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Abstract

Random numbers are a fundamental tool in many cryptographic applications like key

generation, encryption, masking protocols, or for internet gambling. We require generators

which are able to produce large amounts of secure random numbers. Simple mathematical

generators, like linear feedback shift registers (LFSRs), or hardware generators, like those

based on radio active decay, are not sufficient for these applications.

In this thesis we discuss the properties and a classification of cryptographic random

number generators (RNGs) and introduce five different examples of practical generators:

/dev/random, Yarrow, BBS, AES, and HAVEGE.

For a complete overview of this topic we also provide an introduction to three math-

ematical theories that are used in connection with random number generators. We focus

our discussion on those theories that try to define the notion of randomness and address

Shannon’s entropy, Kolmogorov complexity and polynomial-time indistinguishability. In

all three cases we study the relation between these theoretical notions and random number

generators.
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Chapter 1

Introduction

Random number and random bit generators, RNGs and RBGs, respectively, are a

fundamental tool in many different areas. The two main fields of application are stochastic

simulation and cryptography. In stochastic simulation, RNGs are used for mimicking the

behavior of a random variable with a given probability distribution. In cryptography,

these generators are employed to produce secret keys, to encrypt messages or to mask the

content of certain protocols by combining the content with a random sequence. A further

application of cryptographically secure random numbers is the growing area of internet

gambling since these games should imitate very closely the distribution properties of their

real equivalents and must not be predictable or influenceable by any adversary.

A random number generator is an algorithm that, based on an initial seed or by means

of continuous input, produces a sequence of numbers or respectively bits. We demand that

this sequence appears “random” to any observer.

This topic leads us to the question: What is random? Most people will claim that

they know what randomness means, but if they are asked to give an exact definition

they will have a problem doing so. In most cases terms like unpredictable or uniformly

distributed will be used in the attempt to describe the necessary properties of random

numbers. However, when can a particular number or output string be called unpredictable

or uniformly distributed? In Part I we will introduce three different approaches to define

randomness or related notions.

In the context of random numbers and RNGs the notions of “real” random numbers

and true random number generators (TRNGs) appear quite frequently. By real random

numbers we mean the independent realizations of a uniformly distributed random variable,

by TRNGs we denote generators that output the result of a physical experiment which is

considered to be random, like radioactive decay or the noise of a semiconductor diode. In

certain circumstances, RNGs employ TRNGs in connection with an additional algorithm

to produce a sequence that behaves almost like real random numbers.

However, why would we use RNGs instead of TRNGs? First of all, TRNGs are

often biased, this means for example that on average their output might contain more

ones than zeros and therefore does not correspond to a uniformly distributed random

1



2 CHAPTER 1. INTRODUCTION

variable. This effect can be balanced by different means, but this post-processing reduces

the number of useful bits as well as the efficiency of the generator. Another problem

is that some TRNGs are very expensive or need at least an extra hardware device. In

addition, these generators are often too slow for the intended applications. Ordinary

RNGs need no additional hardware, are much faster than TRNGs, and their output fulfills

the fundamental conditions, like unbiasedness, that are expected from random numbers.

These conditions are required for high quality RNGs but they cannot be generalized to the

wide range of available generators. Despite the arguments above, TRNGs have their place

in the arsenal. They are used to generate the seed or the continuous input for RNGs. In

[Ell95] the author lists several hardware sources that can be applied for such a purpose.

Independently of whether a RNG is used for stochastic simulation or for cryptographic

applications, it has to satisfy certain conditions. First of all the output should imitate

the realization of a sequence of independent uniformly distributed random variables.

Random variables that are not uniformly distributed can be simulated by applying specific

transformations on the output of uniformly distributed generators, see [Dev96] for some

examples or [HL00], which provides a program library that allows to produce non-uniform

random numbers from uniform RNGs. In this paper we limit our discussion on generators

that imitate uniformly distributed variables.

In a binary sequence that was produced by independent and identically (i.i.d.) uniform

random variables the ones and zeros as well as all binary n-tuples for n ≥ 1 are uniformly

distributed in the n-dimensional space. Furthermore there exists no correlation between

individual bits or n-tuples, respectively. From the output of a high quality RNG we expect

the same behavior. For some generators those conditions can be checked by theoretical

analysis, but for most RNGs they are checked by means of empirical tests.

Moreover, a good RNG should work efficiently, which means it should be able to produce

a large amount of random numbers in a short period of time. For applications like stochastic

simulation, stream ciphers, the masking of protocols or online gambling, huge amounts of

random numbers are necessary and thus fast RNGs are required.

In addition to the conditions above RNGs for cryptographic applications must be

resistant against attacks, a scenario which is not relevant in stochastic simulation. This

means that an adversary should not be able to guess any current, future, or previous output

of the generator, even if he or she has some information about the input, the inner state,

or the current or previous output of the RNG. This aspect is discussed in detail in Chapter

8.

The topic of cryptographic RNGs concerns both mathematicians and engineers. Most of

the time engineers are more interested in the design of specific RNGs or test suites, whereas

mathematicians are more concerned with definitions of randomness, theoretical analysis

of deterministic RNGs and the interpretation of empirical test results. In this thesis we

try to address both disciplines by giving the description of five real-world cryptographic

RNGs as well as the necessary mathematical background. We hope that this thesis helps

to get a compact overview over the topic of cryptographic RNGs.



1.1. OUTLINE AND SUMMARY 3

1.1 Outline and Summary

Chapter 1 provides the introduction and the outline of the thesis.

In Part I we study mathematical terms and definitions that are used in connection with

random number generators. An introduction to this part is given in Chapter 2. Chapter

3 discusses Shannon’s entropy for random variables and Markov chains, including two

methods of estimation. In Chapter 4 we will introduce the Kolmogorov complexity of a

binary sequence and its connection with randomness by means of statistical tests. Finally,

in Chapter 5 we will illustrate the definition of a pseudorandom generator whose output is

computationally indistinguishable from real random numbers. Chapter 6 summarizes the

results from Part I.

Part II is devoted to the description of practical random number generators. Chapter 7

gives an introduction into this topic including a classification of the RNGs into three

categories: pseudorandom number generators (PRNGs), entropy gathering generators,

and hybrid generators, and a mathematical model to describe the RNGs. The next

chapter covers the topic of possible attacks on a random number generator. The danger

of attacks distinguishes generators for cryptographic applications from those for stochastic

simulations.

In Chapter 9 - 13 we introduce five different generators which represent widely different

concepts for producing random numbers. The generator /dev/random (Chapter 9) collects

entropy from external events, Yarrow (Chapter 10) is a generic concept that combines

the processing of external input with a simple PRNG, the BBS generator (Chapter 11)

is completely deterministic and proven to be next-bit unpredictable, AES (Chapter 12)

employs an internationally accepted industry standard to produce the random numbers,

and finally, the recent generator HAVEGE (Chapter 13) gathers the entropy directly

from the internal states of the processor. In Chapter 14 we compare and sum up all

the generators previously discussed.
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Chapter 2

Overview

The following chapters provide an insight into the mathematical notions which are used

in connection with random number generators. We thereby set the focus on terms which

define randomness. There exist three different mathematical branches, information theory,

complexity theory and theory of computability, which we discuss in three separated

chapters. In each chapter we point out the connection between the theoretical terms

and random number generators.

At first, Chapter 3 deals with Shannon’s definition of entropy. This term was introduced

by Shannon in 1948 in [Sha48] and belongs to the information theory. Entropy is only

defined for probability distributions but is often used in connection with random number

generators. A sequence of i.i.d random variables is called random if it has the maximal

per-bit entropy, which is 1.0. In addition to the illustration of the term we discuss the

usage of entropy in the description of RNGs, and different methods of entropy estimation.

Subsequently, in Chapter 4 we cover the Kolmogorov complexity of a sequence. This

term was developed independently by Kolmogorov, Solomonov, and Chaitin in the 1970’s

and is part of complexity theory. Kolmogorov’s introduction can be found in [Kol65].

The Kolmogorov complexity is defined for individual strings and specifies the minimal

length of a program that is able to compute the string. A binary sequence is denoted

incompressible if its complexity is almost as large as the length of the sequence itself.

This notions are described by means of Turing machines. Additionally, we introduce

a definition of statistical tests and use this notion to determine randomness for binary

sequences. We show that randomness and incompressibility are equivalent. After that, we

discuss the correlation between the Kolmogorov complexity and Shannon’s entropy. Since

the Kolmogorov complexity is, in general, not computable, it is a theoretical definition.

However, we show that it can be approximated by compression methods, like the LZ78

algorithm.

The final chapter discusses pseudorandomness and computational indistinguishability.

Goldreich states in [Gol99] that a sequence of random variables {Xn}n≥1, a so-called

ensemble, is called pseudorandom if it is indistinguishable in polynomial-time from a

sequence of real random numbers. By real random numbers we mean realizations of i.i.d.

7
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uniform random variables, by computationally indistinguishable or indistinguishable in

polynomial-time we mean that the two sequences cannot be told apart by any polynomial-

time probabilistic Turing machine. We may also say that an ensemble is pseudorandom if it

passes all polynomial-time statistical tests. This approach is rooted in complexity theory.

In the end, we discuss if polynomial-time test are sufficient and study pseudorandomness

in connection to the Kolmogorov complexity.



Chapter 3

Entropy

Besides “randomness”, entropy is probably the most common term used when describing

random number generators. It is a measure for the uncertainty about the output of a data

source and was introduced for the first time 1948 by C. E. Shannon as a central concept

of his work about communication theory. His definition of entropy was an answer to the

question:

Can we find a measure of how much “choice” is involved in the selection of the

event or how uncertain we are of the outcome? [SW49, p. 49]

Entropy belongs to the area of information theory. In this chapter we deal with the

definition of entropy and some of its properties. Subsequently we investigate entropy in

connection with random number generators and, finally, we discuss the entropy estimation

of a source.

Shannon’s fundamental work on entropy can be found in [SW49]. Further information

on this topic is contained in [Ö04] and Cover and Thomas’s monograph [CT91]. For the

issue of entropy estimation we refer to the work in [Weg98], [Weg01], [HW03], [Weg02],

and [Mau92].

3.1 Definition and Characteristics

Shannon analyzed the process of communication. In his basic model, a source sends a

message that was chosen out of a set Ω. This message gets encrypted into a symbol by

a transmitter and is sent over a defective channel. At the other end of the channel, the

received symbol is decrypted by the receiver and forwarded to the destination (see Figure

3.1).

We are only interested in the initial part of the transmission. Shannon wanted to know

how much information is contained in the choice of a specific element of the source. R. V.

L. Hartley claimed that if an element was chosen uniformly out of a set Ωn of size |Ωn| = n,

then the information of this choice is determined by [Ö04, p. 4]

I(Ωn) = log2(n). (3.1)

9
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PSfrag replacements

source

source
information

noise

messagemessage

signal
signal

transmitter receiver

received

destination

Figure 3.1: Schematic diagram of a general communication system [SW49, p. 34].

Shannon saw a need to modify this result. He was searching for a measure that takes into

account the probability of choosing an element of Ωn even if the corresponding distribution

is not uniform. Let us assume that Ωn = {ω1, ω2, . . . , ωn} and that pi, 1 ≤ i ≤ n, is

the probability of the occurrence of ωi. Of an appropriate measure H(p1, p2, . . . , pn) of

uncertainty we demand the following properties:

(H 1) H must be continuous in pi, for all 1 ≤ i ≤ n.

(H 2) If pi = 1
n

for all 1 ≤ i ≤ n, which means that occurrences of the elements of

Ωn are uniformly distributed, then H should monotonically increase with n. This

property is based on the characteristic that with uniformly distributed elements the

uncertainty of choosing a particular element increases with n.

