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Abstract. The generation of pseudo-random sequences at a high rate is
an important issue in modern communication schemes. The representa-
tion of a sequence can be scaled by decimation to obtain parallelism and
more precisely a sub-sequences generator. Sub-sequences generators and
therefore decimation have been extensively used in the past for linear
feedback shift registers (LFSRs). However, the case of automata with a
non linear feedback is still in suspend. In this paper, we have studied
how to transform of a feedback with carry shit register (FCSR) into a
sub-sequences generator. We examine two solutions for this transforma-
tion, one based on the decimation properties of �-sequences, i.e. FCSR
sequences with maximal period, and the other one based on multiple
steps implementation. We show that the solution based on the decima-
tion properties leads to much more costly results than in the case of
LFSRs. For the multiple steps implementation, we show how the propa-
gation of carries affects the design.

Keywords: sequences, synthesis, decimation, parallelism, LFSRs,
FCSRs.

1 Introduction

The synthesis of shift registers consists in finding the smallest automaton able
to generate a given sequence. This problem has many applications in cryptog-
raphy, sequences and electronics. The synthesis of a single sequence with the
smallest linear feedback shift register is achieved by the Berlekamp-Massey [1]
algorithm. There exists also an equivalent of Berlekamp-Massey in the case of
multiple sequences [2,3]. In the case of FCSRs, we can use algorithms based on
lattice approximation [4] or on Euclid’s algorithm [5]. This paper addresses the
following issue in the synthesis of shift registers: given an automaton generating
a sequence S, how to find an automaton which generates in parallel the sub-
sequences associated to S. Throughout this paper, we will refer to this problem
as the sub-sequences generator problem. We aim to find the best solution to trans-
form a 1-bit output pseudo-random generator into a multiple outputs generator.
In particular, we investigate this problem when S is generated by a feedback
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with carry shit register (FCSR) with a maximal period, i.e. S is an �-sequence.
This class of pseudo-random generators was introduced by Klapper and Goresky
in [6]. FCSRs and LFSRs are very similar in terms of properties [7,8]. However,
FCSRs have a non-linear feedback which is a significant property to thwart al-
gebraic attacks [9] in cryptographic applications [10].

The design of sub-sequences generators has been investigated in the case of
LFSRs [11,12] and two solutions have been proposed. The first solution [13,14]
is based on the classical synthesis of shift registers, i.e. the Berlekamp-Massey
algorithm, to define each sub-sequence. The second solution [11] is based on
a multiple steps design of the LFSR. We have applied those two solutions to
FCSRs. The contributions of the paper are as follows:

• We explore the decimation properties of �-sequences for the design of a sub-
sequences generator by using an FCSR synthesis algorithm.

• We show how to implement a multiple steps FCSR in Fibonacci and Galois
configuration.

The next section presents the motivation of this work and recalls the different
representations of LFSRs and FCSRs. In Section 3, the existing results on LFSRs
are described and we show multiple steps implementations of the Galois and
the Fibonacci configuration. We describe in Section 4 our main results on the
synthesis of sub-sequences generators in the case of �-sequences. Then, we give
some conclusions in Section 5.

2 Motivation and Preliminaries

The decimation is the main tool to transform a 1-bit output generator into a
sub-sequences generator. This allows us to increase the throughput of a pseudo-
random sequence generator (PRSG). Let S = (s0, s1, s2, · · · ) be an infinite binary
sequence of period T , thus sj ∈ {0, 1} and sj+T = sj for all j ≥ 0. For a given
integer d, a d–decimation of S is the set of sub-sequences defined by:

Si
d = (si, si+d, si+2d, · · · , si+jd, · · · )

where i ∈ [0, d − 1] and j = 0, 1, 2, · · · . Hence, a sequence S is completely
described by the sub-sequences:

S0
d = (s0, sd, · · · )

S1
d = (s1, s1+d, · · · )
...

...
...

Sd−2
d = (sd−2, s2d−2, · · · )

Sd−1
d = (sd−1, s2d−1, · · · ) .

