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Abstract. Replacing random permutations by random functions for the
update of a stream cipher introduces the problem of entropy loss. To
assess the security of such a design, we need to evaluate the entropy of the
inner state. We propose a new approximation of the entropy for a limited
number of iterations. Subsequently, we discuss two collision attacks which
are based on the entropy loss. We provide a detailed analysis of the
complexity of those two attacks as well as of a variant using distinguished
points.
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1 Introduction

Recently, several stream ciphers have been proposed with a non-bijective update
function. Moreover, in some cases the update function seems to behave like a
random function as for the Mickey stream cipher [BD05]. Using a random
function instead of a random permutation induces an entropy loss in the state.
An attacker might exploit this fact to mount an attack. Particularly, we will
study some attacks which apply the approach of Time–Memory tradeoff [Hel80]
and its variants [HS05]. At first we introduce the model with which we are going
to work.

Stream cipher model. The classical model of an additive synchronous stream
cipher (Fig. 1) is composed of an internal state updated by applying a function
Φ. Then a filter function is used to extract the keystream bits from the internal
state. To obtain the ciphertext we combine the keystream with the plaintext.

The particularity of our model is that Φ is a random mapping which allows us
to make some statistical statements about the properties of the stream cipher.

Definition 1. Let Fn = {ϕ | ϕ : Ωn → Ωn} be the set of all functions which
map a set Ωn = {ω1, ω2, . . . , ωn} of n elements onto itself. We say that Φ is a
random function or a random mapping if it takes each value ϕ ∈ Fn with the
same probability Pr[Φ = ϕ] = 1/nn.
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Fig. 1. Model of a simple stream cipher

For an extended definition of a random function we refer to the book of Kolchin
[Kol86].

Let Sk be the random variable denoting the value of the state after k iterations
of Φ, for k ≥ 0. From the model in Fig. 1 we see that Sk = Φ(Sk−1) where the
value of Φ is the same for all iterations k > 1. The probability distribution of
the initial state S0 is {pi}n

i=1 such that

pi = Pr[S0 = ωi] .

If we do not state otherwise, we assume a uniform distribution thus pi = 1/n
for all 1 ≤ i ≤ n. By

pΦ
i (k) = Pr[Φk(S0) = ωi]

we describe the probability of the state being ωi after applying k times Φ on the
initial state S0. If we write only pϕ

i (k) we mean the same probability but for a
specific function ϕ ∈ Fn. The notation above allows us to define the entropy of
the state after k iterations of Φ

HΦ
k =

n∑

i=1

pΦ
i (k) log2

(
1

pΦ
i (k)

)
.

If pΦ
i (k) = 0 we use the classical convention in the computation of the entropy

that 0 log2(
1
0 ) = 0. This can be done, since a zero probability has no influence on

the computation of the entropy. In this article we are interested in expectations
where the average is taken over all functions ϕ ∈ Fn. To differentiate between a
value corresponding to a random mapping Φ, to a specific function ϕ, and the
expectation of a value, taken over all functions ϕ ∈ Fn, we will write in the
following the first one normal (e.g. HΦ

k ), the second one upright (e.g. Hϕ
k ), and

the last one bold (e.g. Hk). For instance, the formula:

Hk = E(HΦ
k )

denotes the expected state entropy after k iterations.
The subsequent article is divided in two main sections. In Section 2, we discuss

ways of estimating the state entropy of our model. We give a short overview
of previous results from [FO90a] and [HK05] in Section 2.1. Subsequently in
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Section 2.2, we present a new estimate which is, for small numbers of iterations,
more precise than the previous one. In Section 3, we examine if it is possible to use
the entropy loss in the state to launch an efficient attack on our model. We discuss
two collision attacks against Mickey version 1 [BD05] presented in [HK05]. We
give a detailed evaluation of the costs of these attacks applied on our model. For
this evaluation we consider the space complexity, the query complexity and the
number of different initial states needed. By the space complexity we mean the
size of the memory needed, by the query complexity we mean the number of times
we have to apply the update function during the attack. For the first attack, we
show that we only gain a factor on the space complexity by increasing the query
complexity by the same factor. For the second attack, we demonstrate that,
contrary to what is expected from the results in [HK05], the complexities are
equivalent to a direct collision search in the initial values. In the end, we present
a new variant of these attacks which allows to reduce the space complexity;
however the query complexity remains the same.

2 Estimation of Entropy

The entropy is a measure of the unpredictability. An entropy loss in the state
facilitates the guessing of the state for an adversary. In this section, we therefore
discuss different approaches to estimate the expected entropy of the inner state.