(H 3) Let us assume that we split the choice into two successive ones, i.e. instead of

choosing element x directly out of Ωn = {ω1, ω2, . . . , ωn}, we first decide if x is ω1,

ω2, . . . , ωn−2 or falls into the set {ωn−1, ωn} and in a second choice we determine if

x = ωn−1 or x = ωn. Without loss of generality let p = pn−1 + pn > 0. Then, the

original measure should be equal to the measure of the first choice plus the weighted

measure of the second choice

H(p1, p2, . . . , pn) = H(p1, p2, . . . , pn−2, p) + pH

(

pn−1

p
,
pn

p

)

. (3.2)

We will illustrate this property by an example (see Figure 3.2). Let us assume that

p1 = 1
2
, p2 = 1

3
, and p3 = 1

6
. In the left side of the figure we decide between the

three elements at once. In the right side we first decide if we take ω1 or one of the

other two elements. Each event has probability 1
2
. If we chose the second alternative,

then we additionally have to decide between ω2 and ω3, according to the two new
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PSfrag replacements 1
2

1
2

1
21

2

1
3

1
3

1
3

1
6

1
6

2
3

Figure 3.2: Decomposition of a choice from three possibilities [SW49, p. 49].

probabilities p′2 = 2
3

and p′3 = 1
3
. (H 3) then means that we demand the property

H

(

1

2
,
1

3
,
1

6

)

= H

(

1

2
,
1

2

)

+
1

2
H

(

2

3
,
1

3

)

.

The weight 1
2

is necessary because the second alternative is only taken with

probability 1
2
.

We then have the following theorem.

Theorem 3.1

Let pi, 1 ≤ i ≤ n, be the probability distribution on Ωn = {ω1, ω2, . . . , ωn}. The only

function H satisfying the three assumptions H1, H2, and H3 above is of the form:

H = −K
n

∑

i=1

pi log pi, (3.3)

where K is a positive constant.

The conditions as well as the theorem were taken from [SW49, p. 49 f.], whereas the proof

can be found in [Fei58, p. 4 ff.]. The result of Theorem 3.1 motivates the definition of

entropy for discrete random variables.

Definition 3.2 (Entropy)

Let us assume that X is a discrete random variable on the sample space Ωn =

{ω1, ω2, . . . , ωn} with probability distribution P = {pi, 1 ≤ i ≤ n}. The entropy H(X)

of X is defined by

H(X) = −
n

∑

i=1

pi log2 pi.

By convention, 0 log2 0 = 0, which is supported by the asymptotic behavior of the function

f(x) = x log2 x, when x tends towards zero,

lim
x→0

x log2 x = 0.

Therefore, elements occurring with probability 0 have no effect on entropy.
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For the definition of entropy we could have chosen any base of the logarithm. Since

loga(x) =
logb(x)

logb(a)
,

for every choice of bases a, b ≥ 2, a different base would change the value of the entropy

only by a constant factor, which conforms to (3.3). We will always use the logarithm in

base 2, since this choice corresponds to the binary representation of data in a computer.

In this case, the unit of entropy is one bit (binary digit). If we would have chosen the

Eulerian number e as base, then the entropy would be measured in nats (natural units).

Shannon did not limit his investigations to the case of a single random variable. He

also defined the entropy for sources that can be represented by an ergodic Markov chain.

In Section 3.3 we will discuss this topic in greater detail. Here, we focus our discussion to

the independent case. For a better understanding of the term entropy, we shall consider

two different examples.

Example 3.3

In the first example we will discuss three different cases of random variables, X1, X2,

and X3. The three variables have the sample spaces Ω1 = {ω1, ω2, ω3, ω4}, Ω2 =

{ω1, ω2, . . . , ω8}, and Ω3 = {ω1, ω2, ω3, ω4}, respectively. X1 and X2 are uniformly

distributed, which means that p
(1)
i = 1

4
, 1 ≤ i ≤ 4 and p

(2)
i = 1

8
, 1 ≤ i ≤ 8, respectively,

where p
(j)
i describes the probability of the event Xj = ωi. The probability distribution of

the last variable X3 is given by

p
(3)
1 =

1

2
,

p
(3)
2 =

1

4
,

p
(3)
3 = p

(3)
4 =

1

8
.

This implies the following values of entropy.

H(X1) = −
4

∑

i=1

p
(1)
i log2 p

(1)
i

= −4
1

4
log2

1

4
= 2,

H(X2) = −
8

∑

i=1

p
(2)
i log2 p

(2)
i

= −8
1

8
log2

1

8
= 3.
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Generally, if X is uniformly distributed on a sample space Ω, then H(X) = log2 |Ω|, which

is conform to (3.1). Thus, Hartley’s notion of information is a special case of Shannon’s

notion of entropy. Concerning X3, we have

H(X3) = −
4

∑

i=1

p
(3)
i log2 p

(3)
i

= −
(

1

2
log2

1

2
+

1

4
log2

1

4
+ 2

1

8
log2

1

8

)

=
1

2
1 +

1

4
2 +

1

4
3

=
7

4
.

Let us first compare the entropy of the variables X1 and X2. H(X2) is larger than

H(X1), which corresponds to condition (H 2). The more elements are available, the larger

is the measure of uncertainty and thus the value of entropy.

The variables X1 and X3 have the same sample space, but H(X1) is larger than H(X3).

X1 is uniformly distributed, thus if someone wants to guess the outcome of X1, all elements

are equally probable. With X3, the occurrence of ω1 is as probable as the occurrence of

the other three elements together. If we guess ω1 as the outcome of X3 we would be right

in half of the cases. Thus, one may state that the value of X1 is more “uncertain” than

the value of X3.

Theorem 3.4 shows that for a fixed sample space the uniform distribution always has

maximum entropy.

Theorem 3.4

Let X be a random number on the sample space ΩX and |ΩX | denotes the number of

elements in the range of X. Then,

H(X) ≤ log2 |ΩX |,

with equality if and only if X has a uniform distribution over ΩX .

The theorem as well as the proof can be found in [CT91, p. 27].

This characteristic of the uniform distribution is often used in relation with random

number generators. A number is denoted “real random”, if it was chosen according to

a uniform distribution, which provides maximal entropy. Let X be the random variable

describing the output of a RNG. From a good RNG we would expect H(X) to be as high

as possible.

Example 3.5 (Minimal number of binary questions)

In this example we study the number of binary questions that are, on average, necessary

to find out which element was produced by our information source. We will discuss the

connection of this number to Shannon’s entropy.
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Let us assume that the random variable X represents the source, such that Ω is the

sample space and P = {p(x), x ∈ Ω} the probability distribution of X. A questioning

strategy S specifies which binary questions we will ask to determine the chosen element

x. E.g., if Ω = {1, 2, . . . , 8}, then such a question could be ”Is x smaller than 4?”. The

value a(x, S) determines the number of questions that are necessary to find x if we use the

strategy S. Furthermore, SΩ represents the set of all possible questioning strategies on the

sample space Ω. Then,

EP [a(X,S)] =
∑

x∈Ω

a(x, S)p(x)

is the expectation of the number of questions. Österreicher defines in [Ö04, p. 17] the

exact entropy (“wirkliche Entropie”) by the minimal number of necessary questions. This

term was originally introduced by Topsøe in [Top74].

Definition 3.6 (Exact Entropy)

The term

H∗(X) = min
S∈SΩ

EP [a(X,S)]

represents the exact entropy of X with probability distribution P . The strategy S∗ is called

optimal if

H∗(X) = EP [a(X,S∗)].

Furthermore Österreicher shows in [Ö04, p. 21] that the following condition holds.

Theorem 3.7 With the notation as above,

H(X) ≤ H∗(X) ≤ H(X) + 1

This means that Shannon’s entropy is approximately equal to the exact entropy and thus

a measure for the expected number of necessary binary questions to determine a certain

element. Consequently, if an element was produced by a information source of high entropy,

then an adversary needs, on average, more effort guessing the specific element.

Information theory, to which the notion of entropy belongs, is a much broader topic. We

have limited our excursion into this field to the definitions and theorems above, since they

cover most of the notions needed in the description of RNGs. In the rest of this chapter

we will study in which ways the term entropy occurs in connection with random number

generators and how we are able to estimate the entropy of a generator.

3.2 Entropy and RNGs

The term entropy is applied in various ways in the description of random number

generators. In this section we are going to consider some of them in more detail. Generally,

entropy is only defined for information sources. However, we will show here in which other

ways it is applied.
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3.2.1 RNG as Information Source

In this case, the random number generator itself is considered to be an information source.

The output is interpreted as a realization of independent, identically distributed (i.i.d.)

random variables or as a Markov chain as in Section 3.3. An optimal RNG is represented

by i.i.d. uniform random variables and provides a per-bit entropy of 1.0, i.e. if the generator

produces n-bit output, then this distribution of the output must have the maximal entropy

of n-bits. For some completely deterministic generators (see Section 7.1.1), this distribution

can be analyzed for each specific initial value. However, if the computation is too complex

or if unpredictable components, like external events influence the output, then most of the

time we are limited to the use of entropy estimators as in Section 3.3.

3.2.2 External Input as Information Source

Descriptions of RNGs often refer to the entropy of the input. In this case, we assume that

the input is produced from an external source and that we are, at least theoretically, able

to calculate the entropy. In practice, the entropy of the input is only estimated, and not

always by means of mathematically proven methods.

3.2.3 Shifting of Entropy

In later chapters we will use the phrase that entropy gets shifted from one pool P1 to

another pool P2. A pool is represented by a data storage, e.g. an array of fixed length,

which, as a whole, can take various values. If we assume that each value occurs with a

specific probability, then we can interpret the pool as a realization of a random variable

and thus are able to determine its entropy. However, the probability distribution can vary

with the time. If we mix unknown input into the content of the pool we may increase

the uncertainty of the content of the pool and thus its entropy. If we use the value of the

pool to generate an output, we may gain some information about the pool by observing

the output. Therefore the uncertainty of the pool and consequently, the entropy gets

decreased.

To shift information from pool P1 to pool P2 we first generate output from P1, which

decreases the entropy of P1, and subsequently use the generated data as input for P2 and,

thus, increase the entropy of P2. If we use an entropy-preserving function (see Section

3.2.4) for mixing the data into P2, then the entropy of P1 is decreased by the same amount

as the entropy of P2 is increased.

3.2.4 Entropy-Preserving Functions

We shall now study the notion of an entropy-preserving function. Let us assume that X

and Y are random variables on the sample spaces ΩX and ΩY with probability distributions

PX = {pX(x), x ∈ ΩX} and PY = {pY (y), y ∈ ΩY }, respectively.
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Definition 3.8 (Ideal Entropy-Preserving Function)

Let f : ΩX → ΩY be a function such that

pY (y) =







pX(x), if y = f(x)

0, otherwise.

Then we call f an ideal entropy-preserving function if

H(X) = H(f(X)) = H(Y ).

Remark 3.9 This condition is satisfied if f is injective, since in this case

H(Y ) = −
∑

y∈ΩY

pY (y) log2 pY (y)

= −
∑

f(x)∈f(ΩX )

pY (f(x)) log2 pY (f(x))

= −
∑

x∈ΩX

pX(x) log2 pX(x)

= H(X)

Remark 3.10 However, if f is not injective and maps two values ω ′
X and ω′′

X with

probabilities greater than 0, i.e. pX(ω′
X) > 0 and pX(ω′′

X) > 0, to the same value ω′
Y ,

then the entropy H(f(X)) is smaller than H(X).

Proof. Without loss of generality we assume that for a given n ∈ N

ΩX = {ω1, ω2, . . . , ωn}, ΩY = {ω1, ω2, . . . , ωn−1}, and

f(x) =







ωn−1, if x = ωn−1 or ωn

x, otherwise.

pX(ωn−1) > 0, pX(ωn) > 0, and p = pX(ωn−1) + pX(ωn) > 0. From condition (3.2) follows

H(X) = H (pX(ω1), pX(ω2), . . . , pX(ωn))

= H (pX(ω1), pX(ω2), . . . , pX(ωn−2), p) + pH

(

pX(ωn−1)

p
,
pX(ωn)

p

)

= H (pY (ω1), pY (ω2), . . . , pY (ωn−2), pY (ωn−1)) + pH

(

pX(ωn−1)

p
,
pX(ωn)

p

)

= H(Y ) + pH

(

pX(ωn−1)

p
,
pX(ωn)

p

)

.

Thus,

H(X) = H(Y ) + pH

(

pX(ωn−1)

p
,
pX(ωn)

p

)

. (3.4)
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Since pX(ωn−1), pX(ωn), and p are all greater than zero the right summand is larger than

zero as well, and hence

H(X) > H(Y ).

