
property[15] = 1; /* main.B3.u[18] = heat (state variable) */
property[16] = 1; /* main.B3.u[19] = heat (state variable) */
property[17] = 1; /* main.B3.u[20] = heat (state variable) */

property[18] = 1; /* main.B4.vo (state variable) */
set_pointer_xproperty(property) ;

} else if (flag == 9) {

}

return;

The simulation result, the temperature of the middle of the rod, has been shown in
Fig. 7.2.2.

Figure 7.2.2: Simulation result of the PDE model of Fig. 7.2.1.

To obtain a more elaborated model, we can define the initial temperature as a function of
distance from the both ends, i.e., instead of all zeros in the previous model, and also define
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the number of meshes as a variable. This code, however, is not still acceptable by Model-
ica compiler of Scicos, because an array with a parametric size and the initial equation
keyword are not acceptable in Scicos yet.

class fdm
parameter Real k=0.02 "Thermal diffusivity";
parameter Real L=2 "Rod’s Length";
parameter Integer N=20 "Rod’s Length";

Real u[N+1] "heat";

PortH inl,in2;

Real h;

Real measure;
initial equation

for i in 1:N loop
ul[i]= 10+6*Modelica.Math.sin(((i-1)/N)

end for;
equation

measure = ul[N/2];

inl1.T = ul[1];

in2.T = u[N+1];

h=L/N;

for i in 2:N loop
der (u[i])=k* (u[i+1]-2*ul[i]l+uli-1])/h"2;
end for;

end fdm;

7.3 Example 3: A Secondary Cooling System for a Pressurized
Water Reactor

In this example, we will show how a cooling system that is used in a power plant has been
modeled with Modelica and simulated in Scicos. A pressurized water reactor (PWR) is a
type of nuclear power reactor that uses ordinary light water for both coolant and for neutron
moderator. In a PWR, the primary coolant loop is pressurized so water can be heated to
315 Celsius while still remaining liquid. In Fig. 7.3.1 a simplified diagram of PWR has been
shown.
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CONTAINMENT

STEAM
GENERATOR

TURBINE  ELECTRIC
GENERATOR

SEA
L/ WATER

CONDENSER

REACTOR FEEDWATER PUMP

RCP

Figure 7.3.1: A Pressurized Water Reactor.

A PWR has three separate systems of pipes, or loops for moving heat. Water in these
loops never mix together. However, heat energy from one-loop moves to another. Because of
the heat produced by the fission reaction, water that is circulated through the core becomes
extremely hot. As water is pressurized, it can be heated to 315 Celsius while still remaining
liquid. The heat exchangers called steam generators are used to transmit heat to a secondary
coolant which is allowed to boil and to produce steam for electricity generation. This is
because water in the second loop is under less pressure. The second loop caries the steam to
the turbine. A turbine is basically a pinwheel with many blades that are spun by steam. At
power plants, turbines are attached to generators, which change the mechanical energy of the
spinning turbine into electrical energy. After turning the turbine, the steam in the second
loop has lost most of its heat energy. It is cooled and turned back into water so that it can
be used again in the second loop. In the condenser, the second loop transfers some of its heat
to the third loop. Again, heat is transferred from a heated substance to a cooler one, such as
a river or sea water.

As an industrial application, we have taken the SRI? (intermediate cooling system for
installment) models. The SRI system is an intermediate cooling circuit containing deminer-
alized water that is used for the auxiliary machines in the conventional parts. For these
parts ordinary water cannot be used. This system is composed of two parts; the physical
systems and the control mechanisms. The simplified SRI? system includes, a cooling system,
a pumping station, a heat source, and a control mechanism, see Fig. 7.3.2.

2Systéme Refroidissement Intermédiaire

3In the complete SRI model, there are some components that have been developped using some Modelica
programing structures that are not acceptable by the version of Modelicac that we used. That is why we cut
off the auxiliary parts of the model. It should be noted that these simplifications do not change the overall
operation of the system
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Figure 7.3.2: The simplified SRI system

A model for the simplified SRI system is depicted in Fig. 7.3.3. This system has been
designed to provide a 17 Celsius water at the output of the heat exchanger with an almost
constant flow rate. To achieve this objective, a heat exchanger parallel with a bypass branch
are used in the main circuit. Each branch has an adjustable hydraulic valve that is controlled
by the control mechanism. For example, when the temperature of the coolant increases, the
control mechanism lets more water passes through the heat exchanger and reduce the flow
rate in the bypass branch.

perature
Consta.
Control
Constantet

Bypass Valve

Heat source

comyanneltil

E Utility Valve
()

Figure 7.3.3:  Model of a cooling system for auxiliary machines in a PWR power plant
(courtesy of EDF).

The model of components has been developed in the Modelica language and can be found
in the thermo-hydraulic toolbox of Scicos. As an example, the model of the hydraulic pump
and the heat exchanger are given in Appendix B.
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Figure 7.3.4: Scicos model of the cooling system of Fig 7.3.3.

The Scicos model of the simplified SRI system of Fig. 7.3.3 is depicted in Fig. 7.3.4. The
machine that should be cooled down have been modeled with the heat source block. An
electrical motor coupled with a centrifuge pump runs the water through the pipes from the
heat source into the heat exchanger. The utility valve is used to model the pressure loss
in the circuit. The leakage valve is used to model a possible leakage in the circuit. The
(CapteurT) block measures the temperature of the mixture of the cooled water and water
of the bypass branch. This measure is used in the feedback control mechanism (depicted in

Fig. 7.3.5 and 7.3.6) to control the water flow through valves.
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Figure 7.3.5: The control mechanism in Fig 7.3.4.
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Figure 7.3.6: The control mechanism in Fig 7.3.4 (continue).

The Scicos code generator generates a DAE with 55 states, 75 mode variables and 75
zero-crossing functions for the implicit part of the model. The explicit part (the control
mechanism) contains 2 states and 3 zero-crossing functions. The initial water temperature is
290 degrees Kelvin, and the ideal temperature is 290.15. The motor is running at the steady
state speed, but it is not coupled to the pump. At time=0, the heat source (with temperature
of 323.15 degrees Kelvin) is introduced in the circuit and the pump is coupled to the motor.
At the beginning of the simulation, there are some transient behaviors then after the water
temperature reaches 290.15 degrees Kelvin, which is desired temperature. Simulation result
of some system variables such as the water temperature in the main circuit (Tw), water flow
rate in the hot inlet of the heat exchanger (Qhot), water flow in the main circuit (Qt), and the
rotational speed of the centrifuge pump (Wp) have been shown in Fig. 7.3.7. The simulation
results were validated in EDF with the Dymola software.
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Figure 7.3.7: Simulation Result of the Model of Fig. 7.3.4.
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Chapter 8

Conclusions

Hybrid system modeling is being increasingly applied in several engineering fields. Such
modeling requires a hybrid specification formalism. Also, it is desirable to be able to simu-
late hybrid models. In this thesis, Scicos as a hybrid modeling and simulation software has
been presented. In this chapter, this work is evaluated and suggestions for future work are
summarized.

8.1 Contributions

Scicos can be used to model and simulate a wide range of dynamical systems. Modeling
of physical system often ends up to an ODE or a DAE. A numerical solver should be used
to integrate the differential equations. In this thesis, the DASKR solver was interfaced with
Scicos to integrate DAEs. The ODE and DAE solvers have many control parameters which
should be used to optimize the simulation in different situations. Most of the time, the user
does not care about these parameters and obtaining a result is the main concern. Indeed,
controlling the solver which should be done automatically and should remain transparent to
the user, is a complex matter due to the interactions between the continuous-time dynamics
and the rest of the system that can be a discrete-time system.

The discrete-time part affects the continuous-time part through simple connections and
events. At events times, the value of the discontinuous signals jumps, creating discontinuities
in the continuous-time signal. In such situations, for example, the simulator must make sure
that the ODE/DAE solver does a cold restart otherwise it may fail. But cold restarting the
numerical solver is costly and time consuming, so the solver should be cold restarted only if
it is necessary. In this thesis, an event classification is introduced to distinguish the events
that can cause a discontinuity in the continuous-time signals, which are called critical events.
The critical events are used in two ways by the solver; First, just after the activation of a
critical event, since a discontinuity may have been taken place, the numerical solver should
be cold-restarted. Then, the activation time of the nearest critical event can be defined as
the stopping time. Normally, the solver is allowed to step beyond the final integration time
and return the value at the final time by interpolation. The stopping time option can be used
to forbid the solver to advance the time beyond the discontinuity point that may occur after
the critical events.

The continuous-time can also affect the discrete-time parts of the model by generating an
event. In order to generate such an event, the the numerical solver must know when to stop
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the integration and generate a signal. This is done using the zero-crossing facility available
in most numerical solvers. Using this facility, however, in the hybrid context like in Scicos, is
not straightforward. In many cases in hybrid systems we need the direction in which a signal
has crossed the zero. In fact, we need to find the crossing direction as well as the crossing
time. In the original DASKR/LSODAR codes, only the crossing time of the zero-crossing is
given. In this thesis, some modifications were made in DASKR/LSODAR codes to provide the
direction of the crossing zero. This modification in DASKR was proposed to its authors and
is now included in the official version of DASKR.