2.1 Previous Work

Flajolet and Odlyzko provide, in [FO90a], a wide range of parameters of random
functions by analyzing their functional graph. A functional graph of a specific
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Fig. 2. Example of a functional graph for ϕ : x �→ x2 + 2 (mod 20)

function ϕ is a graph which has a directed edge from vertex x to vertex y if and
only if ϕ(x) = y. An example for ϕ(x) = x2 + 2 (mod 20) can be seen in Fig. 2.
For functions on a finite set of elements, such a graph consists of one or more
separated components, where each component is build by a cycle of trees, i.e.
the nodes in the cycle are the root of a tree.

To find the expected value of a given parameter of a random function, Flajolet
and Odlyzko construct the generating function of the functional graph associ-
ated with this parameter. Subsequently, they obtain an asymptotic value of the
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expectation by means of a singularity analysis of the generating function. All
asymptotic values are for n going to +∞. In the following, we present some ex-
amples of the examined parameters. The maximal tail length is, for each graph,
the maximal number of steps before reaching a cycle. An r–node is a node in the
graph with exactly r incoming nodes which is equivalent to a preimage of size
r. By the image points we mean all points in the graph that are reachable after
k iterations of the function. The asymptotic values of these parameters are:

– the expected number of cycle point cp(n) ∼
√

πn/2,
– the expected maximal tail length mt(n) ∼

√
πn/8,

– the expected number of r–nodes rn(n, r) ∼ n
r!e and

– the expected number of image points after k iterations ip(n, k) ∼ n(1 − τk)
where τ0 = 0 and τk+1 = e−1+τk .

For all these values, the expectation is taken over all functions in Fn.
In [HK05], Hong and Kim use the expected number of image points to give an

upper bound for the state entropy after k iterations of a random function. They
utilize the fact that the entropy is always less or equal than the logarithm of
the number of points with probability larger than zero. After a finite number of
steps, each point in the functional graph will reach a cycle, and thus the number
of image points can never drop below the number of cycle points. Therefore, the
upper bound for the estimated entropy of the internal state

Hk ≤ log2(n) + log2(1 − τk) (1)

is valid only as long as ip(n, k) > cp(n). We see that for this bound the loss of
entropy only depends on k and not on n.

In Fig. 3 we compare, for n = 216, the values of this bound with the empirically
derived average of the state entropy.

To compute this value we chose 104 functions, using the HAVEGE random
number generator [SS03], and computed the average entropy under the assump-
tion of a uniform distribution of the initial state. Even if n is not very big, it
is sufficient to understand the relation between the different factors. We can see
in the graph that if k stays smaller than mt(n) this bound stays valid and does
not drop under log2(cp(n)).

2.2 New Entropy Estimation

The expected number of image points provides only an upper bound (1) for the
expected entropy. We found a more precise estimation by employing the methods
stated in [FO90a].

For a given function ϕ ∈ Fn, let ωi be a node with r incoming nodes (an r–
node). The idea is that this is equivalent to the fact that ωi is produced by exactly
r different starting values after one iteration. Thus, if the initial distribution of
the state is uniform, this node has the probability pϕ

i (1) = r/n. The same idea
works also for more than one iteration.
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log2(k + 1)

bi
ts

of
en

tr
op

y

121086420

image size (log2)
cycle points (log2)

maximal tail length
empirical entropy

16

14

12

10

8

6

4

2

0

Fig. 3. Upper bound and empirical average of the entropy for n = 216

Definition 2. For a fixed n let us choose a function ϕ ∈ Fn. Let ϕ−k(i) =
{j|ϕk(ωj) = ωi} define the preimage of i after k iterations of ϕ. By rnϕ

k (r) =
#{i| |ϕ−k(i)| = r} we denote the number of points in the functional graph of ϕ
which are reached by exactly r nodes after k iterations.

For a random function Φ on a set of n elements, we define by rnk(n, r) the
expected value of rnϕ

k (r), thus

rnk(n, r) =
1
nn

∑

ϕ∈Fn

rnϕ
k (r) .

A small example might help to better understand these definitions. For n = 13

reaches A in 2 steps

reaches B in 2 steps

BA

Fig. 4. Example of a functional graph to illustrate rnϕ
k (r)

we consider a function ϕ with a functional graph as displayed in Fig. 4. The
only points that are reached by r = 3 points after k = 2 iterations are A and
B. Thus, in this case we have rnϕ

2 (13, 3) = 2. The value rn2(13, 3) is then the
average taken over all functions ϕ ∈ F13.