2

If we merge new input into a pool by means of an entropy-preserving function, we

can add the entropy of the input to the entropy of the pool. Let us assume that the

random variable X represents the input source, Y the pool previous to the input, and Z

the pool after the input was merged. The processing of the input happens by the function

f : ΩX × ΩY → ΩZ . If f is an entropy-preserving function then

H(X, Y ) = H(f(X, Y )) = H(Z),

where H(X, Y ) is the joint entropy of X and Y .

Definition 3.11 (Joint Entropy)

The joint entropy H(X, Y ) of a pair (X, Y ) of discrete random variables with joint

distribution p(x, y) is defined as

H(X, Y ) = −
∑

x∈ΩX

∑

y∈ΩY

p(x, y) log2 p(x, y).

From the chain rule in [CT91, p. 17] we obtain

Corollary 3.12 If X and Y are independent random variables, then

H(X, Y ) = H(X) +H(Y ).

Remark 3.13 Thus, if f is an entropy-preserving function and the input X and the old

content of the pool Y are independent, then the entropy of the new content is the sum of

the two previous entropies, i.e.,

H(Z) = H(X, Y ) = H(X) +H(Y ).

One class of functions that are claimed to be (almost) entropy-preserving is the family

of cryptographic hash functions. Hash functions map a large set into a much smaller set, in

our case this means that they map long binary sequences to shorter ones. The conditions

for a function to be a cryptographic hash function h : Ω1 → Ω2 are that

1. h is a one way function, which means it is easy to calculate h(x), i.e. realizable

in polynomial time, but there exists no polynomial time function that determines

h−1(y),

2. h should be almost collision free. By a collision we mean that two input values from

Ω1 are assigned to the same value in Ω2. Thus, a function is denoted to be collision

free if m different elements of Ω1 with m ≤ |Ω2| should be assigned to m different

elements in Ω2. The nearer m comes to |Ω2| the more collisions will occur.
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3. If one of the input bits gets modified, then about half of the output bits should

change. This equals the condition that each output-bit should depend on almost

every input bit.

The second condition means that we have a low probability of collision and thus, p in (3.4)

is small. Consequently,

H(X) = H(Y ) + pH

(

pX(ωn−1)

p
,
pX(ωn)

p

)

≈ H(Y ).

Due to this characteristic, hash functions are often referred to as entropy-preserving

functions.

3.3 Estimation of Entropy

Shannon was not satisfied with analyzing information sources that correspond to i.i.d.

random variables. He also studied the case in which the probability distribution of the

current output depends on previous output of the source. Such a stochastic sequence

(Xn)n≥1 is called a Markov chain (MC). Shannon considered the special case of ergodic

MCs.

First, we will define the notion of an ergodic Markov chain. Subsequently, we will

introduce two methods which allows to estimate the entropy of such a chain. Since the

case of i.i.d. random variables corresponds to a MC of order κ = 0, all our results also

apply to this special case. Let us begin with the definition of a Markov chain.

Definition 3.14 (Markov Chain of Order κ)

The sequence (Xn)n∈N is called a homogeneous Markov chain of oder κ with discrete time

and state space S if and only if for every n ∈ N the condition

P [Xn+1 = j|X0 = i0, . . . , Xn = in] = P [Xn+1 = j|Xn−κ+1 = in−κ+1, . . . , Xn = in]

= pin−κ+1...inj

is satisfied for all (i0, . . . , in, j) ∈ Sn+2, for which P [X0 = i0, . . . , Xn = in] > 0.

Thus, the probability of Xn depends only on the previous κ states and is independent of

the specific n.

Remark 3.15 In the case of Markov chains we speak of the state space S instead of the

sample space Ω.

Generally, Markov chains are also interesting for the description of RNGs, because they

allow to model the behavior of a generator if there exists a correlation between different

output values. In the following we will limit ourselves to the special case of a MC of order

κ = 1. We observe as in [Weg98] that for each MC (Xn)n≥1 of order κ, the sequence
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(X̃
(d)
l )l≥1 of overlapping d− tuples (see Remark 3.23) forms a MC of order κ′ = 1 if κ ≤ d.

Thus, it it is sufficient to consider only Markov chains of order one. For more details see

[Weg98, p. 21]. The advantage of a MC of order κ = 1 is that it can be easily defined by

means of a transition matrix.

Definition 3.16 (Markov Chain of Order κ = 1)

Let

• S = {1, . . . , m} be the state space of the random variables Xn, n ≥ 1,

• P = (pij)(i,j)∈S2 be the transition matrix such that

pij ≥ 0 ∀(i, j) ∈ S2,
∑

j∈S

pij = 1 ∀i ∈ S,

and

• P = (p01, . . . , p0m) be the initial distribution with

p0i > 0 ∀i ∈ S,
∑

i∈S

p0i = 1.

Then the triple (S,P,P0) describes a homogeneous Markov chain (Xn)n∈N of order κ = 1

if and only if for every n ∈ N0 the condition

P [Xn+1 = j|X0 = i0, . . . , Xn = in] = P [Xn+1 = j|Xn = in] = pinj

is satisfied for all (i0, . . . , in, j) ∈ Sn+2, for which P [X0 = i0, . . . , Xn = in] > 0. The

probability distribution of the specific random variable Xn is then given by

P0P
n,

where P
n represents the n’th power of the transition matrix.

An important probability distribution of a MC is its so-called stationary distribution.

Definition 3.17 (Stationary Distribution)

A distribution P = (p1, . . . , pm) on the sample space S which satisfies
∑

i∈S pipij = pj for

all states j ∈ S or PP = P in matrix notation, is called a stationary distribution.

Definition 3.18 (Stationary Markov Chain)

Let P be the stationary distribution of the MC (S,P,P0). The stationary Markov chain

(S,P) represents the chain that is generated by setting P0 = P. In such a chain all random

variables Xn of the MC (Xn)n∈N have the same probability distribution P.
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Now we return to the term “ergodic”. We call a MC ergodic if the stochastic properties

of sequences produced by the MC are independent of the length and the starting time of

the sequence. In more detail, this means that the relative frequencies of single elements or

d-dimensional tuples converge, for n approaching infinity, toward a fixed limit for almost

every sequence. Sequences for which this property does not hold have probability zero.

Ergodicity is satisfied if the MC is finite, irreducible and aperiodic.

A Markov chain is called finite if its sample space S is finite. In our case we only

consider finite Markov chains. Let p
(n)
ij denote the elements of the n’th power matrix P

n,

then we can give following definitions.

Definition 3.19 (Irreducibility)

A MC is called irreducible (or undecomposable) if for all pairs of states (i, j) ∈ S2 there

exists an integer n such that p
(n)
ij > 0.

By the period of a irreducible MC we denote the smallest number p such that the set of

all possible return times from i to i can be written as pN = {p, 2p, 3p, . . .}, i.e.

p = gcd{n ∈ N : p
(n)
ii > 0}.

Definition 3.20 (Aperiodicity [Weg98, p. 14])

An irreducible chain is called aperiodic (or acyclic) if the period p equals 1.

The following lemma holds.

Lemma 3.21 Let (S,P,P0) be a finite, irreducible, aperiodic MC with stationary

distribution P. Then P = (p1, . . . , pm) is given by

pj = lim
n→∞

p
(n)
ij (3.5)

for all pairs (i, j) ∈ S2 of states.

In a more general version this lemma can be found in [Weg98, p. 15 ff.].

Markov chains that satisfy Condition (3.5), are called ergodic. According to this, the

behavior of an ergodic Markov chains approximates the behavior of a stationary Markov

chain if n approaches infinity. If not mentioned otherwise we will assume in the following

that all Markov chains are ergodic and of order κ = 1.

After we have studied the necessary definitions we are now able to define the entropy

of a Markov chain.

Definition 3.22 (Entropy of a Markov Chain)

Denote by H(S,P) the entropy of the ergodic chain (S,P,P0),

H(S,P) = −
m

∑

i=1

pi

m
∑

j=1

pij log2 pij,

where P = (p1, . . . , pm) is the stable distribution of the chain.
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In the remaining part of this section we will deal with the entropy estimation of Markov

chains. To do so, we need some notation.

Remark 3.23 (Notation)

Let (S,P,P0) be an ergodic MC with finite state space S, where |S| = m. For simplicity

we assume that S = {1, 2, . . . , m}.

• (Xn)n≥1 denotes a sequence of random variables underlying (S,P,P0).

• (xn)
N
n=1 is a realization of length N of the MC.

• x
j
i , i ≤ j denotes the subsequence (xi, xi+1, . . . , xj).

• (X
(d)
l )l≥1 is the sequence of overlapping d-tuples, where X

(d)
l = (Xl, . . . , Xl+d−1) for

all l ≤ 1.

• (X̃
(d)
l )l≥1 is the sequence of overlapping d-tuples defined in a cyclic way on the

sequence (Xl)
n
l=1 of length n, such that X̃

(d)
l = X

(d)
r for all l ≥ 1 if l − 1 ≡ r − 1

modulo n.

• (X
(d)

l )l≥1 is the sequence of non-overlapping d-tuples, where

X
(d)

l = (X(l−1)d+1, . . . , Xld) for all l ≥ 1.

• P̂ (d)(n) = (p̂
(d)
i

(n))i∈Sd is the vector of relative frequencies of the overlapping tuples

in xn1 , with

p̂
(d)
i

(n) =
1

n
#{1 ≤ l ≤ n : X̃

(d)
l = i}

We will now introduce two methods, the Overlapping Serial Test and Maurer’s Universal

Test, which may be used to estimate the entropy of a MC. The first algorithm employs the

relative frequency of overlapping tuples, the second one the return time of non-overlapping

tuples. Both methods are explained and compared by means of empirical results in [HW03].

In addition to the pure entropy estimation, the algorithm can be applied for testing whether

the output of a RNG corresponds to a realization of i.i.d. uniform random variables and

thus can be denoted “random”.

3.3.1 Overlapping Serial Test

The first estimator Ĥ
(d)
f uses the relative frequency of overlapping d-tuples,

Ĥ
(d)
f = −

∑

i∈Sd

p̂
(d)
i

(n) log2 p̂
(d)
i

(n) +
∑

i∈Sd−1

p̂
(d−1)
i

(n) log2 p̂
(d−1)
i

(n).

Ĥ
(d)
f is an asymptotically unbiased and consistent estimator for the entropy of a Markov

chain (S,P,P0), if the order κ of the Markov chain is less than d. Asymptotically unbiased

means that

lim
n→∞

E(Ĥ
(d)
f ) = H(S,P),
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where E represents the expectation of the random variable. Consistency stands for the

condition that the estimator converges in probability toward the true value, i.e. for all

ε > 0

lim
n→∞

P [|Ĥ(d)
f −H(S,P)| ≤ ε] = 1.

Wegenkittl shows in [Weg01, p. 2484] in detail that the estimator even converges almost

surely (a.s.) if d > k, and n→ ∞, which means

P [ lim
n→∞

Ĥ
(d)
f = H(S,P)] = 1.

A special characteristic of Ĥ
(d)
f is that for d = 1 it estimates the entropy H(P) of the

stable distribution of the chain. In the independent case (k = 0) this is equivalent to the

entropy of the chain. However, we should not forget that if d ≤ κ, then Ĥ
(d)
f only estimates

the d-dimensional marginal distribution, which may differ considerably from the entropy

H(S,P) of the chain.

The estimator Ĥ
(d)
f can also be used as a statistical test for RNGs. It represents a special

class of generalized serial tests. For the test we apply the scaled factor Î(d) = 2n(1− Ĥ
(d)
f ),

which is compared by the Kolmogorov-Smirnov test to the chi-square distribution χ2
2d−2d−1

with 2d − 2d−1 degrees of freedom. This is done due to the fact that if the MC represents

i.i.d. uniform random variables, then Î(d) converges in distribution to χ2
2d−2d−1 . This means

that for all a ∈ R

lim
n→∞

P [Î(d) ≤ a] = P [χ2
2d−2d−1 ≤ a].

3.3.2 Maurer’s Universal Test

The second estimator Ĥ
(d)
r calculates the entropy using the return time of non-overlapping

d-tuples. The estimator was introduced in [Mau92] and underlies Maurer’s Universal

Statistical Test for random bit generators. The universality corresponds to the fact that

the test should find every defect in the output of a RNG that can be modeled by a finite

order Markov chain, if the dimension d of the tuples and the sample size n approaches

infinity.