A single automaton is often used to generate the pseudo-random sequence S.
In this case, it is difficult to achieve parallelism. The decomposition into sub-
sequences overcomes this issue as shown by Lempel and Eastman in [11]. Each
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sub-sequence is associated to an automaton. Then, the generation of the d sub-
sequences of S uses d automata which operate in parallel. Parallelism has two
benefits, it can increase the throughput or reduce the power consumption of the
automaton generating a sequence.

Throughput — The throughput T of a PRSG is defined by: T = n × f , with
n is the number of bits produced every cycle and f is the clock frequency of
the PRSG. Usually, we have n = 1, which is often the case with LFSRs. The
decimation achieves a very interesting tradeoff for the throughput: Td = d × γf
with 0 < γ ≤ 1 the degradation factor of the original automaton frequency. The
decimation provides an improvement of the throughput if and only if γd > 1.
It is then highly critical to find good automata for the generation of the sub-
sequences. In an ideal case, we would have γ = 1 and then a d-decimation would
imply a multiplication of the throughput by d.

Power consumption — The power consumption of a CMOS device can be es-
timated by the following equation: P = C × V 2

dd × f , with C the capacity of
the device and Vdd the supply voltage. The sequence decimation can be used
to reduce the frequency of the device by interleaving the sub-sequences. The
sub-sequences generator will be clocked at frequency γf

d and the outputs will
be combined with a d-input multiplexer clocked at frequency γf . The original
power consumption can then be reduced by the factor γ

d , where γ must be close
to 1 to guarantee that the final representation of S is generated at frequency f .

The study of the γ parameter is out of the scope of this paper since it is
highly related to the physical characteristics of the technology used for the im-
plementation. In the following, we consider m-sequences and �-sequences which
are produced respectively by LFSRs and FCSRs.

Throughout the paper, we detail different representations of several automata.
We denote by xi a memory cell and by (xi)t the content of the cell xi at time t .
The internal state of an automaton at time t is denoted by Xt .

2.1 LFSRs

An LFSR is an automaton which generates linear recursive sequences. A de-
tailed description of this topic can be found in the monographs of Golomb and
McEliece [15,16]. Let s(x) =

∑∞
i=0 six

i define the power series of the sequence
S = (s0, s1, s2, . . .) produced by an LFSR. Then, there exists two polynomials,
such that

s(x) =
p(x)
q(x)

where q(x) is the connection polynomial defined by the feedback positions of
the automaton. Let m be the degree of q(x), then the reciprocal polynomial
Q(x) = xmq(1/x) is named the characteristic polynomial. An output sequence
of an LFSR is called an m–sequence if it has the maximal period of 2m − 1.
This is the case if and only if q(x) is a primitive polynomial. There exists two
different representations of an LFSR, the so-called Galois and Fibonacci setup,
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x7 x6 x5 x4 x3 x2 x1

x7 x6 x5 x3x4 x2 x1 x0

Galois setup.

x0

Fibonacci setup.

Fig. 1. Galois and Fibonacci LFSR

as we show in Figure 1. Both setups use the addition modulo 2. The Fibonacci
setup is characterized by a multiple inputs and single output feedback function,
while the Galois setup has multiple feedback functions with a common input. In
both setups, we denote by x0 the cell corresponding to the output of the LFSR.
The same sequence can be produced by an LFSR in Fibonacci or Galois setup
with the same characteristic polynomial but with different initializations. The
linear complexity of a sequence S is defined as the size of the smallest LFSR
which is able to produce this sequence [17].

2.2 FCSRs

FCSRs were introduced by Klapper and Goresky in [6]. Instead of addition mod-
ulo 2, FCSRs use additions with carry, which means that they need additional
memory to store the carry. Their non–linear update function makes them par-
ticularly interesting for areas where linearity is an issue, like for instance stream
ciphers. The output of a binary FCSR corresponds to the 2–adic expansion of
the rational number:

h

q
≤ 0 .

As for the LFSRs, there exists a Fibonacci and a Galois setup [7]. Their different
structures can be seen in Figure 2, where

∑
represents the hamming weight of

the incoming bits, + an integer addition, c the additional memory for the carry,
and � an addition with carry of two bits where the carry is stored in �. The

Galois setup.