The original zero-crossing facility of the DASKR/LSODAR solvers has a problem with zero
sticking, i.e., when a zero-crossing surface remains on zero at least for one integration steps,
the solver stops the integration and does not advance. This phenomenon is common in hybrid
systems where the system model may change just after passing a threshold (which is, of course,
a zero-crossing surface). This situation is not properly dealt with in the solvers. In order to
detect the zero-crossings, the sign of the zero-crossing surfaces are checked at the two ends of
each integration step. There are some flaws in this procedure; First, at the beginning of the
integration, the solver takes a very small step with an explicit first order Euler method to find
weather there is a stuck zero or not. If there is a stuck, the solver announces an error and
does not integrate. Furthermore, the small step taken at the beginning, can cause problem
in certain cases. And finally, at the end of each integration step, if there is a sign change
in the zero-crossing values, the solver returns back in time to find the exact crossing point.
But if the surface value is zero, the same point is announced as a zero, which is not always
the leftmost zero point. With an appropriate modeling or programing some of this situations
can be properly handled, but for an ordinary user who does not know or does not want to
bother with the details, this is an obstacle. In order to handle these problems, in this thesis,
the automatic masking and unmasking of stuck zeros was introduced and implemented in the
DASKR/LSODAR code. With this modification, at the beginning of the integration, without
taking the small step, if there is a zero valued zero-crossing surface, it is masked until its value
becomes non-zero. When a zero-crossing surface sticks to zero, unlike the original solver, it
comes back in time and pinpoints the exact point where the signal touches zero. When a
surface is stuck at zero, the solver monitors the stuck zeros and if a stuck zero detaches from
zero the exact detaching time is found and solver stops to report an unmasking.

Most of the problems in using standard solvers in a hybrid environment are common to
both ODE and DAE solvers. However, there is an additional difficulty with the DAE case:
the problem of re-initialization and finding a consistent initial conditions. DASKR can find a
consistent initial condition. DASKR treats the DAE as a nonlinear system of equations and
solves it for the algebraic states and the derivatives of the differential states. In this thesis,
the DASKR solver was used to perform two tasks, i.e., computing initial condition of DAE and
then integration the DAE. This permits to have more flexibility in the simulator. DASKR uses
the Newton’s method to solve the initialization system of equation. Since the initialization
system is a nonlinear function of variables, the Jacobian matrix has to be computed and
factorized in each iteration. In DASKR, the computation of Jacobian is not performed at
every step. This, of course, is reasonable to do during simulation for efficiency and justified
by the fact that during the simulation, we have a very good initial guess for every nonlinear
problem we need to solve. But in computing the initial condition, the initial guess can be
far off due to the discrete-time behavior of the system. For most problems, however, we
do not encounter initialization problem and the performance of DASKR is satisfactory, in
particular, when the initial guess concerning the initial condition is not far from the actual
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initial condition. But this is not always the case and this does occur in Scicos applications.
We have seen some problems that when the guess values are far from the solution, the old
Jacobian does not indicate the right direction and the initialization fails. This problem is more
likely to happen when the solver takes big steps and there is a large scaling difference between
the variables. In this thesis, the DASKR code was modified to have a more frequent Jacobian
evaluation. This modification increases the chances of converges. In fact, we have taken a
conservative approach by forcing a Jacobian re-evaluation at every step during initialization.
The overhead is not considerable because this concerns only Jacobian computations for the
purpose of computing consistent initial conditions. Such computations are rare events (cold
restarts) compared to the simulation effort which is permanent.

When the simulation time is long, the time precision at large time points, is reduced. In
DASKR the hmin (minimum step-size) parameter is computed as a function of the simulation
time. As time advances, the hmin value increases. In some application we saw that this value
was bigger that what it should be and it causes some problems specially with zero-crossing
detection. In this thesis, the DASKR code was modified to provide a minimum step-size
smaller that what was proposed by DASKR. This modification helped us to simulate some
applications that we could not simulate with the official version of DASKR.

In initial condition calculation, the differential variables are considered to be known and
the DAE is solved for the algebraic variables and the derivatives of the differential variable.
This classification emphasizes the physical role of the variables. The distinction allows speci-
fication of initialization before a solver cold-restart. In this thesis this classification was used
in Scicos for the DAE initialization. There is another classification, i.e., differential and alge-
braic equations in an implicit ODE or a semi-explicit DAE. This classification can be used to
reduce the round off error. In order to reduce the round-off error, a semi-explicit DAE can be
scaled. In fact, scaling the algebraic equations of a semi-explicit DAE reduces the condition
number of the Jacobian matrix. In this thesis, the Scicos simulator was developed to scale
the DAEs. This scaling results in a less round-off error and a better convergence, specially
for the stiff problems.

Modeling a physical system very often leads to a differential equation with discontinuities
or a multi-model differential equation. A multi-model formulation is a way of describing
non-smooth multi-model systems in terms of a finite number of smooth systems. In general,
a multi-model system is defined via some conditional statements (If-then-Else, Switch). In
other word, a hybrid model may be composed of several models such that each model is valid
in a certain region. This regional separation with smoothness assumption in each region is
very important because non-smooth systems cannot be fed directly to the solver. Because the
numerical solvers assume that the state variables and their first derivatives are continuous.
To overcome this problem, the numerical solver should use only one ODE/DAE up to the
discontinuity point and then use the next ODE/DAE. In this thesis, the Scicos simulator
was developed to handle the multi-model and the discontinuous systems. In most cases, the
discontinuity is unpredictable, i.e., it should be detected. So it was proposed to define zero-
crossing functions to detect and localize the discontinuities. With this zero-crossing function,
the solver can find the exact discontinuity time. But for localizing this point, the solver should
step over this discontinuity point. That means using another set of ODE/DAE. Using the
second set of ODE/DAEs beyond the discontinuity point, normally results in failure in simula-
tion. In this thesis, a mode variable was proposed to associate with the zero-crossing functions
of the discontinuities of the multi-model system. The mode variables assign the DAE/ODE
set that should be used by the solver to be integrated. The ODE/DAE is integrated until the
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solver detects a discontinuity, then another equation set is used.

Computing a consistent initial condition is a major task in integration of DAEs and this
initialization becomes particularly difficult when the DAE is not smooth and, in particular,
when it is a multi-model DAE. The search for the initial condition in this case is not just
the classical problem of finding zeros of smooth functions but it is interlaced with searching
for the correct mode set. Indeed, each mode set implies a smooth function and the solution
of this function may imply another mode set. In this thesis, piecewise linear, homotopy, and
the trail-and-error methods were tested. The two first methods provide a global convergence
but they need an initial direction that is difficult to obtain. Therefore, the third method was
adopted and implemented in Scicos.

Besides the modifications in the numerical solvers and the development of the Scicos
simulator, an important contribution of this thesis is the simulation of component based
models in Scicos. To extend the capacity of Scicos to allow component level modeling, we
adopted the Modelica language for describing the algebraic-differential constraints imposed
on the input/outputs of the implicit blocks. Modelica is primarily a modeling language that
allows specification of mathematical models of complex natural or man made systems. To
be able to simulate a model, written in the Modelica language, Modelica model should be
translated into a code usable by the Scicos compiler and simulator. A Modelica compiler has
been developed to translate the Modelica code into a standard Scicos block. Modelica compiler
takes the model’s symbolic equations and after causality analysis and several simplifications,
generates a C code for a new Scicos block. During this thesis, in order to test and debug the
Modelica compiler of Scicos®, several industrial models from EDF company were tested in
Scicos and validated with EDF results. These tests leaded us to develop the Scicos simulator
and showed us what was needed to be developed in Scicos and in the Modelica Compiler.

the Modelica compiler builds a DAE set from the Modelica model provided by Scicos.
This DAE is delivered to the numerical integrator. The obtained DAE may be a large system
of equations. Selecting and eliminating auxiliary states may be important as the size of
the system grows. However, this must be done carefully. Reducing system size may reduce
sparsity of the coefficients and actually slow down the simulation. Selecting different subsets
of states to eliminate may result in different sets of equations. Although from a mathematical
viewpoint all these equations are equivalent, the result of simulating the models may be
quite different. During this thesis an extensive testing was done, it was found that for some
surprisingly simple problems that formulation can make a big difference in ways that cannot
always be predicted. In some cases reformulations can be suggested that often improve
performance. In the adaption of DASKR to Scicos and the need to be able to perform ”black
box” simulations for a variety of users we have had to tune the code in several ways some of
which are mentioned in this thesis. The numerical difficulties that we faced during this thesis
leaded us to perform some new developments to have a better simulation. This adaptation is
an ongoing process.

The generated DAE for the implicit part of the Scicos model can be very stiff and very
difficult to integrate by the solver. In the stiff regions, the solver reduces the step-size to
meet the requested accuracy. But with a very small step-size, the numerical Jacobian does
not necessarily indicate the minimum descent direction. So an analytical Jacobian evaluation
is suggested in these cases. Since in the Modelica code generation we had the symbolic
information, we used them to compute the analytical Jacobian for the model. The analytical

Modelica compiler of Scicos is developed by Imagine Co.
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Jacobian was implemented and used to improve the simulation accuracy. But in Scicos, the
symbolic information is only available for the components or implicit blocks and the explicit
blocks are defined with computer programs and are considered as black boxes. So the global
analytical Jacobian is not available. In this thesis, the partial available analytic Jacobian was
used to obtain the global Jacobian. Since most of the time the stiff part of the model is found
in the implicit part, this global Jacobian provides a more accurate Jacobian than a purely
numerical Jacobian.

AMESim is a modeling and simulation software for special domains such as hydraulics,
mechanics, etc. In this thesis, an interface between Scicos and AMESim was established in
order to model the systems in AMESim and simulate them in Scicos. Now, the user can
develop a model in AMESim and import it to Scicos. The imported AMESim model is
treated as a single Scicos block and the user can complete the design process and simulate
it in Scicos. This permits the user to use the control, optimization, signal processing, etc
capabilities of Scilab/Scicos softwares to design and simulate the models. This interface
provides an easy, natural, direct-link between the two packages and enables a single engineer
to run both packages on one machine or alternatively for two specialist engineers to run the
software packages on adjacent machines.