Let, for every 0 ≤ i ≤ n,

T (d)(i) = min{1 ≤ j ≤ i + 1 : x
(d)
i−j = x

(d)
i }

denote the truncated return time to x
(d)
i . If we set x

(d)
−1 = x

(d)
i , then T (i) is well defined

and finite. The estimator is defined by

Ĥ(d)
r =

1

dn

Q=n−1
∑

i=Q

log2 T
(d)(i).

Q represents the “warm up” of the test and should guarantee that, with high probability,

each possible d-tuple occurs at least once in the sequence prior to the test, so that T (d)(i)
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provides significant results for all i ≥ Q. Maurer recommends in [Mau92] to choose Q

greater than 10md. If we want to analyze n overlapping d-tuples we need a sample size of

d(Q+ n).

Ĥ
(d)
r is an asymptotically unbiased and consistent estimator for 1

d
E(log2 T

(d)), but not

for the entropy H(S,P) itself. E(log2 T
(d)) is the expectation of the return time T (d)(0)

of the first non-overlapping d-tuple. As d approaches infinity, the scaled expectation of

the return times converges toward the entropy of the Markov chain. Wegenkittl showed in

[Weg01, p. 2486] that, for every Markov chain (S,P,P0),

lim
d→∞

E(log2 T
(d))

d
= H(S,P).

Thus, if the sample size n and the dimension d approaches infinity, Ĥ
(d)
r estimates the

entropy H(S,P) of the MC. In [HW03] the quantity

N̂ (d) =
Ĥ

(d)
r − Ed log2 m
√

Vd log2 m

was used as test statistic to find defects in the output of a RNG, which can be modeled

by a finite order MC. Ed log2 m
and Vd log2m

are the numerically computed expectation and

variation of dĤ
(d)
r and can be found in [Mau92, Table I, p. 14]. For i.i.d. uniform random

variables, N̂ (d) converges to N [0, 1], the standard normal distribution. Thus, in the test

this distribution was employed in the Kolmogorov-Smirnov test.

Generally, we see that for n and d large enough, both methods can be applied to estimate

the entropy of a Markov chain. To achieve the same number of tuples, the second estimator

needs an about d times larger sample. In [Weg01] the author compares the the empirical

behavior of both estimators. For a fixed tuple size d > 1 and increasing number of tuples

n, Maurer’s estimator approximates the entropy of an independent Markov chain a little

faster. However, one has to consider that, for the same n, this method needs a much larger

sample size. For a fixed n and increasing d the overlapping serial test converged much

faster to the entropy of the chain in the independent as well as in the dependent case.

In [HW03] the corresponding statistical tests of the estimators are compared and

applied on RNGs with defects of specified order. For these tests the sample size was

fixed, thus in the second case much less tuples were available. In general the overlapping

serial test performed better. Maurer’s test found only those defects with order k = d and

k = 2d, but not all defects with k < d.

3.3.3 Entropy and Cryptographic RNGs

Entropy as a measure of the uncertainty of a random variable is a useful tool to describe

the quality of the output or respectively the input of a random number generator. It

enables us to describe several processes within a generator and how much information an

adversary actually has about the inner state of the RNG.
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Since the exact probability distribution of the corresponding random variable is rarely

known, we have to use entropy estimators. We have to bear in mind that an overestimation

of the entropy due to wrong assumptions or inappropriate estimators can have severe effects

on the security of the generator (see Chapter 8).



Chapter 4

Kolmogorov Complexity

In this section we discuss the Kolmogorov complexity of finite sequences. This approach

was independently developed by Kolmogorov, Solomonov, and Chaitin in the 1970’s.

Kolmogorov complexity defines the complexity of a given binary sequence as the size of

the minimal program that is able to reproduce the sequence.

To show some examples of different complexities let us first consider three different

sequences of length n = 64. Which one looks most random? Which one can be most easily

described?

1. 0101010101010101010101010101010101010101010101010101010101010101

2. 0110101000001001111001100110011111110011101111001100100100001000

3. 1101111001110101111101101111101110101101111000101110010100111011

The first sequence consists of thirty-two blocks of the form 01 and most people will not call

it random. The second one looks random at first sight, but it represents the first bits of

the binary expansion of
√

2−1 and is thus easily reproducible and has a short description.

The third sequence again looks random, although, it has more ones than zeros. It turns

out that if k is the number of ones then the sequence can be described approximately by

log2 n− n( k
n

log2
k
n

+ n−k
n

log2
n−k
n

) bits. This is done by a program of the form:

Generate all sequences with k ones in lexicographical order and output the ith

sequence. [CT91, p. 152]

In this program only the variables i and n depend on the specific sequence and are thus

crucial for the necessary length.

If we increase the length n, the description of the first two sequences stays the same, if n

is known, whereas the length of the description of the third sequences growths, although it

remains clearly smaller than n if k < n
2
. Intuitively, we could say neither of the sequences

has a complexity as high as a “real” random number, although the third one is more

complex than the first two.

25



26 CHAPTER 4. KOLMOGOROV COMPLEXITY

In this chapter we explain all terms needed in the definition of Kolmogorov complexity.

Subsequently, we introduce the notation of an incompressible sequence and show that it

corresponds to a definition of randomness introduced by statistical tests. Furthermore, we

compare Kolmogorov complexity with Shannon’s entropy and discuss its computability.

Finally, we question if the concept of Kolmogorov complexity is applicable in practice.

A basic description of this topic as well as the three sequences above can be found

in [CT91, Chapter 7]. However, most of the definitions and theorems of this chapter

were taken from Li and Vitanyi’s book [LV93] where the authors cover the Kolmogorov

complexity in details. In the final part of this chapter we discuss a possible method for

estimating the Kolmogorov complexity. For this topic we refer to [LZ76] and [EHS02] for

details.

4.1 Definition and Characteristics

Before we start with further explanations, we will introduce some notation we are going to

use during this chapter. Let us assume that there exists a bijective function from the set of

finite binary sequences onto the natural numbers. The ordinary binary representation of

integers is inappropriate for this assignment because it is ambiguous, e.g. both 0010 and 10

represent the integer 2. A simple unambiguous function could be realized by ordering the

finite binary strings lexicographically by their length and mapping each binary sequence

to its position in the list. If ε represents the empty binary string, then the ordered list

would look like (ε, 0, 1, 00, 01, 10, 11, 000, . . .) and the assignments like (ε → 0, 0 → 1, 1 →
2, 00 → 3, . . .). For the remaining part of this chapter we assume that we have agreed on

such an unambiguous mapping. We will consider the binary string and its assigned integer

as the same object and switch between both representations, like x = 00 = 3. By l(x) for

x ∈ N we mean the length of the binary equivalent of x, e.g. if x = 3, then l(x) = 2.

4.1.1 Turing Machine (TM)

For defining the Kolmogorov complexity we use Turing machines. Allan Turing described

this simple computer in the 1930s in the attempt to determine the class of all computable

functions. It can be shown that until now, every other attempt to define this class of

function is equivalent to Turing’s definition. For the Kolmogorov complexity we need the

special class of universal Turing machines (UTM)

A Turing machine has an infinitely long tape, which is partitioned into cells. Each cell

contains a character from the finite alphabet A = {0, 1, B} where B represents the blank

symbol. At the beginning all cells contain a B except of a finite consecutive sequence right

beside the starting cell. This sequence is the input of the TM.

Furthermore, there is a read/write head, which points at each time to a particular cell

of the tape. It scans the character of the cell and is able to execute one of three commands:
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• Move one position to the right.

• Move one position to the left.

• Write the symbol a ∈ A.

The TM also contains a finite control, which is always in one of the states qi out of the

finite state space Q.

The behavior of the TM is determined by a finite list of rules. A rule indicates in which

way the TM reacts on a specific state of the control and a specific character read by the

head, e.i., it indicates which command the head is going to perform next and which new

state the control receives. A rule can be be described by a tuple (p, s, a, q), where p ∈ Q

is the current state of the control and s ∈ A is the symbol scanned from the current cell.

a ∈ S is the command the read/write head has to perform, with S = {L,R, 0, 1, B} and

q is the state the finite control receives after the step. For each pair (p, s) there exist at

most one rule. If there exists no rule for a specific pair, then the machine holds as soon as

it reaches the given state. The TM is therefore defined by a mapping of finite subsets of

Q× A into S ×Q.

B 1 0 0 1 10 B B BB ......

q0

q2
q3

q1 q4

1

PSfrag replacements

tape

finite control

head

Figure 4.1: Turing Machine [LV93, p. 27]

The computation by means of a TM starts by convention in state q0, with the head pointing

at the starting cell. The input of the TM is represented by a single binary string. An input-

tuple of n integers (x1, x2, . . . , xn) is mapped to a single string by the recursive bijective

pairing function. The basic function 〈., .〉 : N × N −→ N assigns the integer 〈x, y〉 to the

pair (x, y). A simple realization of such a function would be

〈x, y〉 = x y, (4.1)

where x = 1l(x)0x. In this case we use the binary representation of the variables x and y

and, thus, x y and 1l(x)0x mean that the corresponding strings are concatenated together.

To extend this function to n-tuples of integers we use the iterative definition

〈x1, ..., xn〉 = 〈x1, 〈x2, ..., xn〉〉
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for all xi ∈ N, 1 ≤ i ≤ n.

The calculation stops as soon as the TM holds, but it may also occur that this situation

is never achieved. After the machine held, the output of the computation is determined

by the integer representation of the maximal binary string on the tape framed by blanc

characters.

Definition 4.1 (Computability)

Under this convention for inputs and outputs, each Turing machine defines a partial

function from n-tuples of integers onto the integers, n ≥ 1. We call such a function

partial recursive or computable. If the function computed is defined for all arguments and

the Turing machine halts for all inputs, then we call it total recursive or simply recursive.

Remark 4.2 In the theory of computability, a function is called total if it is defined for

all elements of a particular set.

This means that the class of partial recursive functions represents all those that are

computable by a TM.

We write T (x) = z to indicate that the Turing machine T produces the output z on the

given input x. Likewise, if the partial recursive function ν represents T , we write ν(x) = z.

For convenience we will sometimes use T and ν equivalently, like when we talk about the

Turing machine ν.

4.1.2 Universal Turing Machine

A special case of a TM is the universal Turing machines (UTM), which can simulate any

Turing machine. A UTM can be realized by effectively enumerating the set of Turing

machines. To simulate the n’th Turing machine Tn we only have to pass the index n to

the universal Turing machine U . By using the index n, the UTM determines the specific

Turing machine Tn, including its corresponding list of rules, and calculates

U(x, n) = Tn(x)

for every finite binary sequence x. By an effective enumeration we mean a computable

bijective function from the set of TMs onto the natural numbers. A simple enumeration

would be to uniquely encode the finite list of rules for each TM into a binary sequence,

and then order them lexicographically. We then map each TM to the index of its binary

representation. In the further section we assume that there exists such an enumeration of

the Turing machines and that we are able to identify a specific TM by its index.

With the help of UTMs we can define the class of universal partial recursive functions.

Definition 4.3 (Universal Partial Recursive Function)

The partial recursive function ν(i, x) computed by the universal Turing machine U is called

a universal partial recursive function.
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4.1.3 Complexity

Now we have all the necessary ingredients to describe the complexity of a binary sequence.

At first, we define the complexity corresponding to an arbitrary Turing machine. After

that we specify the definition to the class of UTMs and will show that the choice of the

UTM is irrelevant.

The conditional complexity C(x|y) of a sequence is the complexity of x if another

sequence y is already known. In this case, y stands for some additional information about

x, like the length of the sequence.

Definition 4.4 (Conditional Complexity Cφ)

Let x, y, p be natural numbers. Any partial recursive function φ, together with p and y,

such that φ(〈p, y〉) = x is a description of x. The complexity Cφ of x conditional to y is

defined by

Cφ(x|y) = min{l(p) : φ(〈p, y〉) = x},

and Cφ(x|y) = ∞ if there are no such p. We call p a program to compute x by φ, given y.