Using Def. 2 we can state the following theorem.
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Theorem 1. In the case of a uniform initial distribution the expected entropy
of the inner state after k iterations is

Hk = log2(n) −
n∑

r=1

rnk(n, r)
r

n
log2(r) . (2)

Proof. Let us fix a function ϕ. We use the idea that after k iterations of ϕ we
have rnϕ

k (r) states with probability r
n . Thus, the entropy after k iterations for

this specific function is

Hϕ
k =

n∑

r=1

rnϕ
k (r)

r

n
log2

(n

r

)

= log2(n)
1
n

n∑

r=1

r rnϕ
k (r) −

n∑

r=1

rnϕ
k (r)

r

n
log2(r) .

We ignore the case r = 0 since it corresponds to a probability zero, which is not
important for the computation of the entropy. Each 1 ≤ j ≤ n appears exactly in
one preimage of ϕ after k iterations. We can thus see directly from the definition
of rnϕ

k (r) that
∑n

r=1 r rnϕ
k (r) = n. Therefore, we can write

Hϕ
k = log2(n) −

n∑

r=1

rnϕ
k (r)

r

n
log2(r) .

By using this equation, we can give the expected entropy after k iterations as

Hk =
1
nn

∑

ϕ∈Fn

Hϕ
k

=
1
nn

∑

ϕ∈Fn

[
log2(n) −

n∑

r=1

rnϕ
k (r)

r

n
log2(r)

]

= log2(n) − 1
nn

∑

ϕ∈Fn

[
n∑

r=1

rnϕ
k (r)

r

n
log2(r)

]
.

Since we only have finite sums we can change the order:

Hk = log2(n) −
n∑

r=1

⎡

⎣ 1
nn

∑

ϕ∈Fn

rnϕ
k (r)

⎤

⎦ r

n
log2(r) .

We conclude our proof by applying Def. 2.

In the same way we can compute the entropy for any arbitrary initial
distribution.
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Theorem 2. For a given n, let P = {p1, p2, . . . , pn} define the distribution of
the initial state. Then, the expected entropy of the state after k iterations is
given by

HP
k =

n∑

r=1

rnk(n, r)
1(
n
r

)
∑

1≤j1<···<jr≤n

(pj1 + · · · + pjr ) log2
1

pj1 + · · · + pjr

. (3)

Proof. Let us choose a specific ϕ and an index i. After k iterations of ϕ, the
state ωi has the probability

∑
j∈ϕ−k(i) pj . Therefore, the expected entropy after

k iterations is given by

HP
k =

1
nn

∑

ϕ∈Fn

n∑

i=1

⎛

⎝
∑

j∈ϕ−k(i)

pj

⎞

⎠ log2
1∑

j∈ϕ−k(i) pj
. (4)

For a given r we fix a set of indices {j1, . . . , jr}. Without loss of generality we
assume that they are ordered, e.i. 1 ≤ j1 < · · · < jr ≤ n. We now want to know
how many times we have to count (pj1 + · · · + pjr ) log2

1
pj1+···+pjr

in (4). This is

equivalent to the number of pairs (i, ϕ) where ϕ−k(i) = {j1, . . . , jr}.
From Def. 2 we know that nnrnk(n, r) is the number of pairs (i, ϕ)

such that |ϕ−k(k)| = r. Due to symmetry, each set of indices of size r is
counted the same number of times in (4). There are

(
n
r

)
such sets. Thus,

(pj1 + · · · + pjr ) log2
1

pj1+···+pjr
is counted exactly nnrnk(n,r)

(n
r)

times and we can

write

HP
k =

1
nn

n∑

r=1

nnrnk(n, r)(
n
r

)
∑

1≤j1<···<jr≤n

(pj1 + · · · + pjr ) log2
1

pj1 + · · · + pjr

,

which is equivalent to (3).

Theorem 1 can also be shown by using Theorem 2; however the first proof is
easier to follow. Finally, we want to consider a further special case.

Corollary 1. For a given n let the distribution of the initial state be Pm =
{p1, p2, . . . , pn}. From the n possible initial values only m occur with probability
exactly 1

m . Without loss of generality we define

pi =

{
1
m 1 ≤ i ≤ m

0 m < i ≤ n .