8.2 Future Works

In this thesis, several areas have been identified for future research and development. In Scicos,
the Modelica language is used to model the implicit blocks in component level modeling.
The future works are mainly consists of developing the Modelica compiler of Scicos. The
capabilities of the Modelica compiler of Scicos can further be enhanced by the following
language extensions:

e Model simplification: the models written in Modelica language are usually big and
they include many trivial relations between variables. The first task of the compiler is
the reduction of the systems of equations by symbolic manipulation. This stage can
be further optimized to get simpler models. This simplification, however, should be
performed with care, in order to obtain a non-stiff DAE.

e High index DAEs: The mathematical models of many physical systems are high
index DAEs. These DAEs cannot be integrated directly with DASKR, unless the index
is reduced to one. In the literature, several algorithms have been introduced for index
reduction or direct integration of high index DAEs. However, using high index DAEs
is a challenging task, because, in high index system not all differential variables can
be initialized freely, as it is currently assumed for differential variables. Therefore, this
approach requires some developments in the Scicos simulator.

e DAE initialization: a DAE should be initialized before being integrated. So far,
only the differential variables can be initialized. This option is not enough and the
initial equations construct is required to give more flexibility to the initialization.
These equations determines the initial values of the variables (differential or algebraic
variables) with an algebraic equation set, rather than defining the initial values with
constants. In order to be able to perform these initializations, the Scicos simulator,
should be developed to handle multiple initialization cases of models.
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Discrete models: even though Modelica is a rich language having the capacity to
handle continuous-time and discrete-time behaviors, Scicos uses mainly Modelica and
implicit blocks to model continuous-time dynamics. Currently, only minimal support is
provided for discrete-time behavior. The next stage in developing Scicos is considering
discrete-time event part of Modelica and generating an appropriate code. The devel-
opment will specially concerns the generating and handling of discrete-time events in
Modelica. In order to use these developments in Scicos, the Scicos simulator should also
be modified to handle the new features.

Algorithms statement: unlike other programming languages, Modelica models are
represented by physical equations. Algorithms provides a way to define a series of code
that are executed sequentially. Algorithms in Modelica can be seen as a non invertible
functions that provide computing several variables simultaneously.

Inverse model: in some industrial applications, we are looking for a parameter or
an input value that produces some specified output value. The first step in these
applications is looking for the possibility of obtaining the inverse dynamical model of
the system in terms of the specified inputs and outputs. The Modelica compiler can be
developed to check and construct the inverse model.

Publications

M. Najafi, R. Nikoukhah, ”On Jacobian evaluation for numerical integration of DAEs
with partial symbolic information”, 44th IEEE Conference on Decision and Control,
December, 2005, Seville, Spain.

M. Najafi, R. Nikoukhah, Serge Steer, Sebastien Furic, ” New features and new challenges
in modeling and simulation in Scicos”, IEEE conference on control application, August,
2005, Toronto, Canada.

M. Najafi, R. Nikoukhah, and S. L. Campbell, ” The role of model formulation in DAE
integration: Experience gained in developing Scicos”, 17th IMACS World Congress
Mathematics and Computers in Simulation, July, 2005, Paris, France.

M. Najafi, S. Furic, R. Nikoukhah, ”Scicos: a general purpose modeling and simu-
lation environment”, 4th International Modelica Conference, March, 2005, Hamburg,
Germany.

M. Najafi, A.Azil, and R. Nikoukhah, ”Extending scicos from system to component
level simulation”, ESMc2004 international Conference, October, 2004, Paris, France.

M. Najafi, R. Nikoukhah,” ODE and DAE solvers in Scicos environment”, Iasted Interna-
tional Conference on applied simulation and modeling, ASM2004, June, 2004, Rhodes,
Greece.

M. Najafi, R. Nikoukhah, S. L. Campbell, ”Computation of consistent initial condi-
tions for multi-mode DAEs: Application to Scicos”, IEEE International Symposium on
Intelligent Control Computer Aided Control Systems Design, September, 2004, Taipei.



8.3 Publications

e A. Azil, M. Najafi and R. Nikoukhah, ” Conditioning and Scicos diagram compiler”, 5th
EUROSIM Congress on Modeling and Simulation, September, 2004, Paris, France.

e A. Azil, M. Najafi, and R. Nikoukhah, ” Génération de code dans Scicos: le cas continu”,
Journée Nationale LMCS 2004, November, 2004, Paris, France.

e M. Najafi, A. Azil, R. Nikoukhah, "Implementation of continuous-time dynamics in
Scicos”, 15TH European Simulation Symposium and Exhibition (ESS), 2003, Delft,
The Netherlands.

209



Conclusions

210



Chapter 9

Conclusions (en francais)

La modélisation des systémes hybrides est de plus en plus appliquée dans les domaines de
technologie. Cette thése traite la modélisation et la simulation des modeles hybrides en
utilisant le logiciel Scicos. Dans ce chapitre on va présenter les nouveautés de Scicos réalisées
durant cette thése et quelques perspectives pour les futurs travaux.

9.1 Nouveautés

Scicos peut étre employé pour la modélisation et la simulation des systémes dynamiques
hybrides. La modélisation du systéme physique finit souvent par une EDO ou par une EAD.
Un solveur numérique doit étre employé pour intégrer les équations. Dans cette thése, le
solveur DASKR. a été interfacé avec Scicos pour intégrer les EADs. Les solveurs d’EDO et
d’EAD ont de nombreux parameétres de commande qui devraient étre employés pour optimiser
la simulation dans les diverses situations. La plupart du temps, 'utilisateur ne se préoccupe
pas de ces parametres et 'obtention d’un résultat est son souci principal. En effet, le controle
du solveur doit étre automatique et transparent pour 'utilisateur. Ce controle peut étre
compliqué & cause des interactions entre la dynamique temps continu et le reste du systeme
qui peut étre un systéme temps discret. La partie temps discret affecte la partie temps
continu par les interconnexions et les événements. Au moment des événements, la valeur
des signaux discontinus varie brusquement, créant des discontinuités dans le signal temps
continu. Dans une telle situation, par exemple, le simulateur doit s’assurer que le solveur
d’EDO/EAD redémarre a froid, sans quoi la simulation peut échouer. Mais le redémarrage
a froid du solveur numérique est long et coliteux. Ce redémarrage a froid ne doit donc est
effectué que si nécessaire. Dans cette these, une classification d’événements est présentée pour
repérer les événements qui peuvent causer une discontinuité dans les signaux temps continu.
Ces événements s’appellent événements critiques. Le solveur emploie les événements critiques
de deux maniéres : d’abord, un événement critique peut causer une discontinuité, dans ce cas
le solveur numérique doit redémarrer a froid. Ensuite, le temps d’activation de 1’événement
critique le plus proche (programmé dans le futur) peut étre défini comme le temps d’arrét du
solveur. Normalement, on permet au solveur d’intégrer au-dela du temps final d’intégration et
de renvoyer le résultat & 'instant final en faisant une interpolation. L’option de temps d’arrét
peut étre employée pour interdire au solveur d’avancer au-deld du point de discontinuité qui
peut se produire aprés des événements critiques. La partie temps continu peut également
affecter la partie temps discret du modeéle en produisant des événements. Afin de produire
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un tel événement, le solveur numérique doit savoir quand arréter ’intégration et produire un
signal ou un événement. Ceci est fait en utilisant 'option de zéro-croisement disponible dans
la plupart des solveurs numériques. Cependant, 'utilisation de cette option dans un contexte
hybride comme Scicos n’est pas évident. Dans de nombreux cas de systémes hybrides, nous
avons besoin de la direction dans laquelle un signal a croisé le zéro. En fait, nous devons
trouver la direction, aussi bien que le temps, de croisement. Dans les codes originaux de
DASKR/LSODAR, seul le temps de croisement du zéro est indiqué. Dans cette these, quelques
modifications ont été faites dans ce code pour fournir la direction du croisement zéro. Cette
modification dans DASKR a été proposée a ses auteurs et elle est maintenant incluse dans la
version officielle.

La routine originale de zéro-croisement des solveurs DASKR/LSODAR pose probléme avec
des zéros coincés. En effet, quand une surface de zéro-croisement demeure sur zéro pour
quelques pas d’intégration, le solveur s’arréte et renvoie un message d’erreur. Ce phénomeéne
est commun dans les systémes hybrides ou le modeéle peut changer juste apres avoir passé
un seuil (qui est, naturellement, une surface de zéro-croisement). Cette situation n’est pas
correctement gérée dans les solveurs. Afin de détecter les zéro-croisements, les signes des
surfaces de zéro-croisement sont vérifiés au début et & la fin de chaque pas d’intégration. Il
y a quelques failles dans ce procédé ; d’abord, au début de l'intégration, le solveur prend
un pas trés petit en appliquant la méthode explicite d’Euler d’ordre 1, pour détecter si il
y a des surfaces collées & zéro ou pas. Si oui, le solveur renvoie un message d’erreur et
arréte l'intégration. En outre, le petit pas pris au début peut poser des problémes dans
certains cas. Enfin, a la fin de chaque étape d’intégration, s’il y a un changement de signe
des valeurs de surfaces des zéro-croisements, le solveur revient en arriere dans le temps afin
de trouver le point exact de croisement. Si la valeur de surface a la fin du pas est zéro,
le méme point zéro est annoncé, ce qui n’est pas toujours correct. Avec une modélisation
ou programmation correcte, une partie de ces situations peut étre correctement manipulée,
mais pour un utilisateur ordinaire qui ne sait pas ou ne veut pas se tracasser avec les détails,
c’est un obstacle. Afin de surmonter ces problémes, dans cette thése, le masquage et le
démasquage automatique des surfaces collées a zéro a été présenté et mis en application dans
le code DASKR/LSODAR. Avec cette modification, au début de l'intégration, sans prendre le
petit pas, s’il y a une surface collée & zéro, elle est masquée jusqu’a ce que sa valeur devienne
différente de zéro. Quand une surface de zéro-croisement se colle & zéro, la routine modifiée
de zéro-croisement retrouve le point exact ou la surface colle & zéro. Quand une surface est
coincée sur zéro, le solveur masque cette surface et la surveille jusqu’a ce qu’elle se décolle de
zéro. Le solveur, ensuite, retrouve et annonce le temps exact. La plupart des problemes en
employant les solveurs standard dans un environnement hybride sont communs aux solveurs
d’EDO et d’EAD. Cependant, il y a des difficultés additionnelles dans le cas d'EAD : le
probléme de la réinitialisation est de trouver des conditions initiales consistantes. DASKR
peut trouver un état initial consistant. DASKR traite 'EAD comme un systéme non linéaire
des équations et la résout pour les états algébriques et les dérivées des états différentiels. Dans
cette thése, le solveur DASKR a été employé pour exécuter deux taches : d’abord pour trouver
I’état initial de calcul d’EAD, ensuite pour intégrer 'EDA. Ceci donne plus de flexibilité au
simulateur de Scicos.