Let T be the corresponding Turing machine to φ. Then the conditional complexity of the

sequence x, if y is known, is defined by the length of the shortest program, which together

with y calculates x on the Turing machine T . The length of the shortest program can

vary from machine to machine. Some machines may favor specific sequences and assigns

them much smaller complexities. For example for a TM that always outputs the constant

sequence x, the corresponding complexity of x will be 0 independent of the structure of

x. Intuitively the complexity of a sequence should be a property of the sequence itself

and, therefore, invariant to the choice of the TM. The next theorem shows that by using

a universal Turing machine we can guarantee that the complexity is additively optimal,

which means that the complexity calculated by a UTM is shortest, except of an additive

constant. This condition is also called universality.

Theorem 4.5 (Universality of Conditional Complexity)

Let φ0 be a universal partial recursive function, thus it is computable by a universal Turing

machine U , then for any other partial recursive function φ

Cφ0
(x|y) ≤ Cφ(x|y) + cφ

for all finite binary sequences x and y.

Proof. Intuitively this theorem is true, since the UTM φ0 needs only a constant number

of bits to simulate the Turing machine φ.

Let φ0 be the UTM that on input 〈n, p, y〉 simulates the n’th Turing machine with

input 〈p, y〉, which means that φ0(〈n, p, y〉) = φn(〈p, y〉) for all pairs (p, y). Let φ be the

n’th Turing machine. For every program p it is satisfied that if φ(〈p, y〉) generates x, then
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φ0(〈n, p, y〉) does this as well. Let us denote the constant difference l(〈n, p, y〉) − l(〈p, y〉)
by cφ. Thus,

Cφ0
(x|y) ≤ Cφ(x|y) + cφ

for all pairs (x, y). If we realized 〈x, y〉 by x y like in (4.1) then cφ = 2l(n) + 1. 2

From Theorem 4.5 it follows that the complexity of a finite binary sequence x calculated

by a universal Turing machine φ0 is always finite. There always exist a Turing machine φ

that calculates x by a finite program, like the machine that passes the first input variable

directly to the output. Therefore,

Cφ0
(x|y) ≤ Cφ(x|y) + c1

≤ l(x) + c2

< ∞.

The theorem also implies that the complexity of two different UTMs differs by at most a

constant factor, which depends only on the two machines. Thus, if ψ and ψ ′ are universal

Turing machines, then for all x and y holds

|Cψ(x|y) − Cψ′(x, y)| ≤ cψ,ψ′ . (4.2)

We can therefore determine any arbitrary UTM φ for the final definition of the Kolmogorov

complexity. The complexity according to φ will then be minimal for all sequences compared

to other Turing machines except of an additive constant.

Definition 4.6 ((Conditional) Kolmogorov Complexity)

Fix a universal partial recursive function φ0 and dispense with the subscript by defining the

conditional Kolmogorov complexity C(.|.) by

C(x|y) = Cφ0
(x|y).

This particular φ0 is called the reference function for C. We also fix a particular Turing

machine U that computes φ0 and call U the reference machine. The unconditional

Kolmogorov complexity C(.) is defined by

C(x) = C(x|ε).

4.1.4 Incompressible Sequences

By means of the Kolmogorov complexity we are now able to define incompressible

sequences.

Definition 4.7 (c-Incompressible)

For each constant c we say a string x is c-incompressible if

C(x) ≥ l(x) − c.
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This condition is often used for defining randomness. We will show that incompressibility

is equivalent to a notion of randomness that is defined by statistical tests. Thus,

incompressibility is equivalent to randomness and high Kolmogorov complexity.

Remark 4.8 In contrast to Chapter 5, this time we do not limit ourselves to tests running

in polynomial time.

4.1.5 Martin-Löf Test of Randomness

In this section we introduce a definition for statistical tests, which we are going to use for

determining the randomness of a binary sequence.

Let S be a sample space with probability distribution P , and let ε > 0 denote the level

of significance of the test. A majority M ⊆ S is an arbitrary set such that 1− P (M) ≤ ε.

We denote an element x ∈ S as a typical outcome of S if x belongs to any majority M . If

we choose x at random out of S, then with high probability x will lie in the intersection of

all majorities. Later (see Definition 4.14), we will associate this property with randomness.

To prove this condition we apply tests that check the hypothesis “x belongs to majority

M in S”.

A test is nothing else but a rule that determines, for any level of significance ε, for which

elements we reject the hypothesis “x belongs to a majority M in S”. Let us assume that

ε = 2−m for m ∈ N. Then we can define a test by a set V ⊆ N × S, such that (m, x) ∈ V

if and only if the hypothesis is rejected for x with level of significance ε = 2−m. By means

of V we can define a nested sequence (Vm)m≥1, Vm ⊇ Vm+1, m = 1, 2, . . ., of sets by

Vm = {x : (m, x) ∈ V }.

The condition that x is rejected with level of significance ε is expressed by

∑

x

{P (x) : l(x) = n, x ∈ Vm} ≤ ε. (4.3)

This characteristic means that the probability of the set of elements of length n which

are rejected is less than ε for any arbitrary n ∈ N. Vm is called the critical region on the

level of significance ε. If x ∈ Vm, then the hypotheses “x belongs to majority M in S” is

rejected for x with level of significance ε.

Statistical tests try to avoid the case that elements get falsely rejected. Such a case

is called type I error. Condition (4.3) guarantees that the probability of rejection and

consequently the probability of false rejection is less than the level of significance ε.

Subsequently, we assume that all statistical tests used in practice are computable in

terms of Definition 4.1 and are, therefore, partial recursive. Other types of tests do not

appear to be useful.

For Definition 4.10 we need the notion of recursive enumerable sets.
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Definition 4.9 (Recursive Enumerable)

A set A is recursively enumerable if it is empty or the range of some total recursive function

f . In this case we say that f enumerates A.

We are now able to give a formal definition of a statistical test.

Definition 4.10 (P -Test)

Let P be a recursive probability distribution, i.e. computable by a recursive function, on the

sample space N. A total function δ : N → N is a P -test (Martin-Löf test for randomness)

if

1. δ is enumerable (the set V = {(m, x) : δ(x) ≥ m} is recursively enumerable); and

2.
∑{P (x) : δ(x) ≥ m, l(x) = n} ≤ 2−m, for all n.

The critical regions are given by

Vm = {x : δ(x) ≥ m}.

Each test corresponds to a specific probability distribution P . In the same way as for

Turing machines we define a universal P -test, which is able to simulate all other P -tests.

Definition 4.11 (Universal P -Test)

A universal Martin-Löf test for randomness with respect to the probability distribution P , a

universal P -test for short, is a test δ0(.|P ) such that for each P -test δ, there is a constant

c, such that for all x, we have δ0(x|P ) ≥ δ(x) − c.

Thus, if x passes the universal test δ0, which means the hypothesis “x belongs to a majority

M in S” is not rejected for x, then it also passes every other P -test, except for a change

of the level of significance. That is, if

V = {(m, x) : δ(x) ≥ m}; and

U = {(m, x) : δ0(x|P ) ≥ m}

then,

Vm+c ⊆ Um m = 1, 2, ...

where c only depends on V and U and not on m.

Theorem 4.12 For every distribution P there exists a universal P -test δ0(.|P ).

The proof of this theorem can be found in [LV93, p. 109 ff.].

In the following definition we consider the special class of universal P -tests for the

uniform distribution L. This distribution is given by L(x) = 2−2l(x) for all x ∈ N. If we

restrict the length of the elements to l(x) = n then we use Ln = 2−n.
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Theorem 4.13 (Universal L-test)

The function f(x) = l(x) − C(x|l(x)) − 1 is a universal L-test where L is the uniform

distribution.

This theorem as well as its proof can be found at [LV93, p. 110 ff.].

Due to the universality of the test, every x that appears random by this test, i.e., which

was not rejected, will be considered random by any other L-test, except for a change of the

level of significance. Thus, we are able to define randomness for a specific element x ∈ N.

Definition 4.14 (c-Random)

Let us fix δ0(x) = l(x) − C(x|l(x)) − 1 as the reference universal test with respect to the

uniform distribution. (In our previous notation, δ0(.) ≡ δ0(.|L), where L is the uniform

distribution.) A string x is called c-random, if

δ0(x) ≤ c.

Let us assume that the element x is c-random and that we use the recursive bijective

pairing function 〈., .〉 in (4.1). Then

C(x|l(x)) ≤ C(x) ≤ C(x|l(x)) + 2C (l(x) − C(x|l(x))) ,

except for an constant factor, because l(x) can be reconstructed from the shortest program

p to produce x and the value l(p) − l(x) = C(x|l(x)) − l(x). Since x is c-random, l(x) −
C(x|l(x)) ≤ c, and thus

C(x|l(x)) ≤ C(x) ≤ C(x|l(x)) + log2(c).

Remark 4.15 If the element x is c-random, then

C(x|l(x)) = C(x),

except of an additive constant.

However, with compressible elements, like x = 1n, the two quantities may differ up to

log2(l(x)) bits.

Consequently, the definition of incompressibility and randomness are comparable, if x is

c-random. Let us assume that x is c1-random, then there exists a constant c2, such that

x is c2-incompressible and conversely if x is c1-incompressible, then there exist a constant

c2, such that x is c2-random.

In Chapter 5 we give another definition of randomness which is related to statistical

tests. In contrast to the definition in Chapter 5, in this chapter we allow all statistical

tests without considering their efficiency. Chapter 5 only allows those tests that run in

polynomial time, which limits the number of tolerated tests and therefore increases the

number of strings that are considered “random”. Consequently, it is possible that in

Chapter 5 we consider a string as pseudorandom, even if it was generated from a shorter

sequence and, thus, only has the low Kolmogorov complexity of the short sequence.
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4.2 Kolmogorov Complexity and Shannon’s Entropy

Kolmogorov complexity as well as Shannon’s entropy are measures of the number of bits

that are necessary to identify a specific string. Kolmogorov complexity is a property of the

string itself, whereas entropy is a property of the source from which the string was chosen.

Thus, Kolmogorov complexity has the advantage that it is also defined even if we do not

know the probability distribution of the source. However, in practice it has the drawback

that it is not computable (see Section 4.3).

Both definitions are related even if they may vary widely in some specific cases. On the

one hand, let us assume that a source produces only a small number of different output

strings. Then the entropy of the source will only be a few bits, independently of the

(probably high) Kolmogorov complexity of each individual string. On the other hand, let

us assume that a source produces all binary string of length n with uniform probability

2−n. In this case, the source has the maximal entropy of n bits. Still, it will produce the

string consisting of n zeros, which has a very low Kolmogorov complexity.

There exists a direct connection between the two quantities. Cover and Thomas show

in [CT91, p. 154] that the expected conditional Kolmogorov complexity of n consecutive

elements taken from a source with entropy H(X) converges towards n times the entropy

of the source, for n approaching infinity.

4.3 Computability of Kolmogorov Complexity

Kolmogorov complexity is an important concept to define the randomness of a individual

string, but is it actually computable? Unfortunately, the answer to this question is negative

as we shall see in the next theorem.

Theorem 4.16 The function C(x) is not partial recursive. Moreover, no partial recursive

function φ(x), defined on an infinite set of points, can coincide with C(x) over the whole

of its domain of definition.

However, although C(x) is not computable, it can be approximated by a computable

function.

Theorem 4.17 There is a total recursive function φ(t, x), monotonically decreasing in t,

such that

lim
t→∞

φ(t, x) = C(x).

Both theorems as well as their proofs can be found in [LV93, p. 103].

For an upper bound of Kolmogorov complexity, we may apply any lossless compression

algorithm. If a string x can be compressed to a string x′ such that x is reconstructible from

x′, then the Kolmogorov complexity is certainly less or equal to l(x′). A famous lossless
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compression algorithm that can be used for approximating the Kolmogorov complexity is

the Lempel-Ziv algorithm.

The basic idea of the this algorithm is that a binary sequence S = s1s2...sn of length

n is partitioned into subsequences, such that the subsequence si+1...sj, 1 ≤ i < j ≤ n,

can be generated from its prefix s1...si plus an additional character a. To produce the

subsequence si+1...sj from its prefix, we need a position k, 1 ≤ k ≤ i and a symbol a, such

that

si+1+r = sk+r, for 0 ≤ r ≤ j − i− 2, and

sj = a.