Fibonacci setup.
x2x3x4x5x6x7

x4x6 x3 x0x1x2x5x7

x1 x0

c

/2

mod2

∑

Fig. 2. Galois and Fibonacci FCSR
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value q determines the feedback positions of the automata, depending on the
setup used. In this article, we consider �–sequences, i.e. sequences with maximal
period ϕ(q), where ϕ denotes Euler’s phi function. This is equivalent to the
case that q is a prime power and 2 has multiplicative order ϕ(q) modulo q. For
simplicity reasons, we restrict ourselves also to the case where the generated
sequence is strictly periodic. This property is equivalent to −q ≤ h ≤ 0, which is
always the case for Galois FCSRs but not necessarily for Fibonacci FCSRs. The
2–adic complexity [5] of a sequence is defined as the size of the smallest FCSR
which produces this sequence. In the periodic case, this is equivalent to the bit
length of q .

3 Sub-sequences Generators and m-Sequences

The decimation of LFSR sequences has been used in cryptography in the design
of new stream ciphers [18]. There exists two approaches to use decimation theory
to define the automata associated to the sub-sequences.

Construction using LFSR synthesis. This first solution associates an LFSR to
each sub-sequence. It is based on well-known results on the decimation of LFSR
sequences. It can be applied to both Fibonacci and Galois representation without
any distinction.

Theorem 1 ([19,13]). Let S be a sequence produced by an LFSR whose char-
acteristic polynomial Q(x) is irreducible in F2 of degree m. Let α be a root of
Q(x) and let T be the period of Q(x). Let Si

d be a sub-sequence resulting from
the d-decimation of S. Then, Si

d can be generated by an LFSR with the following
properties:

– The minimum polynomial of αd in F2m is the characteristic polynomial
Q�(x) of the resulting LFSR.

– The period T � of Q�(x) is equal to T
gcd(d,T ) .

– The degree m� of Q�(x) is equal to the multiplicative order of Q(x) in ZT � .

In practice, the characteristic polynomial Q�(x) can be determined using the
Berlekamp-Massey algorithm [1]. The sub-sequences are generated using d LF-
SRs defined by the characteristic polynomial Q�(x) but initialized with differ-
ent values. In the case of LFSRs, the degree m∗ must always be smaller or
equal to m .

Construction using a multiple steps LFSR. This method was first proposed by
Lempel and Eastman [11]. It consists in clocking the LFSR d times in one clock
cycle by changing the connections between the memory cells and by some dupli-
cations of the feedback function. We obtain a network of linearly interconnected
shift registers. This method differs for Galois and Fibonacci setup. The transfor-
mation of an m-bit Fibonacci LFSR into an automaton which generates d bits
per cycle is achieved using the following equations:
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nextd(xi) = xi−d mod m (1)

(xi)t+d =

{
f(Xt+i−m+d) if m − d ≤ i < m

(xi+d)t if i < m − d
(2)

where nextd(xi) is the cell connected to the output of xi and f is the feedback
function. The Equation 1 corresponds to the transformation of the connections
between the memory cells. All the cells xi of the original LFSR, such that i mod
d = k, are gathered to form a sub-shift register, where 0 ≤ k ≤ d − 1. This is
the basic operation to transform a LFSR into a sub-sequences generator with a
multiple steps solution. The content of the last cell of the k-th sub-shift registers
corresponds to the k-th sub-sequence Sk

d . The Equation 2 corresponds to the
transformation of the feedback function. It must be noticed that the synthesis
requires to have only relations between the state of the register at time t + d
and t. The Figure 3 shows an example of such a synthesis for a Fibonacci setup
defined by the connection polynomial q(x) = x8 + x5 + x4 + x3 + 1 with the
decimation factor d = 3. The transformation of a Galois setup is described by
the Equations 1 and 3:

(xi)t+d =

⎧
⎨

⎩

(x0)t+d−m+i ⊕
⊕m−2−i

k=0 ai+k (x0)t+d−k−1 if m − d ≤ i < m

(xi+d)t ⊕
⊕d−1

k=0 ai+d−1−k (x0)t+k if i < m − d
(3)

with q(x) = 1 + a0x + a1x
2 + · · · + am−2x

m−1 + xm. The Equation 3 does not
provide a direct relation between the state of the register at time t + d and t.
However, this equation can be easily derived to obtain more practical formulas
as shown in Figure 4.