In this case we get

HPm
k =

n∑

r=1

rnk(n, r)
1(
n
r

)
r∑

�=0

(
m

�

)(
n − m

r − �

)
�

m
log2

m

�
. (5)

Proof. For a given r, let us consider the sum (pj1 +· · ·+pjr) for all possible index
tuples 1 ≤ j1 < · · · < jr ≤ n. In

(
m
�

)(
n−m
r−�

)
cases we will have (pj1+· · ·+pjr) = �

m
for 0 ≤ � ≤ r. Thus, (5) follows directly from Theorem 2.
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To approximate rnk(n, r) for one iteration, we use directly the results for the
expected number of r–nodes, given in [FO90a], since rn1(n, r) = rn(n, k) ∼ n

r!e .
We can see that already for k = 1, a uniform initial distribution, and n large
enough, there is a non negligible difference between our estimate (2)

H1 ∼ log2(n) − e−1
n∑

r=1

1
(r − 1)!

log2(r) ≈ log2(n) − 0.8272

and the upper bound (1)

H1 ≤ log2(n) + log2(1 − e−1) ≈ log2(n) − 0.6617 .

For more than one iteration we need to define a new parameter.

Theorem 3. For n → ∞ we can give the following asymptotic value

rnk(n, r) ∼ n ck(r) (6)

of the expected number of points in the functional graph which are reached by r
points after k iterations, where

ck(r) =

{
1

r!e for k = 1
D(k, r, 1)f1(k)1

e for k > 1

D(k, r, m) =

⎧
⎪⎨

⎪⎩

1 for r = 0
0 for 0 < r < m
∑�r/m�

u=0
ck−1(m)u

u! D(k, r − mu, m + 1) otherwise

and

f1(k) =

{
1 for k = 1
ee−1f1(k−1) for k > 1 .

Proof. The concept of this proof is that we see the functional graph as a combi-
natorial structure. We are going to build the generating function corresponding
to this structure where we mark a desired parameter. By means of the singularity
analysis of the generating function we obtain the asymptotic value of this para-
meter. The difficulty is to mark the right property in the generation function.
The rest of the proof is just following the method described in [FO90a].

For an arbitrary structure, let an define the number of elements of this struc-
ture with size n for n ≥ 1. Then, the exponential generating function of the
infinite sequence {an}n≥1 is defined as

A(z) =
∑

n≥1

an
zn

n!
.

By [zn]A(z) we mean the n’th coefficient an of A(z). The nice property of a gen-
erating function is that many combinatorial constructions on the structure cor-
respond to simple manipulation of the generating function. We refer the reader
to [FS96] for a deeper introduction to the area of generating functions.
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The functional graph of a function which maps a finite set onto itself can be
described in the following recursive way:

FuncGraph = SET (Component) ,

Component = CY CLE(Tree) ,

T ree = Node × SET (Tree) .

Each of this constructions: SET , CY CLE and × (concatenation) can be applied
directly on a generating function.

We are interested in the average value of a specific parameter, where the
average is taken over all functions of size n. For this purpose we need a bivariate
generating function. Let F =

⋃
n≥1 Fn be the set of all functions which map a

finite set onto itself. For a specific ϕ ∈ F , we denote by |ϕ| the size n of the
finite set. With ξ(ϕ) we define a specific property of the function. In our case
we are interested in ξr,k(ϕ) = rnϕ

k (|ϕ|, r). The bivariate generating function for
this parameter, marked by the variable u, is then defined by

ξr,k(u, z) =
∑

ϕ∈F
uξr,k(ϕ) z

|ϕ|

|ϕ|! .

By ξr,k,n =
∑

ϕ∈Fn
ξr,k(ϕ) we mean the sum of ξr,k(ϕ) taken over all ϕ ∈ Fn.

Let
Ξ(z) =

∑

n≥1

ξr,k,n
zn

n!

be the generating function for ξr,k,n. Thus, it is clear that the average value of
ξk,r is given by

E(ξk,r|Fn) =
ξk,r
n

nn
=

n!
nn

[zn]Ξ(z) .

To obtain the function Ξ(z) we use that

Ξ(z) =
∂

∂u
ξr,k(u, z)

∣∣∣∣
u=1

.

Since in our case the evaluation of [zn]Ξ(z) is not directly possible, we can use
a singularity analysis to get an asymptotic value for n → ∞. More information
about singularity analysis can be found in [FO90a] and [FO90b].

We now have to define the function ξr,k(u, z). For this, we start by a tree. A
node in a tree which is reached by r nodes after k iterations can be described
by the concatenation of three elements:

1. A node.
2. A SET of trees where each tree has a depth smaller than k − 1.
3. A concatenation of j trees where the order of the concatenation is not im-

portant and where 1 ≤ j ≤ r. Each of these trees has a depth larger or equal
to k − 1 and their roots are reached by respectively i1, . . . , ij nodes after
k − 1 iterations such that i1 + · · · + ij = r.