Consequently, it is sufficient to know k and a to generate the subsequence si+1...sj from its

prefix. The whole sequence S is then reconstructed by producing the single subsequences

and concatenating them together. Let Si be the i’th subsequence shi−1−1...shi
, determined

by the indices hi and hi−1, 0 ≤ i ≤ m, then S = S1...Sm with 1 = h1 < h2... < hm = n and

h0 = 0. The compressed file only contains the values k and a for every subsequence. Thus,

the minimal number of needed subsequences is a measure of the length of the compressed

file and, therefore, an upper bound for the Kolmogorov complexity. Lempel and Ziv state in

[LZ76] that the minimal number of subsequences can be used as measure for the complexity

of a sequence.

However, we have to consider that, like for every compression algorithm, there exist

worst case strings that are not compressible by the algorithm, but have a Kolmogorov

complexity that is clearly less than the length of the sequence. Let us consider

the 218 bit string that was constructed by concatenating the first 52 strings of the

sequence 0, 1, 00, 01, 10, 11, 000, .... The authors of [EHS02] state that if this string gets

“compressed” by LZ78, an implementation of the Lempel-Ziv algorithm, then the result

of the compression needs 318 bits which is much more than the Kolmogorov complexity of

the string.
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4.4 Kolmogorov Complexity and Cryptographic

RNGs

The Kolmogorov complexity is defined for individual binary strings and is therefore

independent of the probability distribution of their source. Thus, the definition is even

meaningful for random number generators for which the distribution of the output is

unknown because, for example, they process unpredictable external input.

However, the Kolmogorov complexity has the weakness that, in general, it is not

computable. Consequently, we cannot use it directly but must employ approximations.

The Lempel-Ziv algorithm is a possible way of approximating the Kolmogorov complexity,

although, like all compression algorithms, it provides only an upper bound for the

complexity.

Additionally, there are situations in which it is an drawback that the Kolmogorov

complexity does not take the distribution of the elements into account. Let as assume that

a random number generator produces only a small variety of different binary sequences of

high Kolmogorov complexity. If an adversary knows about the limited number of outputs

he or she can easily guess the correct value independently of the Kolmogorov complexity.

Thus, if the adversary has an idea of the distribution of the output it is more reasonable to

apply the entropy of the generator, which uses this information, to judge the randomness

of a sequence.

Generally, if we have no idea about the distribution of the information source and

are able to provide an adequate estimator, then the Kolmogorov complexity is a good

indicators of the randomness of an individual sequence.



Chapter 5

Polynomial-Time Indistinguishability

In the previous chapter we have defined the randomness of a binary sequence by means of

statistical tests. We only considered the result of the tests but not how long it takes to

compute them. In this chapter we limit our discussion to the class of “efficient” algorithms,

which means that they work in polynomial-time of the length of the input.

A main problem in the evaluation of cryptographic random number generators is that

we are not able to make any statements about the methods that will be applied during

an attack. However, we may assume that the adversary possesses a limited amount of

computational resources and is, thus, only able to apply efficient algorithms. Therefore, we

denote a sequence as “pseudorandom” if its not feasible for such an algorithm to distinguish

the sequence from “true random numbers”. This means we are satisfied with sequences

that “look” random for any efficient attack. By true random numbers we mean sequences

that are chosen according to a uniform distribution.

This approach is described in detail by Goldreich in [Gol99]. A more mathematical

description, to which we refer in this chapter, can be found in [Gol95].

5.1 Definitions and Characteristics

In order to describe Goldreich’s definition of pseudorandomness we have to specify some

terms we are going to use in the remaining chapter. The output of a generator is said

to be pseudorandom if it is indistinguishable from true random numbers by any efficient

algorithm.

We call an algorithm efficient if it corresponds to a probabilistic polynomial-time Turing

machine (PTM). A probabilistic Turing machine M is a TM that, in addition to the basic

rules, can “flip coins” to decide where to go next. Referring to the definition of a TM in

Chapter 4, this means that for a pair (p, s) of current state and scanned symbol, there

may exist two rules with different pairs (a, q) and (a′, q′) of the symbol to write and the

command to perform. Which rule is applied during a calculation is determined by an

internal coin flip. M(x) represents the probability space that is produced by the constant

input x and all possible internal coin flips. M(x, y) denotes the output of the TM on input
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x and the coin flips y. Polynomial-time means that the TM needs at most p(|x|) steps for

the calculation on input x, where p(.) is a positive polynomial and |x| the length of the

input.

Remark 5.1 (Notation)

Here, we specify some more phrases that we will employ in the following definitions.

• An ensemble X = {Xn}n∈N is a sequence of random variables Xn.

• Let us assume that A is a probabilistic polynomial-time TM. Then Pr(A(Xn, 1
n) = 1)

is the probability that the TM outputs 1 on input (x, 1n) if x was chosen according to

the probability distribution of Xn.

• Um represents the uniform distribution over {0, 1}m.

• {Un}n∈N is called the standard uniform ensemble. However, it is convenient, with

regard to Definition 5.4, to also call ensembles of the form {Ul(n)}n∈N uniform, where

l : N → N is a function on natural numbers.

We are now able to describe the situation that two ensembles cannot be told apart

by any efficient algorithm. We then claim that the two ensembles are computationally

indistinguishable or indistinguishable in polynomial-time.

Definition 5.2 (Polynomial-Time Indistinguishability)

Two probability ensembles, X := {Xn}n∈N and Y := {Yn}n∈N, are indistinguishable in

polynomial time if for every probabilistic polynomial-time algorithm A, for any polynomial

p and for all sufficiently large n

|Pr(A(Xn, 1
n) = 1) − Pr(A(Yn, 1

n) = 1)| < 1

p(n)
. (5.1)

The second input to A specifies the length of the elements in Xn and Yn, respectively. In

this case both random variables are defined over elements of length n. The probability is

taken over {Xn}n∈N (respectively {Yn}n∈N) as well as over the internal coin tosses of the

algorithm A.

An ensemble is said to be pseudorandom if it is computationally indistinguishable from true

random numbers, which are represented by an ensemble of uniformly distributed variables.

Definition 5.3 (Pseudorandom Ensemble)

Let U := {Ul(n)}n∈N be a uniform ensemble, where l is a function on natural numbers.

The ensemble X := {Xn}n∈N is called pseudorandom if X and U are indistinguishable in

polynomial-time.

In the next step we present a definition of a pseudorandom generator, which differs from

the one we will use in Chapter 7. The definition in Chapter 7 describes the structure of a
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generator independently of the quality of the output. Goldreich defines a pseudorandom

generator as an algorithm G that extends an input x into an output G(x) with |x| < |G(x)|,
and, furthermore, the output must be pseudorandom according to Definition 5.3 if the input

is uniformly distributed.

Definition 5.4 (Pseudorandom Generators)

A pseudorandom generator is a deterministic polynomial-time algorithm, G, satisfying the

following two conditions:

1. expansion: there exists a function l : N → N, such that l(n) > n for all n ∈ N and

|G(s)| = l(|s|) for all s ∈ {0, 1}∗. This means that for all s ∈ {0, 1}∗ of length |s|,
the generator produces a binary string G(s) of length l(|s|).

2. pseudorandomness (as above): the ensemble {G(Un)}n∈N is pseudorandom, which

means that for any probabilistic polynomial-time algorithm A, for any positive

polynomial p, and for all sufficiently large n,

|Pr(A(G(Un), 1
l(n))) = 1) − Pr(A(Ul(n), 1

l(n)) = 1)| < 1

p(n)
. (5.2)

The probabilistic polynomial-time algorithm A can be seen as a polynomial-time statistical

test. If there exists an algorithm A such that condition (5.2) does not hold, we say

the generator G failed the test A. Therefore, Property 2 in Definition 5.4 is sometimes

described as the fact that G passes all polynomial-time statistical tests.

From a pseudorandom generator we expect that an observer who knows i bits of the

output is not able to predict the (i + 1)-th bit effectively with a probability significantly

greater than 1
2
. This property is called (next-bit) unpredictability. We will see that our

definition of a pseudorandom generator meets this requirement.

Definition 5.5 ((Next-Bit) Unpredictable)

An ensemble {Xn}n∈N is called unpredictable in polynomial-time if for every probabilistic

polynomial-time algorithm A and every positive p and for all sufficiently large n,

Pr(A(Xn, 1
n) = nextA(Xn, 1

n)) <
1

2
+

1

p(n)
, (5.3)

where nextA(x) returns the (i + 1)-th bit of x if A, on input (x, 1n), reads only i < |x| of

the bits of x, and returns a uniformly chosen bit otherwise (i.e., in case A reads the entire

string x).

Remark 5.6 Goldreich states in [Gol95, p. 90] that a probability ensemble {Xn}n∈N is

pseudorandom if and only if it is (next-bit) unpredictable.

As a consequence, the output of a pseudorandom generator is (next-bit) unpredictable.
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5.1.1 Existence of Pseudorandom Generators

After having defined pseudorandom generators, the question remains if generators with

such properties even exist. The existence cannot be shown directly. However, under

unproven but widely believed assumptions like the intractability of factoring large integers

we can claim the existence. The Blum-Blum-Shub generator in Chapter 11 is one of the

few generators that are proven to be pseudorandom under such assumptions. A further

theorem shows the connection between pseudorandom generators and one way functions.

Theorem 5.7 (On the existence of pseudorandom generators)

Pseudorandom generators exist if and only if one-way functions exists.

The proof of this theorem can be found in [Gol95, p. 90 and p. 106].

One-way functions are a class of important cryptographic primitives. They are easy to

compute but hard to invert.

Definition 5.8 (One-Way Functions)

A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two conditions hold

1. “easy to compute”: There exists a (deterministic) polynomial-time algorithm, A,

such that on input x algorithm A outputs f(x) (i.e., A(x) = f(x)).

2. “hard to invert”: For every probabilistic polynomial-time algorithm, A′, every

polynomial p(.), and all sufficiently large n,

Pr(A′(f(Un), 1
n) ∈ f−1f(Un)) <

1

p(n)
.

Ideal hash function as described in Section 3.2.4 are examples of one-way functions.

5.2 Polynomial-time Statistical Tests and Random-

ness

For the definition of pseudorandomness we limited our discussion to class of polynomial-

time statistical test with the justification that this family includes all efficient methods

which are realizable for larger input sizes n. Many conventional tests of randomness fall

into this category (see [Knu98, Chapter 3.3] for examples).

However, there also exist important tests for verifying the randomness of a sequence

of binary strings, which cannot be implemented in polynomial-time. The probably most

famous one is the spectral test, which measures the correlation between overlapping n-

tuples in the output of a RNG. This test is designed for deterministic generators (see

Section 7.1.1) with periodic output and a lattice structure. Let us assume that the RNG

outputs the sequence x1, x2, . . . , xN with period length N . Without loss of generality we
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suppose that xi ∈ [0, 1], 1 ≤ i ≤ N . For this test, we consider the overlapping n-tuples

(xi, xi+1, . . . , xi+n), 1 ≤ i ≤ N . Each tuple represents a point in the n-dimensional unit

cube. The test determines the maximal distance between adjacent hyperplanes, out of the

family of all parallel hyperplanes that cover every n-tuple. The smaller the distance is, the

more regular the points are distributed in the n-dimensional space and the less correlated

are particular points. The test requires the shortest vector algorithm, which cannot be

implemented in polynomial time. Fincke and Phost introduced in [FP85] an algorithm

to calculate the shortest vector and showed that the problem is NP-hard. However, an

approximation of the shortest vector can be obtained by the LLL-algorithm which runs in

polynomial-time [LLL82].

5.3 Polynomial-time and Efficiency

In computational theory an algorithm is called efficient if it runs in polynomial-time.

However, is such an algorithm always the fastest choice? The condition guarantees

that even in worst case, the number of calculation steps does not grow too fast with

increasing input length. Still it may happen that for small input sizes a non-polynomial-

time algorithm runs faster than a polynomial one, especially if the latter is bounded by a

polynomial nc with large constant c. Furthermore, in practice average-case time complexity

is more important than the worst case one. An algorithm that has a non-polynomial-time

worst-case complexity but runs in polynomial-time in the average-case may still provide

an adequate performance. Consequently, polynomial-time algorithms are not always the

fastest choice, especially if the input size is limited.