DASKR emploie la méthode de Newton pour résoudre le systéme d’initialisation de I’équation.
Puisque ce systéme est une fonction non linéaire des variables, la matrice Jacobienne doit étre
calculée et factorisée a chaque itération. Dans DASKR , le calcul de cette matrice ne s’effectue
pas a chaque étape. Ceci est raisonnable, car pendant la simulation, la matrice Jacobi-
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enne change peu et cette approximation est satisfaisante. Mais en calculant 1’état initial,
Pestimation initiale peut étre treés loin de la solution & cause des discontinuités causées par la
partie temps discret du systéme. Pour la plupart des problémes, cependant, nous ne rencon-
trons pas le probleme d’initialisation et I'exécution de DASKR est satisfaisante, en particulier
quand I’état initial n’est pas loin de I’état initial consistant. Mais ce n’est pas toujours le cas et
ceci se produit dans des applications de Scicos. Nous avons vu dans quelques problémes que,
quand les valeurs initiales sont loin de la solution, ’ancienne matrice Jacobienne n’indique
pas la bonne direction et l'initialisation échoue. Ce probléme se produit quand le solveur
prend de grands pas de temps et qu’il y a une grande différence d’échelle entre les variables.
Dans cette these, le code DASKR a été modifié pour avoir une évaluation plus fréquente de la
matrice Jacobienne. Cette modification augmente les chances de convergence. En fait, nous
avons adopté une approche conservatrice en forgant une réévaluation de Jacobienne & chaque
étape pendant l'initialisation. La surcharge n’est pas considérable, parce-que ceci concerne
seulement des calculs de Jacobienne pour calculer des conditions initiales consistantes.

Quand le temps de simulation est long, la précision aux grands temps est réduite. Dans
DASKR le pas minimum hmin est calculé en fonction du temps de simulation. Quand la
simulation avance, le temps augmente et la valeur de hmin augmente. Dans une certaine
application, nous avons vu que cette valeur était trop grande et cela pose quelques problémes,
particulierement avec la détection de zéro-croisement. Dans cette theése, le code DASKR a
été modifié pour fournir un pas d’intégration plus petit que ce qui était proposé dans la
version originale. Cette modification nous a aidés & simuler quelques applications que nous
ne pourrions pas simuler avec la version officielle DASKR .

Dans le calcul des conditions initiales, les variables sont réparties en deux classes : les
variables différentielles et les variables algébriques. Les variables différentielles sont con-
sidérées connues et 'EAD est résolue pour les variables algébriques et les dérivées des vari-
ables différentielles. Cette classification souligne le role physique des variables différentielles.
Dans cette thése cette classification a été employée pour l'initialisation d’EAD. Il existe une
autre classification : les équations différentielles et algébriques pour les EAD semi-explicites.
Cette classification peut étre employée pour réduire erreur d’intégration. Dans cette thése,
le simulateur de Scicos a été développé pour profiter de cette classification afin d’augmenter
la précision d’intégration des EADs.

La modélisation d’un systéme physique meéne trés souvent & une équation avec des dis-
continuités ou des équations multi-modeles. Une formulation multi-modéles est une maniére
de décrire les systémes non lisses en termes de nombres fini de systémes lisses. En général,
un systéme multi-modeéles est défini par les phases conditionnelles (If-Then-Else, Switch). Un
modele hybride peut se composer de plusieurs modeéles tels que chaque modele est valide dans
une certaine région. Cette séparation régionale est tres importante parce que des systémes
non lisses ne peuvent pas étre donnés directement au solveur : c’est & cause des solveurs
numériques qui supposent la continuité des variables d’état et de leurs premieres dérivées.
Pour surmonter ce probléme, le solveur numérique doit employer seulement une EDO/EAD
jusqu’au point de discontinuité puis employer 'autre EDO/EAD au-deld. Dans cette thése,
le simulateur de Scicos a été développé pour manipuler les systemes multi-modeles et les
systémes discontinus. Dans la plupart des cas, la discontinuité est imprévisible, c’est-a-dire
qu’elle doit étre détectée. Ainsi on lui a proposé de définir des fonctions de zéro-croisement
pour détecter et localiser les discontinuités. Avec cette fonction de zéro-croisement, le solveur
peut trouver le temps exact des discontinuités. Mais pour localiser ce point, le solveur de-
vrait doit faire un pas au-dela de ce point de discontinuité. Ceci signifie utiliser une autre
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EDO/EAD, et a normalement pour conséquence ’échec de la simulation. Dans cette these,
nous avons proposé la variable mode pour s’associer aux fonctions de zéro-croisement des dis-
continuités du systéme de multi-modéles. La variable mode désigne 'EDO/EAD qui devrait
doit étre employée par le solveur a intégrer. L’EDO/EAD est intégrée jusqu’a ce que le solveur
détecte une discontinuité, puis un autre systéeme d’équations est intégré.

Le calcul d’un état initial consistant est un passage obligatoire et important, ceci de-
vient particulierement difficile quand 'EAD n’est pas lisse et, en particulier, quand il s’agit
d’une EAD multi-modeles. Dans ce cas, la recherche de I’état initial n’est pas simplement le
probléme classique de trouver des zéros de fonctions lisses mais elle est accompagnée d’une
recherche de configuration de mode correcte. En effet, chaque configuration de mode implique
une EDO/EAD lisse et la solution de cette EDO/EAD peut impliquer une autre configura-
tion de mode. Dans cette these, les méthodes linéaires par morceaux, <« Homotopy >, et
les essais «trial and errors ont été examinés. Les deux premieres méthodes fournissent une
convergence globale mais elles ont besoin d’une direction initiale qui est difficile & obtenir.
Par conséquent, la troisitme méthode a été adoptée et appliquée dans Scicos.

Outre les modifications dans les solveurs numériques et le développement du simulateur
de Scicos, une partie importante de cette these a été attribuée & la simulation des modeles
basés sur des composants dans Scicos. Pour étendre la capacité de Scicos & modéliser des
systémes hybrides, nous avons adopté le langage Modelica pour décrire les contraintes algébro-
différentielles imposées a I’entrée/sortie des blocs implicites. Modelica est principalement un
langage de modélisation qui permet de spécifier les modéles mathématiques de systémes. Afin
de pouvoir simuler un modéle écrit en langage Modelica, les modeles Modelica doivent étre
traduits en code utilisable par le compilateur et le simulateur de Scicos. Un compilateur
Modelica a été développé pour traduire le code Modelica en bloc standard de Scicos. Le
compilateur Modelica prend les équations symboliques du modéle et aprés une analyse de
causalité et plusieurs simplifications, produit un code C pour un nouveau bloc Scicos. Pendant
cette theése, afin d’examiner et corriger le compilateur Modelica de Scicos !, plusieurs modeles
industriels de la compagnie EDF 2 ont été examinés dans Scicos et validés avec des résultats
EDF. Ces essais nous ont permis de développer le simulateur de Scicos et de nous démontrer
ce qui était nécessaire pour le développement du simulateur de Scicos et du compilateur
Modelica.

Le compilateur Modelica génére un ensemble d’EAD & partir d’un modele Modelica fourni
par Scicos. Cette EAD, livrée au solveur numérique, peut étre un grand systéme d’équations.
Le choix et 1’élimination des états auxiliaires peuvent étre importants quand la taille du
systeme augmente. La réduction de la taille du systéme peut directement affecter et faire
ralentir la simulation. Le choix de différents sous-ensembles d’états pour éliminer peut avoir
pour conséquence différents ensembles d’équations. Bien que d’un point de vu mathématique
toutes ces équations soient équivalentes, les résultat de la simulation des modéles peuvent
étre tout a fait différents. Pendant cette thése un essai étendu a été effectué, et il a été
constaté que pour quelques problémes étonnamment simples la formulation peut faire une
grande différence. Les difficultés numériques rencontrées pendant cette these nous ont permis
d’effectuer quelques nouveaux développements pour obtenir une meilleure simulation.