Sx0x1x2x3x4x5x6x7

x0 S0
3

S1
3

S2
3x2x5

x1x4x7

f(Xt)
f(Xt+1)
f(Xt+2)

x6 x3

next1(x0) = x7

next3(x0) = x5

next3(x1) = x6

next3(x2) = x7

(x7)t+1 = (x3)t ⊕ (x4)t ⊕ (x5)t ⊕ (x0)t

next1(xi) = xi−1 if i �= 0

next3(xi) = xi−3 if i > 2

3-decimation

1-decimation

(xi)t+1 = (xi+1)t if i �= 7

(x7)t+3 = (x5)t ⊕ (x6)t ⊕ (x7)t ⊕ (x2)t

(x5)t+3 = (x3)t ⊕ (x4)t ⊕ (x5)t ⊕ (x0)t

(x6)t+3 = (x4)t ⊕ (x5)t ⊕ (x6)t ⊕ (x1)t

(xi)t+3 = (xi+3)t if i < 5

Fig. 3. Multiple steps generator for a Fibonacci LFSR
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Table 1. Comparison of the two methods for the synthesis of a sub-sequences generator

Method Memory cells Logic Gates

LFSR synthesis d × m� d × wt(Q�)

Multiple steps LFSRs [11] m d × wt(Q)

S

x6

x7 x4

S2
3

1-decimation

S0
3x0

S1
3x1

x2x5

x7 x6 x5 x3x4 x2 x1 x0

x3

(x4)t+1 = (x5)t ⊕ (x0)t

(x3)t+1 = (x4)t ⊕ (x0)t

(x2)t+1 = (x3)t ⊕ (x0)t

(x0)t+3 = (x3)t ⊕ (x0)t

(x3)t+3 = (x6)t ⊕ (x1)t ⊕ (x2)t

(x6)t+3 = (x1)t

(x1)t+3 = (x4)t ⊕ (x0)t ⊕ (x1)t

(x7)t+3 = (x2)t

(x2)t+3 = (x5)t ⊕ (x0)t ⊕ (x1)t ⊕ (x2)t

(x5)t+3 = (x0)t Feedback t = 0
Feedback t = 1
Feedback t = 2

(xi)t+1 = (xi+1 (mod m))t, ∀i ∈ {0, 1, 5, 6, 7}
3-decimation

(x4)t+3 = (x2)t ⊕ (x7)t

next1(xi) = xi−1 if i �= 0
next1(x0) = x7

next3(xi) = xi−3 if 2 < i ≤ 7
next3(xi) = xm+i−d if 0 ≤ i ≤ 2

Fig. 4. Multiple steps generator for a Galois LFSR

Comparison. We have summarized in the Table 1 the two methods used to synthe-
size the sub-sequences generator. By wt(Q(x)), we mean the Hamming weight of
Q, i.e. the number of non-zero monomials. The method based on LFSR synthesis
proves that there exists a solution for the synthesis of the sub-sequences generator.
With this solution, both memory cost and gate number depends on the decima-
tion factor d. The method proposed by Lempel and Eastman [11] uses a constant
number of memory cells for the synthesis of the sub-sequences generator.

The sub-sequences generators defined with the Berlekamp-Massey algorithm
are not suitable to reduce the power consumption of an LFSR. Indeed, d LFSRs
will be clocked to produce the sub-sequences, however the power consumption
of such a sub-sequence generator is given by:

P = d ×
(

Cd × V 2
dd × γf

d

)

= λC × V 2
dd × γf

with Cd = λC and C the capacity of the original LFSR. We can achieve a better
result with a multiple steps LFSR:

P = λ′C × V 2
dd × γf

d

with Cd = λ′C .
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4 Sub-sequences Generators and �-Sequences

This section presents the main contribution of the paper. We apply the two
methods used in the previous section on the case of �-sequences.