5.4 Kolmogorov Complexity versus Computational

Indistinguishability

The notion of randomness corresponding to Kolmogorov complexity, as well as the notion

of pseudorandomness in this chapter use statistical tests in their definitions. The first

concept is defined for a single sequence, whereas the latter one is defined for probability

ensembles. Consequently, the second one judges the whole behavior of a random source

and not just a single output.

Chapter 5 considers only those statistical tests that run in polynomial-time, thus

the number of possible tests is smaller than in the previous chapter and, therefore, the

condition to pass all tests is weaker. For this reason, it is possible that sequences that

are generated from shorter seeds are pseudorandom although they are not random with

respect to Kolmogorov complexity.

We should not forget that the whole output of a pseudorandom generator, according to

the definition in this chapter, depends on a relatively short seed. Thus, the security of the

generator is limited to the length of the seed and the output is vulnerable to theoretical
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brute-force attacks (trying out all possibilities) on the seed. Since the number of attempts

during such an attack grows exponentially with the length of the seed, this case does not

play an important role in practice if the size of seed is chosen large enough.

5.5 Pseudorandomness and Cryptographic PRNGs

The definition of pseudorandomness is based on the requirement that the output of

a good RNG should be indistinguishable from uniformly distributed random variables.

The problem of this definition is that polynomial-time statistical tests are not sufficient,

since there exist desirable properties for random numbers that can only be checked by

non-polynomial-time tests, like the spectral test. For linear generators, the results of

(polynomial-time) statistical tests regarding a standard battery of tests like DIEHARD

[Mar95], may be satisfactory, but still the generator may fail the spectral test Thus, the

concept of polynomial-time indistinguishability is indeed of theoretical importance, but

not very usable in practice.

Furthermore pseudorandomness is exclusively defined for completely deterministic

RNGs. A generator that processes unpredictable external input is not covered by this

definition, since normally the probability distribution of the output is unknown and does

not depend entirely on the initial seed.

Still, the output of generators, which are proven to be pseudorandom at least guarantee

a minimum of “randomness”. However, since these generators are quite slow, they are

seldom used in practice.



Chapter 6

Summary of Part I

In the previous chapters we studied three different concepts of randomness. Each of them

has its advantages and its drawbacks. Let us assume that we apply those methods to

evaluate the output of a random number generator.

Entropy as well as pseudorandomness are defined for sequences of random variables,

whereas Kolmogorov complexity is defined for individual strings. In the case that we or an

adversary has any information about the probability distribution of the output, we would

prefer Shannon’s entropy, since it, in contrast to Kolmogorov complexity, entropy employs

the whole information. However, if the distribution of the output is unknown we have to

apply entropy estimators. Generally, entropy is a very practical term for describing the

“mixing” operations within a RNG.

In return, the Kolmogorov complexity is defined for individual strings and is thus

applicable if we do not know the distribution law of the source. However, since

the complexity is not computable in general we are forced in practice to employ

approximations.

The definition of pseudorandomness is based on the fact that a sequence of numbers

is not random if and only if this statement follows from a statistical test. In our case we

limit our considerations on polynomial-time statistical test due to the fact that those tests

may still be done efficiently, even for larger input sizes n. Since not all important tests of

randomness can be realized in polynomial-time this definition is only partly meaningful.

Generally speaking, in all three cases, we are often unable to employ the definitions

directly but have to rely on approximations or estimators, especially if some basic

conditions, like the distribution of external input, are unknown.
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Part II

Practical Generators
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Chapter 7

A Selection of Cryptographic

Randomnumber Generators

This part deals with real-world random number generators for cryptographic applications.

The first chapter gives a short introduction to the structure and the most common problems

encountered with such generators. Additionally, we shall introduce a general scheme to

describe and compare the different RNGs. In the following chapter we discuss several

possible attacks on random number generators. The aspect of attacks is the main difference

between RNGs for stochastic simulations and for cryptographic applications. In the last

chapters we will study five different generators, their structure, their resistance against

attacks, and their behavior in practice.

7.1 Three Categories

The random number generators which we are going to discuss in the following may be

divided into three different categories, namely pseudorandom number generators, entropy

gathering generators, and hybrid generators.

7.1.1 Pseudorandom Number Generators

This type of RNGs is referred to as pseudorandom number generators (PRNG), since

their output satisfies many conditions that we expect from random numbers, although the

generator operates in a deterministic way. Linear Congruential Generators (LCG) are a

simple example of a PRNGs:

Xn+1 = (a ·Xn + b) (mod m) (7.1)

Once the parameters a, b and m are chosen, the sequence of generated pseudorandom

numbers (Xn)n≥1 will depend only on the initial value X0. For example, the Unix

rand generator is implemented by a LCG with parameters a = 1103515245, b = 12345

and m = 231. The characteristic of PRNGs is that they produce a long sequence of
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random numbers from a short initial input, the so-called seed, by means of a completely

deterministic algorithm. A mathematical discussion of this class of generators can be found

in [L’E94] and a slightly modified, more recent version in [L’E04]. In this category we also

find BBS and AES, which will be presented in Chapters 11 and 12.

The security analysis of such an algorithms in a cryptographic context is not restricted

to a statistical analysis of the output of the generator, but we may also study the algorithm

itself as well as the reseeding procedure. This analysis allows us to make statements about

properties like periodicity, next-bit predictability (Definition 5.5), or correlations within

the generated sequence of pseudorandom numbers. Many of these statements assume that

the seed of the generator has been chosen at random, i.e. it is a realization of a sequence

of i.i.d uniform random variables. In practice, this assumption implies that we are able

to provide high quality random numbers for seeding. PRNGs may be used when a slow

source of high quality random numbers (like true random number generators, see Section

7.1.2) is available and a large amount of random numbers is required.

However, the main problem of such generators is that as long as they use the same

seed, they are completely vulnerable to state compromise attacks (see Section 8.3). If an

adversary is able to guess the current state of the generator, he or she will be able to

calculate all future random numbers and often even the previous ones.

Another dangerous situation may occur, if we fork a process that holds the PRNG. A

fork creates a copy of the process including the values of all internal variables. We will

illustrate the problem by a simple server application:

Let us consider a process P within a server that answers customer requests. In order

to provide secure communication, the process uses a PRNG to create session keys for

encryption. The seed of the generator is symbolized by V1 and all subsequent states by

Vn, n > 1. The answer mechanism of the process causes a fork of P, which creates an

identical copy P′ of the main process P. P′ contains a copy of all variables in P including

their content at the time of the fork. Now let us assume that two customer try to access

the server at the same time. The answer mechanism will produce two identical copies

P′ and P′′ of the main process (Figure 7.1), which each holds exact copies of the seed

V ′
1 = V ′′

1 = V1. Thus, both processes will create exactly the same session keys. To solve

… …

…

…
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Figure 7.1: The fork command

this problem, we need to reseed the generator after each fork of the process. A common
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but wrong solution would be to reseed the generator depending on the system time. The

main problem with this method is that if the two processes P′ and P′′ are generated shortly

after each other, then due to a probably too low resolution of the clock the two process

may be reseeded with the same time.

The fork feature is part of the POSIX (Portable Operating System Interface) standard

[POS05] and is therefore implemented by any operating system that supports this standard,

like Unix, Linux, or Microsoft Windows. Thus, this feature is a common pitfall in the use

of PRNGs for cryptographic applications on all computing platforms. If we want to employ

this kind of generators we have to be able to provide good entropy sources for the reseeding.

7.1.2 Entropy Gathering Generators

The second kind of random number generators processes input from different noise sources.

At first, it extracts and stores data from the source, then it tries to estimate the entropy

of the input, and limits the number of output bits to the amount of entropy that has

been gathered. We may refer to this type as entropy gathering generators. The generator

/dev/random (Chapter 9) is one example of this kind, but also every true random number

generator (TRNG) falls into this category. By a TRNG we mean a generator which

uses physical effects, like noise of semiconductor elements or radioactive decay, to collect

entropy. The quality of entropy gathering generators depends highly on the selection of the

~
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Figure 7.2: Structure of a TRNG

noise sources and on the adequateness of the entropy estimation. If an adversary is able

to influence or to observe one of the sources used, he or she may gain information about

the output of the generator. Of course we would like to prevent any attack that allows

an adversary to obtain information about the inner state of the RNG. Let us consider two

possible kinds of attacks:

• passive attacks: The adversary observes the noise source and part of the output of

the generator. If he or she is able to discover any correlation between those two

streams it may be possible to use this knowledge to predict future output.

• active attack : The adversary is able to influence the noise source and is thus able to

introduce a bias into the generated sequence. This kind of attack is particularly
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effective, since the adversary may try to adapt the input noise to the specific

properties of the generator and forces the RNG to produce highly predictable output.

A more detailed description of possible attacks can be found in Chapter 8. To minimize

the power of such attacks, generators often use cryptographic primitives like hash functions

or block ciphers for mixing the input or for masking the inner state against the output.

The security of the generator thus depends on the security assumptions of the primitives

used. Block ciphers are also used to stretch the amount of generated random numbers.

Therefore, generators which employ block ciphers often fall into the third category (see

below). However, it is common practice to use cryptographic hash functions like SHA-1

(Secure Hash Algorithm [Nat02]) or MD5 (Message-Digest Algorithm [Riv92]) in entropy

gathering generators.

Let us shortly discuss the usage of hash functions. In general, a hash function maps an

arbitrary binary sequence to a (shorter) binary sequence of a fixed length. The fixed-length

sequence is called the hash value or message digest. For cryptographic hash functions we

assume that

• in practice, with limited computational resources, it is not possible to calculate the

original message, given the resulting hash value (thus, hash functions are should be

called one-way functions),

• by changing one bit of the input, about half of the output bits are changed (this

property is called avalanche effect),

• every output bit is a function of all input bits, and

• It is practically impossible to find two input sequences that are mapped to the same

output string (there is a low probability of collisions).

Under the condition that the generator uses a cryptographic hash function that fulfills

the above criteria to mix the input of noise sources into the inner pool, the following

assumptions are justified.

First let us assume that the inner state has n bits of entropy with respect to an

adversary, which means on average the adversary would have to ask about n questions

to guess the content of the state. Even if the adversary completely knows the content of

the next input that gets mixed into the state, the state will still contains n bits of entropy

after the mixing has been done. Likewise, if the adversary knows the current state of the

generator, but the next input contains n bit of entropy, then after the mixing procedure

the entropy of the state is again n bits. Consequently, the entropy of the unknown data

was conserved. (see also Section 3.2.4 for this topic)

If the hash function is employed to produce the random numbers from the inner state,

then it is practically impossible, to recover the inner state from the observed random

numbers.
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We will encounter several examples for the use of such cryptographic primitives like

cryptographic hash functions in the subsequent generators.

In addition to the choice of adequate noise sources and reliable entropy estimators,

speed is the main problem of entropy gathering generators. Since most of the time the

noise sources produce entropy only at a low rate, these generators are considerably slower

than generators of the first or the third category.

7.1.3 Hybrid Generators

The last kind of RNGs is a hybrid of the first two categories. Not only does it collect

entropy, but it also uses some additional methods to enhance the amount of generated

random numbers. Two examples are the Yarrow generator and the HAVEGE generator in

Chapters 10 and 13, respectively.

Yarrow continuously gathers entropy from external sources. If the user demands more

random numbers than the estimated amount of collected entropy, an additional PRNG is

used to stretch the gathered information.

HAVEGE follows another strategy. It does not only collect input from a noise source

but amplifies the collected entropy by directly influencing the source. Two random walks

through a table filled with random numbers are employed to enhance the “chaotic” behavior

of the processor.

7.2 General Problems and Properties

Apart from statistical properties, the two main requirements for cryptographic RNGs are

speed and robustness against attacks. Speed may not play such an important role if random

numbers are used to generate a single cryptographic key, but for all applications that

require a large amount of random numbers like stream ciphers, simulations, or masking

of protocols, speed is a basic prerequisite. Robustness against attacks clearly plays an

important role for cryptographic RNGs. Several possible attacks are explained in Chapter

8. The RNG of the SSL (Secure Socket Layer) encryption in the Netscape browser Version

1.1 is a famous example of a generator which did not satisfy the criterion of robustness.