L’EAD générée pour la partie implicite d’'un modele Scicos peut étre trés raide et tres
difficile & intégrer par le solveur. Dans les régions raides, le solveur réduit le pas d’intégration

e compilateur Modelica de Scicos est développé chez par la société Imagine.
2Electricité De France
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pour parvenir & la précision demandée. Mais avec un pas tres petit, la matrice Jacobienne
numérique n’indique pas nécessairement la bonne direction de descente vers le minimum. Ainsi
une évaluation analytique de Jacobienne est suggérée dans ce cas. Puisque dans la génération
de code Modelica nous disposons de I'information symbolique du modele, nous I’avons utilisée
pour calculer la matrice Jacobienne analytique. La matrice Jacobienne analytique a été mise
en application et employée pour améliorer la précision de simulation. Mais dans Scicos,
Iinformation symbolique est disponible uniquement pour la partie implicite ou les composants
et les blocs explicites sont définis avec des programmes machine et sont considérés comme des
boites noires. Ainsi la matrice Jacobienne analytique global n’est pas disponible. Dans cette
thése, la matrice Jacobienne analytique, disponible partiellement, a été employé pour obtenir
la matrice Jacobienne globale. Puisque la plupart du temps la partie raide du modele se trouve
dans la partie implicite, cette matrice Jacobienne globale fournit une matrice Jacobienne plus
précise qu’une matrice Jacobienne purement numérique.

AMESim est un logiciel de modélisation et de simulation utilisé dans des domaines partic-
uliers tels que ’hydraulique, la mécanique, etc. Dans cette thése, une interface entre Scicos
et AMESim a été établie afin de modéliser des systémes dans AMESim et les simuler dans Scicos.
Maintenant, 'utilisateur peut développer un modele dans AMESim et I'importer dans Scicos.
Le modele importé est traité comme bloc simple de Scicos et I'utilisateur peut compléter le
processus de conception et le simuler dans Scicos. Ceci permet a 1’'utilisateur d’employer les
boites & outils contréle commande, 1'optimisation, le traitement du signal, etc. des logiciels
Scilab/Scicos pour concevoir et simuler les modéles.

9.2 Perspectives

Dans cette these, plusieurs domaines ont été identifiés pour les futures recherches et développements.
Dans Scicos, le langage Modelica est employé pour la modélisation des blocs implicites au
niveau composant. Les travaux futurs se composent principalement du développement du
compilateur Modelica de Scicos. Le compilateur Modelica de Scicos peut étre développé pour
couvrir les cas suivants:

e Simplification de modeles : les modeles écrits en langage Modelica sont habituelle-
ment grands et ils incluent beaucoup de relations insignifiantes entre les variables. La
premiere tiche du compilateur est la réduction des systémes d’équations en manipu-
lation symbolique. Cette étape peut étre encore optimisée pour obtenir des modeéles
plus simples. Cette simplification, cependant, doit étre exécutée avec soin, afin d’éviter
d’obtenir une EAD raide.

¢ EADs d’indice élevé : les modeles mathématiques de nombreux systémes physiques
sont des EADs d’indice élevé. Ces EADs ne peuvent pas étre intégrées directement avec
DASKR, a moins que l'indice soit réduit & 1. Dans la littérature, plusieurs algorithmes
ont été présentés pour la réduction d’indice ou 'intégration directe des EADs d’indice
élevé. Cependant, employer les EADs d’indice élevés est tres difficile, parce que dans un
systeme d’indice élevé, les variables différentielles ne peuvent pas étre initialisées libre-
ment. Par conséquent, cette approche exige quelques développements dans le simulateur
de Scicos.

e Initialisation d’EAD : une EAD doit étre initialisée avant d’étre intégrée. Jusqu’a
maintenant, seules les variables différentielles peuvent étre initialisées. Cette option
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n’est pas suffisante, la construction de initial equation de Modelica est nécessaire
pour donner plus de flexibilité a I'initialisation. Ces équations déterminent les valeurs
initiales des variables (variables différentielles ou algébriques) avec un ensemble algébrique
d’équations. Afin de pouvoir exécuter ces initialisations, le simulateur de Scicos doit
étre développé pour manipuler des cas multiples d’initialisation de modeles.

Modeéles discrets : quoique Modelica soit un langage riche ayant la capacité de ma-
nipuler des comportements temps continu et de temps discret, Scicos emploie princi-
palement Modelica et blocs implicites pour la modélisation des systémes temps continu.
Actuellement, seul un support minimal est fourni pour le comportement temps discret.
La prochaine étape de travail sur Scicos est de développer les événements temps discret
de Modelica et de produire un code approprié. Afin d’employer ces développements dans
Scicos, le simulateur de Scicos doit également étre modifié pour manipuler les nouveaux
dispositifs.

Algorithm : les modeles Modelica sont représentés par des équations physiques.
L’algorithm fournit une méthode pour définir une série de codes qui sont exécutés
séquentiellement. Les algorithms dans Modelica peuvent étre vus en tant que fonc-
tions non inversibles qui fournissent le calcul de plusieurs variables simultanément.

Modeéle inverse : dans quelques applications industrielles, nous recherchons un parametre
ou une valeur d’entrée qui produit une certaine valeur indiquée de sortie. La premiere
étape dans ces applications est de chercher la possibilité d’obtenir le modéle dynamique
inverse du systéme en termes d’entrées et sorties indiquées. Le compilateur de Modelica
peut étre développé pour vérifier et construire le modele inverse.
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Appendix A

New DASKR’s root finder

SUBROUTINE DRCHEK2 (JOB, RT, NRT, NEQ, TN, TOUT, Y, YP, PHI, PSI,

* KOLD, RO, R1, RX, JROOT, IRT, UROUND, INFO3, RWORK, IWORK,
* RPAR, IPAR)

Cxxx BEGIN PROLOGUE DRCHEK

Cxxx REFER TO DDASKR

Cxxx ROUTINES CALLED DDATRP, DROOTS, DCOPY, RT
Cx** REVISION HISTORY (YYMMDD)

C 020815 DATE WRITTEN

C 021217 Added test for roots close when JOB = 2.
C***x END PROLOGUE DRCHEK

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
C Pointers into IWORK:
PARAMETER (LNRTE=36, LIRFND=37)
C Pointers into RWORK:
PARAMETER (LTO=51, LTLAST=52)
EXTERNAL RT
INTEGER JOB, NRT, NEQ, KOLD, JROOT, IRT, INF03, IWORK, IPAR
DOUBLE PRECISION TN, TOUT, Y, YP, PHI, PSI, RO, R1, RX, UROUND,

* RWORK, RPAR
DIMENSION Y(%), YP(x), PHI(NEQ,*), PSI(%),
* RO(*), R1(*), RX(*), JROOT(*), RWORK(x), IWORK(*)

INTEGER I, JFLAG, LMASK
DOUBLE PRECISION H
DOUBLE PRECISION HMINR, T1, TEMP1, TEMP2, X, ZERO
LOGICAL ZROOT,Mroot

c  mmmmmm———————- masking ------------——--—-
PARAMETER (LNIW=17)
DATA ZER0/0.0DO/

C This routine checks for the presence of a root of R(T,Y,Y’) in the
C vicinity of the current T, in a manner depending on the
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input flag JOB. It calls subroutine DROOTS to locate the root
as precisely as possible.

In addition to variables described previously, DRCHEK
uses the following for communication..
JOB = integer flag indicating type of call..
JOB = 1 means the problem is being initialized, and DRCHEK
is to look for a root at or very near the initial T.

JOB = 2 means a continuation call to the solver was just
made, and DRCHEK is to check for a root in the
relevant part of the step last taken.

JOB = 3 means a successful step was just taken, and DRCHEK

is to look for a root in the interval of the step.
RO = array of length NRT, containing the value of R at T = TO.
RO is input for JOB .ge. 2 and on output in all cases.
R1,RX = arrays of length NRT for work space.
IRT = completion flag..
IRT = 0 means no root was found.
IRT = -1 means JOB = 1 and a zero was found both at TO and
and very close to TO.
IRT = -2 means JOB = 2 and some Ri was found to have a zero
both at TO and very close to TO.
IRT = 1 means a legitimate root was found (JOB = 2 or 3).
On return, TO is the root location, and Y is the
corresponding solution vector.
IRT = 2 A zero-crossing surface has detached from zero

TO = value of T at one endpoint of interval of interest. Only
roots beyond TO in the direction of integration are sought.
TO is input if JOB .ge. 2, and output in all cases.
TO is updated by DRCHEK, whether a root is found or not.
Stored in the global array RWORK.

TLAST = last value of T returned by the solver (input only).
Stored in the global array RWORK.

TOUT = final output time for the solver.

IRFND = input flag showing whether the last step taken had a root.
IRFND = 1 if it did, = 0 if not.
Stored in the global array IWORK.