Construction using FCSR synthesis. There exists algorithms based on Euclid’s
algorithm [5] or on lattice approximation [4], which can determine the smallest
FCSR to produce Si

d. These algorithms use the first k bits of Si
d to find h� and q�

such that h�/q� is the 2-adic representation of the sub-sequence, −q� < h� ≤ 0
and gcd(q�, h�) = 1. Subsequently, we can find the feedback positions and the
initial state of the FCSR in Galois or Fibonacci architecture. The value k is in
the range of twice the linear 2-adic complexity of the sequence. For our new
sequence Si

d, let h� and q� define the values found by one of the algorithms
mentioned above. By T � and T , we mean the periods of respectively Si

d and S .
For the period of the decimated sequences, we can make the following state-

ment, which is true for all periodic sequences.

Lemma 1. Let S = (s0, s1, s2, . . .) be a periodic sequence with period T . For a
given d > 1 and 0 ≤ i ≤ d − 1, let Si

d be the decimated sequence with period T �.
Then, it must hold:

T �

∣
∣
∣
∣

T

gcd(T, d)
. (4)

If gcd(T, d) = 1 then T � = T .

Proof. The first property is given by:

sd[j+T/gcd(T,d)]+i = sdj+i+T [d/ gcd(T,d)] = sdj+i .

For the case gcd(T, d) = 1, there exits x, y ∈ Z such that xT + yd = 1 due to
Bezout’s lemma. Since S is periodic, we define for any j < 0 and k ≥ 0, sj = sk

such that j (mod T ) = k . Thus, we can write for any j:

sj = si+(j−i)xT+(j−i)yd = si+(j−i)yd ,

sj+T � = si+(j−i)xT+T �xT+(j−i)yd+T �yd = si+(j−i)yd+T �yd .

However, since T � is the period of Si
d we get:

sj+T � = sj+(j−i)yd = sj .

Therefore, it must hold that T |T � which together with (4) proves that T � = T
if gcd(T, d) = 1 . �	
In the case of gcd(T, d) > 1, the real value of T � might depend on i, e.g. for S
being the 2-adic representation of −1/19 and d = 3 we have T/gcd(T, d) = 6,
however, for S0

3 the period T � = 2 and for S1
3 the period T � = 6 .

A critical point in this approach is that the size of the new FCSR can be
exponentially bigger than the original one. In general, we only know that for the
new q� it must hold that q�|2T � −1 . From the previous paragraph we know that
T � can be as big as T/gcd(T, d) . In the case of an allowable decimation [20], i.e.
a decimation where d and T are coprime, we have more informations:
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Corollary 1 ([21]). Let S be the 2-adic representation of h/q, where q = pe

is a prime power with p prime, e ≥ 1 and −q ≤ h ≤ 0. Let d > 0 be relatively
prime to T = pe − pe−1, the period of S. Let Si

d be a d-decimation of S with
0 ≤ i < d and let h�/q� be its 2-adic representation such that −q� ≤ h� ≤ 0 and
gcd(q�, h�) = 1. Then q� divides

2T/2 + 1 .

If the following conjecture is true, we have more information on the new value q� .

Conjecture 1 ([21]). Let S be an �-sequence with connection number q = pe and
period T . Suppose p is prime and q �∈ {5, 9, 11, 13}. Let d1 and d2 be relatively
prime to T and incongruent modulo T . Then for any i and j, Si

d1
and Sj

d2
are

cyclically distinct, i.e. there exists no τ ≥ 0 such that Si
d1

is equivalent to Sj
d2

shifted by τ positions to the left.

This conjecture has already been proved for many cases [20,22] but not yet for
all. If it holds, this implies that for any d > 1, Si

d is cyclically distinct from
our original �-sequence. We chose q such that the period was maximal, thus,
any other sequence with the same period which is cyclically distinct must have
a value q� > q. This means that the complexity of the FCSR producing the
subsequence Si

d will be larger than the original FCSR, if d and T are relative
prime.

Remark 1. Let us consider the special case where q is prime and the period
T = q − 1 = 2p is twice a prime number p > 2, as recommended for the stream
cipher proposed in [23]. The only possibilities in this case for gcd(d, T ) > 1 is
d = 2 or d = T/2 .