Stream Ciphers Using a Random Update Function 267

A

2.

1.

3.

Fig. 5. Example of the structure explained in 1.-3. for the node A

In Fig. 5 these three elements are marked for the node A.
To write the corresponding generating function we need some notations:
The generating function of a set of trees of depth smaller than k − 1, as

described in 2., is given by f1(k, z) where

f1(k, z) =

{
1 for k = 1
ez f1(k−1,z) for k > 1 .

By Par(r) we mean the integer partition of r, i.e. the set of all possible se-
quences [i1, . . . , ij ] for 1 ≤ j ≤ r such that 1 ≤ i1 ≤ · · · ≤ ij ≤ r and i1+· · ·+ij =
r. For example, for r = 4 we have Par(4) = {[1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4]}.

Since the order of the concatenation in 3. is not important, we need a correc-
tion term f2([i1, . . . , ij ]). If there are some ix1 , . . . , ix�

with 1 ≤ x1 < · · · < x� ≤ j
and ix1 = · · · = ix�

we have to multiply by a factor 1/�! to compensate this re-
peated appearance, e.g. f2([1, 1, 1, 1, 2, 2, 3]) = 1

4!2!1! .
Let tr,k(u, z) be the generation function of a tree. By ck(r, z) we define a

variable such that
ck(r, z)tr,k(u, z)r

is the generating function of a tree where the root is reached by r nodes after k
iterations. For k = 1, such a tree has r children, where each child is again a tree.
In terms of generating functions, this structure can be represented by z

tr,k(u,z)r

r! .
Thus, we get

c1(r, z) =
z

r!
.

For k > 1 we can use the structure given in 1.-3. and our notations to write:

ck(r, z)

= 1
tr,k(u,z)r

1.︷︸︸︷
z

2.︷ ︸︸ ︷
f1(k, z)

3.︷ ︸︸ ︷∑

[i1,...,ij ]∈Par(r)

[
ck−1(i1, z)tr,k(u, z)i1

]
· · ·

[
ck−1(ij , z)tr,k(u, z)ij

]
f2([i1, . . . , ij ])

= zf1(k, z)
∑

[i1,...,ij ]∈Par(r) ck−1(i1, z) · · · ck−1(ij , z)f2([i1, . . . , ij]) .
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In total we get

ck(r, z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z/r!, for k = 1

z f1(k, z)
∑

[i1,...,ij ]∈Par(r)

ck−1(i1, z) · · · ck−1(ij , z) f2([i1, . . . , ij])

for k > 1 .

(7)

We can now write the generation function of a tree where we mark with the
variable u the nodes which are reached by r other nodes after k iterations.

tr,k(u, z) = zetr,k(u,z) + (u − 1)tr,k(u, z)rck(r, z) ,

The first part describes a tree as a node concatenated with a set of trees. The
second part correspond to our desired parameter. By applying the properties
that a graph of a random function is a set of components where each component
is a cycle of trees we get the generating function for a general functional graph

ξr,k(u, z) =
1

1 − tr,k(u, z)
.

Now, we can follow the steps as described at the beginning of this proof. We will
use the fact that the general generating function of a tree tr,k(1, z) = t(z) = zez

has a singularity expansion

t(z) = 1 −
√

2
√

1 − ez − 1
3
(1 − ez) + O((1 − ez)3/2)

for z tending to e−1. Finally, by applying the singularity analysis for z → e−1

we get
E(ξr,k|Fn) ∼ n ck(r, e−1) .

Remark 1. In the construction of our generating function we only count the
nodes in the tree which are reached by r points after k iterations (e.g. node A
in Fig. 4). We ignore the nodes on the cycle (e.g. node B in Fig. 4). However,
the average proportion of the number of cycle points in comparison to the image
size after k iterations is

cp(n)
ip(n, k)

∼
√

πn/2
n(1 − τk)

.

For a fixed k and n → ∞ it is clear that this proportion gets negligible.

Thus, we can write
rnk(n, r) ∼ n ck(r, e−1) .

The computation of ck(r, e−1) as defined in (7) is not very practical. In
this paragraph, we will show that we can do it more efficiently using dynamic
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programming. For simplicity we write in the following ck(r, e−1) = ck(r) and
f1(k, e−1) = f1(k). We define the new value D(k, r, m) by

D(k, r, m) =
∑

[i1,...,ij ]∈Par≥m(r)

ck−1(i1) · · · ck−1(ij)f2([i1, . . . , ij ])

where Par≥m(r) is the set of all partitions of the integer r such that for each
[i1, . . . , ij ] ∈ Par≥m(r) must hold that i� ≥ m for all 1 ≤ � ≤ j. Using this,
we can give the recursive definition of D(k, r, m) and ck(r) as described in this
theorem.