INFO3 = copy of INFO(3) (input only).

e oo NI NN NN PR PN Y N e N N N NP NP o NP N P N K o o o N o o N o N K o P D)

C _______________________________________________________________________
C
H = PSI(1)
IRT = 0
LMASK=IWORK(LNIW)-NRT
HMINR = (ABS(TN) + ABS(H))*UROUND*100.0DO
GO TO (100, 200, 300), JOB
C
C Evaluate R at initial T (= RWORK(LTO)); check for zero values.--————-——-—

100 CONTINUE
DO 103 I = 1,NRT

JROOT(I) = 0
IWORK (LMASK+I)=0
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103

110

200

203

210
C

260
c

300
c

330

340

350

CONTINUE

CALL DDATRP1(TN,RWORK(LTO),Y,YP,NEQ,KOLD,PHI,PSI)
CALL RT (NEQ, RWORK(LTO), Y, YP, NRT, RO, RPAR, IPAR)
IWORK(LNRTE) = 1
DO 110 I = 1,NRT

IF (DABS(RO(I)) .EQ. ZERO) THEN

IWORK (LMASK+I)=1

ENDIF
CONTINUE
RETURN

CONTINUE

in the previous call there was not a root, so this part can be ignored.
IF (IWORK(LIRFND) .EQ. 0) GO TO 260
DO 203 I = 1,NRT
JROOT(I) = 0
IWORK (LMASK+I)=0
If a root was found on the previous step, evaluate RO = R(T0). ----—---
CALL DDATRP1 (TN, RWORK(LTO), Y, YP, NEQ, KOLD, PHI, PSI)
CALL RT (NEQ, RWORK(LTO), Y, YP, NRT, RO, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
DO 210 I = 1,NRT
IF (dABS(RO(I)) .EQ. ZERO) THEN
IWORK (LMASK+I)=1
ENDIF
CONTINUE
RO has no zero components. Proceed to check relevant interval. ------
IF (TN .EQ. RWORK(LTLAST)) RETURN

CONTINUE
Set T1 to TN or TOUT, whichever comes first, and get R at T1. --—------
IF (INFO3 .EQ. 1 .0OR. (TOUT - TN)*H .GE. ZERO) THEN
T1 = TN
GO TO 330
ENDIF
T1 = TOUT
IF ((T1 - RWORK(LTO))*H .LE. ZERO) RETURN
CALL DDATRP1 (TN, T1, Y, YP, NEQ, KOLD, PHI, PSI)
CALL RT (NEQ, T1, Y, YP, NRT, R1, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1
Call DROOTS to search for root in interval from TO to T1. ——-———-———--
JFLAG = 0

DO 340 I = 1,NRT
JROOT(I)=IWORK(LMASK+I)
CONTINUE

CONTINUE

CALL DROOTS2(NRT, HMINR, JFLAG,RWORK(LTO),T1, RO,R1,RX, X, JROOT)
IF (JFLAG .GT. 1) GD TO 360
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CALL DDATRP1 (TN, X, Y, YP, NEQ, KOLD, PHI, PSI)
CALL RT (NEQ, X, Y, YP, NRT, RX, RPAR, IPAR)
IWORK(LNRTE) = IWORK(LNRTE) + 1

GO TO 350

360 CONTINUE
if (JFLAG.eq.2) then ! root found
ZRO0T=.false.
MROOT=.false.
DO 320 I = 1,NRT
if (IWORK (LMASK+I).eq.1) then
if (ABS(R1(i)) .ne. ZERO) THEN
JROOT(I)=SIGN(2.0D0,R1(I))
Mroot=.true.
ELSE
JROOT(I)=0
ENDIF
ELSE
IF (ABS(R1(I)) .EQ. ZERDO) THEN
JROOT(I) = -SIGN(1.0DO,RO(I))
zroot=.true.
ELSE
IF (SIGN(1.0DO,RO(I)) .NE. SIGN(1.0DO,R1(I))) THEN
JROOT(I) = SIGN(1.0DO,R1(I) - RO(I))
zroot=.true.
ELSE
JROOT(I)=0
ENDIF
ENDIF
ENDIF
320 CONTINUE

CALL DDATRP1 (TN, X, Y, YP, NEQ, KOLD, PHI, PSI)

if (Zroot) then
DO 380 I = 1,NRT
IF(ABS(JROOT(I)).EQ.2) JROOT(I)=0
380 CONTINUE
MROOT=.false.
IRT=1
endif
IF (MROOT) THEN
IRT=2
ENDIF
ENDIF
RWORK(LTO) = X
CALL DCOPY (NRT, RX, 1, RO, 1)
RETURN
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SUBROUTINE DROOTS2(NRT, HMIN, JFLAG, X0, X1, RO, R1, RX, X, JROOT)
C
Cx**BEGIN PROLOGUE DROOTS
C**x*xREFER TO DRCHEK
Cx*xxROUTINES CALLED DCOPY
C**xREVISION HISTORY (YYMMDD)
C 020815 DATE WRITTEN
C 021217 Added root direction information in JROOT.
CxxxEND PROLOGUE DROOTS

C
INTEGER NRT, JFLAG, JROOT
DOUBLE PRECISION HMIN, X0, X1, RO, R1, RX, X
DIMENSION RO(NRT), R1(NRT), RX(NRT), JROOT(NRT)
C _______________________________________________________________________

This subroutine finds the leftmost root of a set of arbitrary
functions Ri(x) (i = 1,...,NRT) in an interval (X0,X1). Only roots
of odd multiplicity (i.e. changes of sign of the Ri) are found.
Here the sign of X1 - X0 is arbitrary, but is constant for a given
problem, and -leftmost- means nearest to XO.

The values of the vector-valued function R(x) = (Ri, i=1...NRT)

are communicated through the call sequence of DROOTS.

The method used is the Illinois algorithm.

Reference:

Kathie L. Hiebert and Lawrence F. Shampine, Implicitly Defined
Output Points for Solutions of ODEs, Sandia Report SAND80-0180,
February 1980.

Description of parameters.

NRT = number of functions Ri, or the number of components of
the vector valued function R(x). Input only.

HMIN = resolution parameter in X. Input only. When a root is
found, it is located only to within an error of HMIN in X.
Typically, HMIN should be set to something on the order of

100 * UROUND * MAX(ABS(X0),ABS(X1)),
where UROUND is the unit roundoff of the machine.

JFLAG = integer flag for input and output communication.

On input, set JFLAG = O on the first call for the problem,
and leave it unchanged until the problem is completed.
(The problem is completed when JFLAG .ge. 2 on return.)

On output, JFLAG has the following values and meanings:
JFLAG = 1 means DROOTS needs a value of R(x). Set RX = R(X)
and call DROOTS again.

ocNoNoNoEoNoNoNoNoNoNoNo oo NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNOoNOoNONe!

JFLAG = 2 means a root has been found. The root is
at X, and RX contains R(X). (Actually, X is the
rightmost approximation to the root on an interval
(X0,X1) of size HMIN or less.)

JFLAG = 3 means X = X1 is a root, with one or more of the Ri
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being zero at X1 and no sign changes in (X0,X1).
RX contains R(X) on output.

JFLAG = 4 means no roots (of odd multiplicity) were
found in (X0,X1) (no sign changes).

X0,X1 = endpoints of the interval where roots are sought.
X1 and X0 are input when JFLAG = 0 (first call), and
must be left unchanged between calls until the problem is
completed. X0 and X1 must be distinct, but X1 - X0 may be
of either sign. However, the notion of -left- and -right-
will be used to mean nearer to X0 or X1, respectively.
When JFLAG .ge. 2 on return, X0 and X1 are output, and
are the endpoints of the relevant interval.

RO,R1 = arrays of length NRT containing the vectors R(X0) and R(X1),
respectively. When JFLAG = O, RO and Rl are input and
none of the RO(i) should be zero.
When JFLAG .ge. 2 on return, RO and R1 are output.

RX = array of length NRT containing R(X). RX is input
when JFLAG = 1, and output when JFLAG .ge. 2.

X = independent variable value. QOutput only.
When JFLAG = 1 on output, X is the point at which R(x)
is to be evaluated and loaded into RX.
When JFLAG = 2 or 3, X is the root.
When JFLAG = 4, X is the right endpoint of the interval, X1.

JROOT

integer array of length NRT. Output only.

When JFLAG = 2 or 3, JROOT indicates which components
of R(x) have a root at X, and the direction of the sign
change across the root in the direction of integration.
JROOT(i) = 1 if Ri has a root and changes from - to +.
JROOT(i) = -1 if Ri has a root and changes from + to -.
Otherwise JROOT(i) = O.

e NN PN N NP N N P P o Ko o P N N N K R K o o o o o o N N o o NP !

INTEGER I, IMAX, IMXOLD, LAST, NXLAST,ISTUCK,IUNSTUCK

DOUBLE PRECISION ALPHA, T2, TMAX, X2, ZERO,FRACINT,FRACSUB,TENTH
$ ,HALF ,FIVE

LOGICAL ZROOT, SGNCHG, XROOT

SAVE ALPHA, X2, IMAX, LAST

DATA ZER0/0.0DO/, TENTH/0.1D0/, HALF/0.5D0/, FIVE/5.0D0/

IF (JFLAG .EQ. 1) GD TO 200
C JFLAG .ne. 1. Check for change in sign of R or zero at X1. -----——---

IMAX = 0

ISTUCK=0

TUNSTUCK=0

TMAX = ZERO

ZROOT = .FALSE.

DO 120 I = 1,NRT
if ((JROOT(I) .eq. 1).AND.((ABS(R1(I)) .GT. ZEROD))) IUNSTUCK=I
IF (ABS(R1(I)) .GT. ZERD) GO TO 110
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110

120

130
140

if (JROOT(I) .eq. 1) GOTOD 120
ISTUCK=I
GO TO 120

At this point, RO(i) has been checked and cannot be zero. —--———-------—-

IF (SIGN(1.0DO,RO(I)) .EQ. SIGN(1.0DO,R1(I))) GO TO 120
T2 = ABS(R1(I)/(R1(I)-RO(I)))
IF (T2 .LE. TMAX) GO TO 120

TMAX = T2
IMAX = I
CONTINUE

IF (IMAX .GT. 0) GO TO 130
IMAX=ISTUCK

IF (IMAX .GT. 0) GO TO 130
IMAX=IUNSTUCK

IF (IMAX .GT. 0) GO TO 130

SGNCHG = .FALSE.

GO TO 140

SGNCHG = .TRUE.