For d = T/2, we will have T/2 FCSRs where each of them outputs either
0101 . . . or 1010 . . ., since for an �-sequence the the second half of the period is
the inverse of the first half [21]. Thus, the size of the sub-sequences generator
will be in the magnitude of T which is exponentially bigger than the 2-adic
complexity of S which is log2(q) .

In the case of d = 2, we get two new sequences with period T � = p. As for any
FCSR, it must hold that T �|ordq� (2), where ordq�(2) is the multiplicative order
of 2 modulo q� . Let ϕ(n) denote Euler’s function, i.e. the number of integers
smaller than n which are relative prime to n. It is well known, e.g. [16], that
ordq�(2)|ϕ(q�) and if q� has the prime factorization pe1

1 pe2
2 · · · per

r then ϕ(q�) =∏r
i=1 pei−1

i (pi − 1). From this follows that p �= ϕ(q�), because otherwise (p + 1)
must be a prime number, which is not possible since p > 2 is a prime. We also
know that T ∗ = p|ϕ(q∗), thus 2 × p = q − 1 ≤ ϕ(q∗) . This implies that q� > q,
since from T � = T/2 follows that q �= q� .

Together with Conjecture 1, we obtain that for such an FCSR any decimation
would have a larger complexity than the original one. This is also interesting
from the perspective of stream ciphers, since any decimated subsequence of such
an FCSR has larger 2-adic complexity than the original one, except for the trivial
case with d = T/2 .
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Construction using a multiple steps FCSR. A multiple steps FCSR is a net-
work of interconnected shift registers with a carry path: the computation of the
feedback at time t depends directly on the carry generated at time t − 1. The
transformation of an m-bit FCSR into a d sub-sequences generator uses first
Equation 1 to modify the mapping of the shift register. For the Fibonacci setup,
the transformation uses the following equations:

(xi)t+d =

{
g (Xt+d−m+i, ct+d−m+i) mod 2 if m − d ≤ i < m

(xi+d)t if i < m − d
(5)

ct+d = g(Xt+d−1, ct+d−1)/2 (6)

with g(Xt, ct) = h(Xt)+ct the feedback function of an FCSR in Fibonacci setup
and

h(Xt) =
m−1∑

i=0

ai(xi)t . (7)

Due to the nature of the function g, we can split the automaton into two parts.
The first part handles the computation related to the shift register Xt and the
other part is the carry path as shown in Figure 5 for q = 347.

x0 S0
2

S1
2

1-decimation

s6 x4 x2

x7 x5

∑

∑

c

x7 x6 x5 x4 x3 x2 x1 x0 S

∑
c

2-decimation

x1x3

Fig. 5. Multiple steps generator for a Fibonacci FCSR



Parallel Generation of �-Sequences 309

x2

x1x3

x0

x1 x0x3 x2

c0

c0

2-decimation

1-decimation

(a) Galois FCSR for q = 19.

r0

carryin

r1
a1

b1

a0

b0

carryout

(b) 2-bit ripple carry adder.

Fig. 6. Example for a Galois FCSR with q = 19

The case of Galois FCSRs is more difficult because the circuit can not be split
into two parts: each bit of the carry register must be handle separately. The
modification of the basic operator of a Galois FCSR, i.e. addition with carry, is
the key transformation to obtain a sub-sequences generator. Let us consider a
Galois FCSR with q = 19. This automaton has a single addition with carry as
shown in Figure 6(a). The sub-sequences generator for d = 2 associated to this
FCSR is defined by:

t + 1
{

(x0)t+1 = (x0)t ⊕ (x1)t ⊕ (c0)t

(c0)t+1 = [(x0)t ⊕ (x1)t] [(x0)t ⊕ (c0)t] ⊕ (x0)t
(8)

t + 2
{

(x0)t+2 = (x0)t+1 ⊕ (x2)t ⊕ (c0)t+1

(c0)t+2 = [(x0)t+1 ⊕ (x2)t] [(x0)t+1 ⊕ (c0)t+1] ⊕ (x0)t+1
(9)

with c0 the carry bit of the FCSR. The previous equations correspond to the
description of the addition with carry at the bit-level (and represented by � in
the figures). This operator is also known as a full adder. The Equations corre-
sponding to time t+2 depend on the carry, (c0)t+1, generated at time t+1. This
dependency between full adders is a characteristic of a well-known arithmetic
circuit: the n-bit ripple carry adder (Figure 6(b)).