Proposition 1. For fixed values R and K we can compute ck(r), as described
in Theorem 3, for all r ≤ R and k ≤ K in a time complexity of O

(
KR2 ln(R)

)
.

Proof. We use dynamic programming to compute ck(r).
The computation of f1(k) can be done once for all k ≤ K and then be stored.

Thus, it has a time and space complexity of O(K). For k = 1, if we start with
r = 1 we can compute c1(r) for all r ≤ R in R steps. The same is true for
1 < k ≤ K if we already know D(k, r, 1) and f1(k).

The most time consuming factor is the computation of D(k, r, m). For a given
k′, let us assume that we have already computed all ck′−1(r) for 1 ≤ r ≤ R. In
the computation of D(k, r, m) we will go for r from 1 to R, and for m from r to
1. This means that

– For a given r′ we already know all D(k′, r, m) with r < r′.
– For a fixed r′ and m′ we already know all D(k′, r′, m) with m > m′.
– To compute

�r/m�∑

u=0

ck−1(m)u

u!
D(k, r − mu, m + 1)

we need 
r/m� steps.

Thus in total, for each 1 < k ≤ K we need

R∑

r=1

r∑

m=1

⌊ r

m

⌋

steps to compute all D(k, r, m). By using that
r∑

m=1

1
m

= ln(r) + C + O

(
1
r

)

where C = 0.5772 . . . is the Euler constant, and

R∑

r=1

r ln(r) ≤ ln(R)
R∑

r=1

r

= ln(R)
R(R + 1)

2

we obtain the final time complexity of O(KR2 ln(R)).
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Let us go back to the expected entropy in (2). By using (6) we can write for
n → ∞

Hk ∼ log2(n)−
R∑

r=1

ck(r) r log2(r)

︸ ︷︷ ︸
(a)

−
n∑

r=R+1

ck(r) r log2(r)

︸ ︷︷ ︸
(b)

, (8)

where (a) represents an estimation of the entropy loss which does not depend
on n and (b) is an error term. In Fig. 6, we see that the value ck(r) r log2(r)

r
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Fig. 6. The course of ck(r) r log2(r) for different values of k and r

decreases fast with growing r. However, for larger k this decrease becomes slower.
If we want (b) to be negligible for larger k we also need a larger value for R. In
Table 1, we compare our entropy estimator

Hk(R) = log2(n) −
R∑

r=1

ck(r) r log2(r) (9)

with the estimated lower bound of the loss given by the expected number of
image points (1) and the empirical results from the experiment presented in
Fig. 3. From (6) and (8) we know that

Hk ∼ Hk(R)

for n → ∞ and R → n. We can see that for small k, in the order of a few
hundred, we reach a much better approximation than the upper bound (1). For
example, for most of the modern stream ciphers, the number of iterations for
a key/IV–setup is in this order of magnitude. However, for increasing values of
k we also need bigger values of R and, thus, this method gets computationally
expensive. For k = 100 and R = 1000 the result of our estimate is about 0.02
larger than the empirical data. The fact that our estimate is larger shows that
it is not due to the choice of R (it does not change a lot if we take R = 2000)
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Table 1. Comparison of different methods to estimate the entropy loss

k 1 2 3 · · · 10 · · · 50 · · · 100
empirical data, n = 216 0.8273 1.3458 1.7254 · · · 3.1130 · · · 5.2937 · · · 6.2529
image points (1) 0.6617 1.0938 1.4186 · · · 2.6599 · · · 4.7312 · · · 5.6913

R = 50 0.8272 1.3457 1.7254 · · · 3.1084 · · · 2.6894 · · · 1.2524
Hk(R), (9) R = 200 0.8272 1.3457 1.7254 · · · 3.1129 · · · 5.2661 · · · 5.5172

R = 1000 0.8272 1.3457 1.7254 · · · 3.1129 · · · 5.2918 · · · 6.2729

but to the fact that our n = 216 is relatively small and, thus, the proportion of
cycle points which is about

√
πn/2

n(1 − τk)
≈ 0.253

is not negligible.
In this section we presented a new entropy estimator. We could show that if

the number of iterations is not too big, it is much more precise than the upper
bound given by the image size. In addition, the same method can be used for
any arbitrary initial distribution.