IF (.NOT. SGNCHG) GO TO 420

C There is a sign change. Find the first root in the interval. --—————-

C

XROOT = .FALSE.
NXLAST = 0

LAST 1

C Repeat until the first root in the interval is found. Loop point. ---

150

160

170
180

CONTINUE
IF (XROOT) GO TO 300
IF (NXLAST .EQ. LAST) GO TO 160
ALPHA = 1.0DO
GO TOD 180
IF (LAST .EQ. 0) GO TO 170
ALPHA = 0.5DO*ALPHA
GO TO 180
ALPHA = 2.0DO*ALPHA
if ((ABS(RO(IMAX)) .EQ.ZERD) .0R. (ABS(R1(IMAX)) .EQ.ZERD)) THEN
X2=(X0+ALPHA*X1) / (1+ALPHA)
ELSE
X2 = X1 - (X1-X0)*R1(IMAX)/(R1(IMAX) - ALPHA*RO(IMAX))
ENDIF
IF (ABS(X2 - X0) .LT. HALF*HMIN) THEN
FRACINT = ABS(X1 - X0)/HMIN
IF (FRACINT .GT. FIVE) THEN

FRACSUB = TENTH
ELSE
FRACSUB = HALF/FRACINT
ENDIF
X2 = X0 + FRACSUB*(X1 - X0)
ENDIF

IF (ABS(X1 - X2) .LT. HALF*HMIN) THEN
FRACINT = ABS(X1 - XO)/HMIN
IF (FRACINT .GT. FIVE) THEN
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FRACSUB
ELSE
FRACSUB
ENDIF
X2 = X1 - FRACSUB*(X1 - X0)

TENTH

HALF/FRACINT

X = X2
C Return to the calling routine to get a value of RX = R(X). ----
RETURN
C Check to see in which interval R changes sign. ---———-—-—-—————--
200 IMXOLD = IMAX
IMAX = 0
ISTUCK=0
IUNSTUCK=0
TMAX = ZERO
ZROOT = .FALSE.
DO 220 I = 1,NRT
if ((JROOT(I).eq. 1) .AND.((ABS(RX(I)) .GT. ZERD))) IUNSTUCK=I
IF (ABS(RX(I)) .GT. ZERD) GO TO 210
if (JROOT(I) .eq. 1) go to 220

ISTUCK=I

GO TO 220
C Neither RO(i) nor RX(i) can be zero at this point. --—-——-—-—--—-——-——-
210 IF (SIGN(1.0DO,RO(I)) .EQ. SIGN(1.0DO,RX(I))) GO TO 220

T2 = ABS(RX(I)/(RX(I) - RO(I)))
IF (T2 .LE. TMAX) GO TO 220
TMAX = T2
IMAX = I
220 CONTINUE
IF (IMAX .GT. 0) GO TO 230
IMAX=ISTUCK
IF (IMAX .GT. 0) GO TO 230
IMAX=TUNSTUCK
IF (IMAX .GT. 0) GO TO 230
SGNCHG = .FALSE.
IMAX = IMXOLD
GO TO 240
230 SGNCHG = .TRUE.
240 NXLAST = LAST
IF (.NOT. SGNCHG) GO TO 260
C Sign change between X0 and X2, so replace X1 with X2. --------------—-
X1 = X2
CALL DCOPY (NRT, RX, 1, R1, 1)
LAST = 1
XROOT = .FALSE.
GO TO 270

260 CONTINUE

CALL DCOPY (NRT, RX, 1, RO, 1)
X0 = X2
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LAST = 0
XROOT = .FALSE.
270 IF (ABS(X1-X0) .LE. HMIN) XROOT = .TRUE.
GO TO 150
C
C Return with X1 as the root. Set JROOT. Set X = X1 and RX = R1. ————-
300 JFLAG = 2

C exit with root findings
X =X1
CALL DCOPY (NRT, R1, 1, RX, 1)
RETURN

C No sign changes in this interval. Set X = X1, return JFLAG = 4. ———-
420 CALL DCOPY (NRT, R1, 1, RX, 1)

X =X1

JFLAG = 4

RETURN
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Appendix B

Modelica Model of two Hydraulic

components

B.1 A Hydraulic pump

class PompeCentrifugeDyn "Pompe centrifuge dynamique"
parameter Real V=1 "Volume";

parameter Real VRotn=1400 "Vitesse de rotation de reference";

parameter Real J=10 "Moment d’inertie de la pompe";
parameter Real Cf0=10 "Coef. de frottement";
parameter Real p_rho = 0;

parameter Real al=-88.67 "Coef. x"2 de la caracteristique hn

£(Q) (s2/mb)";

parameter Real a2=0 "Coef. x de la caracteristique hn = £(Q) (s/m2)";

parameter Real a3=43.15 "Coef. constant de la caracteristique hn
parameter Real b1=-3.7751 "Coef. x"2 de la caracteristique rh = £(Q) (s2/m6)";

£(Q @";

parameter Real b2=3.61 "Coef. x de la caracteristique rh = £(Q) (s/m3)";

parameter Real b3=-0.0075464 "Coef. constant de la caracteristique rh = £(Q) (s.u.)";

parameter Real mode=1;
parameter Real rhmin=0.01 "Rendement hydraulique minimum";

parameter Real g=9.80665 "Accélération de la pesanteur";
parameter Real pi=3.141592654 "pi";
parameter Real eps=1.e-6 "Limite inf.";

Real rh "Rendement hydraulique";

Real hn(start=10) "Hauteur manométrique";

Real VRot "Vitesse de rotation";

Real w(start=146.6) "Vitesse de rotation angulaire";
Real R "Rapport VRot/VRotn (s.u.)";

Real Q(start=581.608) "Débit de masse";

Real Qv(start=0.5) "Débit volumique";

Real Cm "Couple moteur total";

Real Cht "Couple hydraulique utile (couple de mise en charge)";

Real Ch "Couple hydraulique";

Real Cf "Couple de frottement";

Real rho "Masse volumique";

Real deltaP "Mise en charge de la pompe";

Real deltaH "Différence d’enthalpie spécifique entre la sortie et

Real Tm(start=290) "Température moyenne";

Real Pm(start=110984) "Pression moyenne";

Real Hm(start=70836.4) "Enthalpie spécifique moyenne";
Real pompe "Fonctionnement en pompe";

Real region (start=1);

Real Wh;

Real Wf;

1’entrée";
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PortCW M;
PortPHQ1
PortPHQ2
equation
deltaP =
deltaH =

Q =C1.Q;
Q
0

Ci;
C2;

C2.P - C1.P;
C2.H - C1.H;
€1.Q = €2.Q;

Qv*rho;
if (Q > 0) then C1.H - C1.Hm else C2.H - C2.Hm;

VRot = (30/pi)*w;

R = VRot/VRotn;

/* Bilan d’énergie */
Vxrhoxder(Hm) = C1.Q*C1.H - C2.Q*C2.H + Wh + Wf;
Wh = Ch*w;
WE = Cf+*w;

/* "Hauteur manométrique" */
hn = (al*Qu*abs(Qv) + a2*Qv*R + a3*R*abs(R));
rho*gxhn;

deltaP =

/* Mise en rotation de la pompe */
Cm = M.Ctr;

w = M.w;

Cm = Cf + Ch + J*der(w);

Ccf
rh

Cht= (if abs(w) > eps then Qv*deltaP/w else

(if (abs(R)< 1) then R/(abs(R) + 1e-5)*Cf0*(1 - abs(R)) else 0);
(if (abs(R)> eps)then max(b1*Qv~2/R"2 + b2*Qv/R + b3,rhmin) else rhmin);/*Rnd hyd*/
Qu*deltaP/eps); /* couple hydrolique totalx*/

Ch = (if Ch*w >= 0 then Cht/rh else rhx*Cht);
pompe =if Ch*w >= 0 then 1.0 else 0.0; /*if Ch*w <= 0 Fonctionnement en turbine */
Pm = (C1.P + C2.P)/2;

Hm
Tm

(C1.H + C2.H)/2;
Eau_PH_T(Pm, Hm, mode);

region = Eau_PH_region(Pm, Hm, mode);
rho = if (p_rho > 0) then p_rho

els

end PompeCentrifugeDyn;

e Eau_PH_d(Pm, Hm, mode);

B.2 A Heat Exchanger

class Echgb
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

ETAMIN=1.0e-9;

lambda=15
p_hc=6000
p_hf=3000
p_Kc=100
p-Kf=100

.0 "Conductivite thermique du metal";

"Coefficient convectif du fluide chaud si non calculé
"Coefficient convectif du fluide froid si non calculé
"Coefficient d pertes de charges ne nont pas calculées
"Coefficient de charges ne nont pas calculées par les

Vec=1 "Volume de la branche chaude";
Vf=1 "Volume de la branche froide";
emetal=0.0006 "Epaisseur du metal";
Sp=2 "Surface d’une plaque";

nbp=499 "

c1=1.12647 "Facteur de correctif de perte de

Nombre de plaques (s.u.)";

N=5.0 "Nombre de segments";

permanent=1 "Calcul du permanent";

p-rhoc=0 "Si > 0, masse volumique imposée du fluide chaud";
p_rhof=0 "Si > 0, masse volumique imposée du fluide froid";
modec=1 "Région IF97 . 1l:liquide - 2:vapeur - 4:saturation - 0:
modef=1 "Région IF97 . 1l:liquide - 2:vapeur - 4:saturation - O:
Correlation_Thermique=1 ". d’échange. 0: pas de corrélation. 1:
Correlation_Hydraulique=1 " charges. 0: pas de corrélation. 1: ¢

Real dW[5] "Puissance echangée";
Real DPc[5] "Perte de charge du fluide chaud";

230

par les corrélations";

par les corrélations";

par les corrélations (m-4)";
corrélations (m-4)";

charge pour les corrélations SRI (s.u.)";

calcul automatique";
calcul automatique";
corrélations SRI (Entier)";
orrélations SRI (Entier)";
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Real DPf[5] "Perte de charge du fluide froid";

Real hc[5] "Coefficient d’échange convectif du fluide chaud";
Real hf[5] "Coefficient d’échange convectif du fluide froid";
Real K[5] "Coefficient d’échange global";