Thus, all the full adders in a d sub-sequences generator are replaced by d-bit
ripple carry adders as shown in Figure 7.

We can derive a more general representation of a multiple steps Galois FCSR
from the previous formula:
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full adder with
reentering carry

x5 x3

x4 x2

x0x1x2x3x4x5x6x7

1-decimation

x7

x6 x0

S1
2

S2
2

S

sub-shift register 1
sub-shift register 2
carry path

x1

2-decimation

2-bit ripple carry adder
with reentering carry

Fig. 7. Multiple steps generator for a Galois FCSR

(xi)t+d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x0)t+d−m+i ⊕
⊕m−2−i

k=0 ai+k [(x0)t+d−k−1 ⊕ (ci+k)t+d−k−1]
if m − d ≤ i < m

(xi+d)t ⊕
⊕d−1

k=0 ai+k [(x0)t+d−k−1 ⊕ (ci+k)t+d−k−1]
if i < m − d

(10)

(ci)t+d = [(x0)t+d−1 ⊕ (xi+1)t+d−1] [(x0)t+d−1 ⊕ (ci)t+d−1] ⊕ (x0)t+d−1 (11)

The Equation 11 shows the dependencies between the carries which corresponds
to the propagation of the carry in a ripple carry adder. The Equation 10 corre-
sponds to the path of the content of a memory cell (xi)t through the different
levels of the ripple carry adders.

Comparison The construction using FCSR synthesis is more complicated than in
the case of LFSRs. The size of the minimal generator producing Si

d can depend on
i, and we can only give upper bounds for q� namely that q�|2T� − 1 in the general
case and that q�|2T/2 + 1 if gcd(d, T ) = 1. Based on Conjecture 1, we saw that
q� > q if gcd(T, d) = 1. Moreover, in the case p = 2p + 1 with p and q prime, the
resulting sub-sequences generator is always larger than the original one.

Apart from the carry path and the cost of the addition with carry, the com-
plexity of a multiple steps implementation of a FCSR is very similar to the
multiple steps implementation of an LFSR. There is no overhead in memory
and the number of logic gates for a Galois FCSR is 5d×wt(q) where wt(q) is the
number of ones in the binary representation of q and the number 5 corresponds
to the five gates required for a full-adder (four Xors and one And cf. Equation 8).
In the case of Fibonacci setup, the number of logic gates is given by:

d × (5 × (wt(q) − 
log2(wt(q) + 1)�)+
+2 × (
log2(wt(q) + 1)� − wt(wt(q)) + 5 × size(c))

with (5 × (wt(q) − 
log2(wt(q) + 1)�) + 2 × (
log2(wt(q) + 1)� − wt(wt(q))) the
cost of the implementation of a parallel bit counter [24], i.e. the h function (cf.
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Equation 7) and 5 × size(c) is the cost of a ripple carry adder which adds the
content of size(c) bits of the carry with the output of h.

5 Conclusion

We have presented in this paper how to transform an FCSR into a sub-sequences
generator to increase its throughput or to reduce its power consumption. Our
results emphasize the similarity between LFSRs and FCSRs in terms of imple-
mentation properties. In both cases, the solution based on the classical synthesis
algorithm fails to provide a minimal solution. Even worse, in the case of FC-
SRs the memory needed is in practice exponentially bigger than for the original
FCSR. Thus, we need to use multiple steps implementations as for LFSRs. The
propagation of carries is the main problem in multiple steps implementations
of FCSRs: if we consider d sub-sequences, we obtain d-bit ripple carry adders
with carry instead of additions with carry in a Galois setup. In the case of a Fi-
bonacci setup, the situation is different since we can split the feedback function
into two parts. This new representation can significantly improve the hardware
implementation of FCSRs but it may also be possible to improve software im-
plementations.
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