3 Collision Attacks

In the previous section, we studied the loss of entropy in the inner state of our
stream cipher model. In this section, we examine if it is possible to exploit this
loss for a generic attack on our model. Hong and Kim present in [HK05] two
attacks on the Mickey stream cipher [BD05], based on the entropy loss in the
state. This stream cipher has a fixed update function; however Hong and Kim
state, due to empirical results, that the update function behaves almost like
a random function with regard to the expected entropy loss and the expected
number of image points. Thus, these attacks are directly applicable on our model.
We will give a detailed complexity analysis of these attacks and will show that
in the case of a real random function they are less efficient than what one might
assume from the argumentation of Hong and Kim.

Let us take two different initial states S0 and S′
0 and apply the same function

iteratively onto both of them. We speak about a collision if there exists k and k′

such that Sk = Sk′ , for k �= k′, or Sk = S′
k′ for any arbitrary pair k, k′. The idea

of Hong and Kim was that a reduced entropy leads to an increased probability of
a collision. Once we have found a collision, we know that the subsequent output
streams are identical. Due to the birthday paradox, we assume that with an
entropy of m-bits we reach a collision, with high probability, by choosing 2

m
2

different states.
The principle of the attacks is that we start from m different, randomly chosen,

initial states and that we apply iteratively the same update function k times on
each of them. In the end, we search for a collision and hope that our costs are
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less than for a search directly in the initial states. We will study the two attacks
proposed in [HK05] as well as a variant using distinguished points. For each of
these attacks we provide a detailed complexity analysis where we examine the
query and the space complexity as well as the number of necessary initial states
to achieve a successful attack with high probability. By the query complexity we
mean the number of all states produced by the cipher during the attack which
is equivalent to the number of times the updated function is applied. By the
space complexity we mean the number of states we have to store such that we
can search for a collision within them. Each time we compare the results to the
attempt of finding a collision directly within the initial states which has a space
and query complexity of ∼

√
n.

All these attacks consider only the probability of finding a collision in a set
of states. This is not equivalent to an attack where we have m − 1 initial states
prepared and we want the probability that if we take a new initial state, it will
be one of the already stored. In such a scenario, the birthday paradox does not
apply. We also never consider how many output bits we would really need to
store and to recognize a collision, since this value depends on the specific filter
function used. In the example of Mickey, Hong and Kim states that they need
about 28 bits.

3.1 States After k Iterations

The first attack of Hong and Kim takes randomly m different initial states,
applies k times the same instance of Φ on each of them, and searches a collision
in the m resulting states. Using (1) we know that the average entropy after k
iterations is less than log2(n)+ log2(1− τk). Hong and Kim conjecture, based on
experimental results, that this is about the same as log2(n) − log2(k) + 1. Thus,
with high probability we find a collision if m > 2(log2(n)−log2(k)+1)/2 =

√
2n/k.

This attack stores only the last value of the iterations and searches for a
collision within this set. This leads to a space complexity of m ∼

√
2n/k for

large enough k. However, Hong and Kim did not mention that we have to apply
k times Φ on each of the chosen initial states, which results in a query complexity
of mk ∼

√
2kn. This means that we increase the query complexity by the same

factor as we decrease the space complexity and the number of initial states.
The question remains, if there exists any circumstances under which we can

use this approach without increasing the query complexity. The answer is yes, if
the stream cipher uses a set of update functions which loose more than 2 log2(k)
bits of entropy after k iterations. Such a characteristic would imply that we do
not use random functions to update our state, since they have different properties
as we have seen before. However, the principle of the attack stays the same.

3.2 Including Intermediate States

The second attack in [HK05] is equivalent to applying 2k − 1 times the same
instance of Φ on m different initial states and searching for a collision in all
intermediate states from the k-th up to the (2k − 1)-th iteration. Since after
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k − 1 iterations we have about log2(n) − log2(k) + 1 bits of entropy, Hong and
Kim assume that we need a m such that mk ∼

√
n/k. They state that this

result would be a bit too optimistic since collisions within a row normally do
not appear in a practical stream cipher. However, they claim that this approach
still represents a realistic threat for the Mickey stream cipher. We will show
that for a random function, contrary to their conjecture, this attack has about
the same complexities as a direct collision search in the initial states.

Let us take all the 2km intermediate states for the 2k−1 iterations. Let Pr[A]
define the probability that there is no collision in all the 2km intermediate states.
If there is no collision in this set then there is also no collision in the km states
considered by the attack. Thus, the probability of a successful attack is even
smaller than 1 − Pr[A]. By means of only counting arguments we can show the
following proposition.

Proposition 2. The probability of no collision in the 2km intermediate states
is

Pr[A] =
n(n − 1) · · · (n − 2k + 1)

n2km
, (10)

where the probability is taken over all functions ϕ ∈ Fn and all possible choices
of m initial states.