Real dS "Surface d’échange";

Real Tec "Température d’entrée du fluide chaud";

Real Tsc "Température de sortie du fluide chaud";

Real Tef "Température d’entrée du fluide froid";

Real Tsf "Température de sortie du fluide froid";

Real Pcc[5 + 1] "Pression du fluide chaud aux frontiéres de la section i";

Real Qcc[5 + 1] (start={368.7,368.7,368.7,368.7,368.7,368.7}) "Déb frontiéres de la section i";
Real Hcc[5 + 1] "Enthalpie spécifique du fluide chaud aux frontiéres de la section i";

Real Pcf[5 + 1] "Pression du fluide froid aux frontiéres de la section i";

Real Qcf[5 + 1](start={1062.6,1062.6,1062.6,1062.6,1062.6,1062.6})"Débit frontiéres de la section i";
Real Hcf[5 + 1] "Enthalpie spécifique du fluide froid aux frontiéres de la section i";

Real Qc[5](start={368.682,368.682,368.682,368.682,368.682}) "Débit massique du fluide chaud";

Real Qf[5](start={1062.62,1062.62,1062.62,1062.62,1062.62}) "Débit massique du fluide froid";

Real qmc[5];

Real qmf[5];

Real quc[5];

Real quf[5];

Real M;

Real rhoc[5](start={998,998,998,998,998}) "Masse volumique du fluide chaud";

Real rhof[5](start={998,998,998,998,998}) "Masse volumique du fluide froid";

Real muc[5](start={1e-3,1e-3,1e-3,1e-3,1e-3}) "Viscosite dynamique du fluide chaud";

Real muf[5](start={1e-3,1e-3,1e-3,1e-3,1e-3}) "Viscosite dynamique du fluide froid";

Real lambdac[5](start={0.602698,0.602698,0.602698,0.602698,0.602698}) "Conductivite thr du fluide chaud";
Real lambdaf[5](start={0.597928,0.597928,0.597928,0.597928,0.597928}) "Conductivite thr du fluide froid";

Real Tmc[5](start={290,290,290,290,290}) "Température moyenne du fluide chaud";
Real Tmf[5](start={290,290,290,290,290}) "Température moyenne du fluide froid";
Real Pmc[5](start={1.e5,1.e5,1.e5,1.e5,1.e5}) "Pression moyenne du fluide chaud";
Real Pmf[5](start={1.e5,1.e5,1.e5,1.e5,1.e5}) "Pression moyenne du fluide froid";

Real Hmc[5](start={70821,70821,70821,70821,70821}) "Enthalpie spécifique moyenne du fluide chaud";
Real Hmf[5](start={50070,50070,50070,50070,50070}) "Enthalpie spécifique moyenne du fluide froid";

Real regionc[5](start={1,1,1,1,1}) "Numéro de région IF97 du fluide chaud";
Real regionf[5](start={1,1,1,1,13}) "Numéro de région IF97 du fluide froid";

Real ac[5], af[5], bc[5], bf[5];
Real abs_Qc[5], abs_Qf[5], abs_agmc[5], abs_qgmf[5];
Real abs_mucc[5],abs_muff[5], mucc[5], muff[5], maxc[5], maxf[5];

Real measure;

PortPHQ1 Ec;
PortPHQ1 Ef;
PortPHQ2 Sf;
PortPHQ2 Sc;

equation
measure = Qcc[1];

Ec.P = Pcc[1]; Sc.P
Ef.P = Pcf[6]; Sf.P

Pcc[6]; Ec.Q
Pcf[1]; Ef.Q

Qcc[1]; Sc.Q = Qcc[6]; Ec.H = Hcc[1];Sc.H
Qcf[6]; Sf.Q Qcf[1]; Ef.H Hcf[6];Sf.H

Hcc[6];
Hef[1];

0 = if (Ec.Q > 0) then Ec.H - Ec.Hm else Sc.H - Sc.Hm;
0 = if (Ef.Q > 0) then Ef .H - Ef.Hm else Sf.H - Sf.Hm;

dS = (mbp - 2)*Sp/N;
M = (nbp - 1)/2;

for i in 1:5 loop
Qecc[i] = Qecli + 1];
Qcfl[i] = Qcfli + 1];

Qcli]l = Qcclil;
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Qf [i]

Pccli

Pcfl[i + 1]

+

Qcf[il;

1] = if (Qc[i] > 0) then Pcc[i] - DPc[i]/N else Pcc[i] + DPc[i]/N;

if (Qf[i] > 0) then Pcf[i] + DPf[i]/N else Pcf[i] - DPf[i]/N;

K[i] = hc[i]*hf[i]/(hc[i] + hf[i] + hc[i]*hf[i]*emetal/lambda) ;
dW[i] = K[il*dS*(Tmc[i] - Tmf[il);

Vc/N*rhoc[i]*der (Hmc [i])
VE/N*rhof [i]*der (Hmf [i])

abs_Qc[i] = if (Qc[i] > 0)
abs_Qf[i] = if (Qf[il > 0)
maxc[i]=if (ETAMIN>muc[i]) then
maxf [i]=if (ETAMIN>muf[i]) then

qme [i]
qmf [i]

abs_qmc[i]

Qcc[il

*Hcc[i] - Qcc[i + 1]*Hcc[i + 1] - dW[i];

-Qcf[i]*Hcf[i] + Qcfl[i + 1]*Hcf[i + 1] + dw[i];

then Qc[i] else -Qc[il;
then Qf[i] else -Qf[il;

= abs_Qc[i]/(maxc[il* M);
abs_Qf[i]/(maxf[i]* M);

ETAMIN else muc[il;
ETAMIN else muf[i];

if (gmc[i] > 0.0) then gmc[i] else -gmc[il;

abs_gmf[i] = if (gmf[i] > 0.0) then qmf[i] else -gmf[i];

mucc[i]=muc[i]*Eau_PH_cp(Pmc[i], Hmc[i], modec)/lambdac[il;
muff [i]=muf [i]*Eau_PH_cp(Pmf[i], Hmf[i], modef)/lambdaf[i];
abs_mucc[i]l= if (mucc[i] > 0.0) then mucc[i] else -mucc[i];
abs_muff[i]l= if (muff[i] > 0.0) then muff[i] else -muffl[i];

ac[i]=
af[i]=

hc[il=
hf[i]=
quc[i]

quf[i]

bc[il=

bf[i]=

DPc[i]

DPf[il]

Pmc[i]
Pmf [i]
Hmc [i]
Hmf [i]

regionc[i]
regionf[i]

Tmc [i]
Tmf [i]

rhoc[i
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if (gmc[i] < 1.e-3) then 0 else 11.245%abs_qmc[i]~0.8* abs_mucc[i]~0.4*lambdac[i];
if (gmf[i] < 1.e-3) then 0 else 11.245%abs_gmf[i]~0.8% abs_muff[i]“~0.4*lambdaf[i];

if (Correlation_Thermique < 0.5) then p_hc
else if (Correlation_Thermique > 0.5) then ac[i]
0.0;
if (Correlation_Thermique < 0.5) then p_hf
else if (Correlation_Thermique > 0.5) then af[il

else

else

0.0;
abs_Qc[i]/M;
abs_Qf[i]/M;

if (gmc[i] < 1.e-3) then

0
else

c1%14423.2/rhoc[i]*abs_gmc[i]~(-0.097)*quc[i]~2%(1472.47 + 1.54x(M - 1)/2 + 104.97*abs_qmc[i]~(-0.25));

if (gmf[i] < 1.e-3) then

0
else

14423.2/rhof [i]*abs_qmf [i]~(-0.097)*quf [1] "2%(1472.47 + 1.54*%(M - 1)/2 + 104.97*abs_qmf[i]~(-0.25));

=if (Correlation_Hydraulique < 0.5) then p_Kc*Qc[i]~2/(2*rhoc[i])
else if (Correlation_Hydraulique > 0.5) then bc[i]

else 0.0;
=if (Correlation_Hydraulique < 0.5) then p_Kf*Qf[i]~2/(2*rhof[i])
else if (Correlation_Hydraulique > 0.5) then bf[i]

else 0.0;
= (Pcc[i] + Pccli
= (Pcf[i] + Pcf[i
= (Hcc[i] + Hcc[i
= (Hcf[i] + Hcf[i

+
+
+
+

11)/2;
11)/2;
11)/2;
11)/2;

Eau_PH_region(Pmc[i], Hmc[i], modec);
Eau_PH_region(Pmf[i], Hmf[i], modef);

Eau_PH_T(Pmc[i], Hmc[i], modec);
Eau_PH_T(Pmf[i], Hmf[i], modef);

= if (p_rhoc > 0) then p_rhoc else Eau_PH_d(Pmc[i], Hmc[i], modec);
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rhof[i] = if (p_rhof > 0) then p_rhof

else Eau_PH_d(Pmf[i], Hmf[i], modef);

muc[i] = ViscositeDynamique_rhoT_(rhoc[i], Tmc[i]);
muf [i] = ViscositeDynamique_rhoT_(rhof[il, Tmf[il);

lambdac[i] = ConductiviteThermique_rhoT_(rhoc[i], Tmc[i], Pmc[i], regionc[i]+0.01);
lambdaf[i] = ConductiviteThermique_rhoT_(rhof[i], Tmf[i], Pmf[i], regionf[i]+0.01);

end for;

Tec = Eau_PH_T(Ec.P,
Tsc = Eau_PH_T(Sc.P,
Tef = Eau_PH_T(Ef.P,

Tsf = Eau_PH_T(Sf.P,
end Echgh;

Ec.H,
Sc.H,
Ef.H,
Sf.H,

modec) ;
modec) ;
modef) ;
modef) ;
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