Proof. Let Pr[I] be the probability of no collision in the m initial states. We
can see directly that

Pr[A] = Pr[A ∩ I]
= Pr[A|I] Pr[I] .

Let us assume that we have chosen m different initial states. This happens with
a probability of

Pr[I] =

(
n
m

)
m!

nm
. (11)

In this case we have

– nn different instances ϕ ∈ Fn of our random functions, where each of them
creates

–
(

n
m

)
m! different tables. Each table can be produced more than once. There

exists
– n (n − 1) . . . (n − 2km + 1) different tables that contain no collisions. Each

of them can be generated by
– nn−(2k−1)m different functions, since a table determines already (2k − 1)m

positions of ϕ.

Thus, we get the probability

Pr[A|I] =
n (n − 1) . . . (n − 2km + 1) nn−(2k−1)m

nn
(

n
m

)
m!

(12)

for m > 0 and 2km ≤ n. By combining (11) and (12) we can conclude our proof.
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The probability of Pr[A] given in (10) is exactly the probability of no collision
in 2km random points, which means that we need at least an m such that
2km ∼

√
n. This leads to a query complexity of ∼

√
n and a space complexity

of ∼ √
n/2.

3.3 Improvement with Distinguished Points

By applying the known technique of distinguished points [DQ88] we can reduce
the space complexity in the second attack; however the query complexity stays
the same.

By distinguished points (DPs) we mean a subset of Ωn which is distinguished
by a certain property, e.g. by a specific number of 0’s in the most significant
bits. In our new variant of the second attack we iterate Φ in each row up to the
moment where we reach a DP. In this case we stop and store the DP. If we do
not reach a DP after kMAX iterations we stop as well but we store nothing. If
there was a collision in any of the states in the rows where we reached a DP,
the subsequent states would be the same and we would stop with the same DP.
Thus it is sufficient to search for a collision in the final DPs.

Let d be the number of distinguished points in Ωn. We assume that the ratio c =
d
n is large enough that with a very high probability we reach a DP before the end of
the cycle in the functional graph. This means that the averagenumber of iterations
before arriving at a DP is much smaller than the expected length of the tail and the
cycle together (which would be about

√
π n
2 due to [FO90a]). We assume that in

this case the average length of each row would be in the range of 1/c like in the
case of random points. We also suppose that that we need about m/c ∼ √

n query
points to find a collision, like in the previous case. This leads to a query complexity
of ∼

√
n and a space complexity of only ∼ c

√
n. Empirical results for example for

n = 220, 0.7 ≤ log2(d)
log2(n) ≤ 1 and kMAX =

√
n confirm our assumptions.

A summary of the complexities of all attacks can be found in Table 2, where
we marked by (new) the results that where not yet mentioned by Hong and
Kim. In the case where we consider only the states after k iterations, we have to
substantially increase the query complexity to gain in the space complexity and
the number of initial states. We were able to show that even when we consider all
intermediate states, the query complexity has a magnitude of

√
n. The variant

using the distinguished points allows to reduce the space complexity by leaving
the other complexities constant.

Table 2. Complexities of attacks

attack # initial states space complexity query complexity
after k iterations, 3.1 ∼

�
2n/k ∼

�
2n/k ∼

√
2kn (new)

with interm. states, 3.2 ∼
√

n/2k (new) ∼
√

n/2 (new) ∼
√

n (new)
with DPs, 3.3 ∼ c

√
n (new) ∼ c

√
n (new) ∼

√
n (new)
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4 Conclusion

In this article, we studied a stream cipher model which uses a random update
function. We have introduced a new method of estimating the state entropy in
this model. This estimator is based on the number of values that produce the
same value after k iterations. Its computation is expensive for large numbers of
iterations; however, for a value of k up to a few hundred, it is much more precise
than the upper bound given by the number of image points.

In this model, we have also examined the two collision attacks proposed in
[HK05] which are based on the entropy loss in the state. We pointed out that the
first attack improves the space complexity at the cost of significantly increasing
the query complexity. We proved that the complexity of the second attack is
of the same magnitude as a collision search directly in the starting values. In
addition we discussed a new variant of this attack, using distinguished points,
which reduces the space complexity but leaves the query complexity constant.

The use of a random function in a stream cipher introduces the problem of en-
tropy loss. However, the studied attacks based on this weakness are less effective
than expected. Thus, the argument alone that a stream cipher uses a random func-
tion is not enough to threaten it due to a collision attack based on the entropy loss.
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