The main reason for the weakness of this generator was the inappropriate choice of random

sources, like the process ID and the current time. A 128-bit session key produced by this

generator only contained at most 47 bits of entropy and, thus, could be broken within

minutes [GW96].

Especially with PRNGs, robustness and speed are often contradictory properties. Fast

and simple generators like linear feedback shift registers (LFSR) are most of the time not

sufficiently secure for cryptographic applications. In the case of an LFSR, an adversary

is able to determine the seed of a generator of length n by observing only 2n consecutive

output bits, due to the low linear complexity of the output stream [Sch93, p. 353]. In

return, PRNGs that are more robust against attacks, like the Blum-Blum-Shub generator,



52 CHAPTER 7. A SELECTION OF CRYPTOGRAPHIC RNGS

described in Chapter 11, are usually much slower. However, there exist notable exceptions

like AES (described in Chapter 12), which combines speed with high robustness against

attacks.

The basic problem of random number generators is where to find randomness in such a

deterministic device as a computer. Every RNG, even one of the PRNG category, needs at

least once a source of randomness to produce random numbers. Often mentioned sources

of randomness are user input, like mouse movements or time between keystrokes, audio

devices, network statistics, or current system time [Ell95, p. 6 ff.].

System time is probably the worst choice of the examples mentioned above. If the

execution time of the random number generator is approximately known, the time will only

contain a few bits of entropy. This was the main problem of the Netscape browser v1.1

[GW96] and the Kerberos V4 [DLS97] implementations. Nevertheless, the time difference

between two high resolution clocks, like a hardware clock and a software clock, may be

used to gather a reasonable amount of uncertainty.

However, other sources also have their drawbacks. Network activities always contain

the risk of observation or are nonexistent if the computer is not part of a network. User

input from a mouse or a keyboard is not available for all computers and remote user input

may again be observable. The randomness of an audio device gets highly reduced if the

device gets fed with a high-amplitude periodic sound.

In addition, the operating system in use may influence the uncertainty of the sources

as well. For example, some OS offer a “snap to” functionality of the mouse, which snaps

the mouse pointer to the center of an icon, as soon as the pointer gets near to it. The

entropy of the mouse device thus becomes considerably reduced by such a functionality.

Generally, the treatment of interrupts by an OS highly influences the amount of entropy

that can be gathered from external events. Consequently, the quality of random sources

also depends on the OS used.

Some RNG developers may be tempted to pass the choice of applied random sources

to the user. This allows to optimally adjust the generator to the available system. But

most of the time such intentions will result in worse random numbers, since the average

user has even less knowledge about appropriate entropy sources or just does not want to

think about such problems. A similar situation occurred in connection with OpenSSL. In

Version 0.9.5 of OpenSSL the program checked for the first time if any entropy was added

to the PRNG used. This step produced lots of error messages, since most of the users

never applied any random source. In many mailing lists a popular recommendation for

this problem was to feed the random number generator with a fixed string like the sentence

[Hes00]

"string to make the random number generator think it has entropy".

There exist no general studies concerning the amount of entropy the sources, mentioned

above, are able to provide. However, such studies would be difficult, since the amount

highly depends on the specific configuration of the system used. Generally, practitioners
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suggest to apply several separated sources and to mix them by means of an appropriate

function (e.g., a hash function) [Ell95, p. 11]. Thus, defects of single sources should be

compensated. But if heavy defects occur in all sources used, the quality of the generated

random numbers will still suffer from this fact. For this reason, it would be advisable to

continuously check by means of statistical tests that no total breakdown of the entropy

sources happens.

In general, the quality of produced random numbers can only be judged by statistical

tests. Consequently, for any statement about the quality of a RNG, it is important to

know on which tests this statement is based.

7.3 Description scheme

We will now introduce a scheme for describing RNGs, which is derived from L’Ecuyer’s

[L’E94] definition for pseudorandom number generators. Whereas L’Ecuyer’s definition

is limited to the first kind of generators, our enhanced version allows to cover all three

categories by adding the notion of an input-dependent transition function.

L’Ecuyer defines a random number generator by a tuple (S, T,O, g, s0), where S
represents the finite state space, O the finite output space, T : S → S the transition

function, g : S → O the output function and s0 ∈ S the seed of the generator. The

generator starts in the initial state s0. In each iteration, the state sn ∈ S is changed by

the transition function T to the next state sn+1,

sn+1 = T (sn).

The output on ∈ O is produced by means of the output function g,

on = g(sn).

The output sequence (on)n≥1 is periodic, since only a finite number of different states are

available and the next state depends uniquely on the current state. The size |S| of the

state space is an upper bound to the period length of the output.

L’Ecuyer’s scheme is limited to generators which, after seeding, never process any input.

Thus, their transition function T is constant. We extend his definition to a more complex

transition function T : I × S → S that calculates the next state depending on the current

state sn as well as on an external input in ∈ I, such that sn+1 = T (in, sn). This extension

allows us to describe a more general family of generators.

Definition 7.1 (Random Number Generator (RNG))

A RNG is a tuple G = (S, T,O, I, g, s0), where

• S is the finite state space,

• O is the finite output space,
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• I is the input space,

• s0 ∈ S is the seed,

• g : S → O is the output function and

• T : I × S → S is the transition function.

The time steps n ∈ N are chosen such that n is increased every time new output is

generated. Thus, for any n ∈ N, the output is computed by

on = g(sn),

and the new state is generated by

sn+1 = T (in, sn),

depending on the current state sn and the input in ∈ I. Most of the time, generators are

able to process arbitrarily many input strings between the generation of two consecutive

outputs. All input strings that are processed between the generation of on and on+1 are

combined together to the input in. In such a case the input space may, at least theoretically,

be assumed to be infinite, since in may be derived from arbitrarily many input strings. The
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Figure 7.3: The general structure of a RNG

layout of this structure can be found in Figure 7.3. Our definition allows us to describe all

three different categories of random number generators. We distinguish two special cases.

7.3.1 Case 1: Constant transition function

The first category is represented by the special case of a constant transition function. It

reflects L’Ecuyer’s original definition and, thus, describes our PRNG category (Section

7.1.1). In this case, T does not depend on any input and the class of functions

{T (i, ·) : i ∈ I} reduces to the function T (·). The input space is empty (I = ∅).



7.3. DESCRIPTION SCHEME 55

Remark 7.2

1. Since S is finite, the output of the generator will be periodic with a period less than

or equal to the number |S|. Well-designed RNGs of this kind have a period length

that is almost as large as the state space itself.

2. A sequence generated from this kind of generator is completely reproducible once the

seed s0 is known. Thus, only the short seed has to be transmitted or stored to obtain

the original sequence, which is useful in the case of stream ciphers.

3. Concerning security, the disadvantage of this kind of generators is that if the state is

compromised once, all future outputs are predictable.

7.3.2 Case 2: Input-dependent transition function.

This case covers the second and the third category of random number generators (Sections

7.1.2 and 7.1.3). The transition function additionally depends on external input in ∈ I.

On the assumption of random input, the output of this kind of generators generally loses

its periodicity.

Remark 7.3

1. The seed is less important and most of these generators recover from a compromised

state.

2. If we need the property that the output is reproducible from a short sequence, this

family of generators is not appropriate.

3. Theoretical analysis of these generators like a priori analysis of the period length

of output streams or correlation analysis by number-theoretical figures of merit like

discrepancy (see [Nie92]) or the spectral test (see [Hel98] and [L’E04]) is impossible

7.3.3 Cryptographic Strength

The strength of a generator is an additional figure of merit, which we will use to compare

different RNGs. It represents the number of bits of the inner state that must be guessed

by an adversary to predict the next output.

In the next chapter we discuss more closely possible attacks on cryptographic random

number generators. The remaining chapters are then used to introduce five examples of

RNGs. In addition to the description of each generator we will consider security aspects

as well as their practical usability.
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Chapter 8

Attacks

The main difference between random number generators for stochastic simulations and

cryptographic applications is that in cryptographic systems the RNGs additionally have

to provide robustness against attacks. [KSWH98, p. 3] defines an attack as ”. . . any

method of distinguishing between PRNG outputs and random output”. For us an attacks

means the attempt

• to learn about the unknown output,

• to gain information about the inner state (and, thus, about future output), or

• to manipulate the output of the generator.

We split the possible attacks into three different classes, cryptanalytic attacks, input based

attacks, and state compromise extension attacks. The first type tries to gain information

about the inner state or future output of the generator by observing parts of the current

output. Input based attacks achieve their goal by observing or manipulating the input of

the RNG. The aim of the last kind of attack is to extend the knowledge of the current

generator state to the future or the past.

In this chapter we introduce several different attacks. We will show how they work and

which effects they have on real RNGs. The classification and some examples are taken

from [KSWH98]. Additional examples can be found in [DLS97] and [Gut98]. This chapter

should not be seen as a complete reference of all possible attacks but as an introduction

into this topic. It should encourage the reader to examine a generator more closely before

using it. Furthermore, it should enhance the understanding of the security aspects in the

subsequent discussion of RNGs.

8.1 Direct Cryptanalytic Attacks

During a cryptanalytic attack the adversary observes the output and tries to gain any

information about the inner state or future output of the generator. Many RNGs use

57
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cryptographic primitives like hash functions (e.g. SHA-1 or MD5) or block ciphers (DES,

Triple-DES, AES) to prevent this kind of attacks. The underlying assumption is that the

cryptographic security of the primitives transfers to the generators which employ them.

Generally, the confidence into the security of this primitives is based only partially on

mathematical analysis but mainly on empirical results and statistical tests. Since most

of the applications that apply cryptographic RNGs rely on those primitives, we may have

confidence in their security as well.

Nevertheless, it is not advisable to blindly trust generators that are built on

cryptographic primitives as we will see by the example of the Kerberos 4 session key

generator [DLS97]. The specific method of employing the primitives has a main impact on

the security of the generator as well. The Kerberos 4 generator produces a 56-bit key for

a DES block cipher by two successive calls of the UNIX random function which uses only

a 32 bit key. The random function is seeded every time a key is requested. Consequently,

the strength of the encryption and, thus, the resistance against cryptanalytic attacks is

reduced from 56 to 32 bits. It still takes about 6 hours on a DEC Alpha [DLS97, p. 5] to

gain the proper key of a plaintext-ciphertext pair by brute force, but we see that the 56

bit strength of the encryption is only an illusion. It is the weakest link in the chain that

counts.

By the example of the RSAREF 2.0 generator [DLS97, p. 11 ff.], we shall study two

additional cryptanalytic attacks which are especially dangerous for counter-based RNGs.

The inner state of the RSAREF 2.0 generator consists of a 128-bit counter Ci, i ≥ 1. Every

time external input Xi occurs, it is used to additionally change the content of the counter

by means of a MD5 hash function

Ci+1 ≡ Ci +MD5(Xi) (mod 2128).

The output of the generator is produced by

output[i] ≡ MD5(Ci) (mod 2128) and

Ci+1 ≡ Ci + 1 (mod 2128).

We are now going to explain the concept of a partial precomputation attack and a timing

attack by the example of this generator.

8.1.1 Partial Precomputation Attack

A partial precomputation attack may be launched on any generator which uses a counter.

Suppose no input is processed and an adversary is able to observe t successive outputs. In

a next step, he or she has to compute the output (in our case, the hash-function) of every

t’th value of the counter and to store it in a list. One of the t observed values must be

included in the list. Having found the entry in the list, the inner state of the generator

is revealed. All further outputs are known as long as no new input is processed. For a
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128-bit counter this attack is not very practical. Even if the adversary is able to observe 232

consecutive outputs, 296 possible precomputations have to be done and stored. There are

many attacks which appear not to be useful in practice, but they give an idea of possible

flaws, especially when some methods can be combined.

8.1.2 Timing Attack

This attack uses the fact that the incrementation of a counter requires different amounts

of time, depending on how many byte additions have to be made. If an adversary has the

possibility to measure the time needed for incrementing the counter, he or she may draw

conclusions on the number of zeros in the current state of the counter. It may be possible

to guess the point of time, when all the low order bytes of the counter are zero, since then,

the previous increment has needed particularly many byte additions. Such a situation is

considered as a “weak state” in a timing attack. The information we have gained due to

this attack can be combined with a precomputation attack. This means the adversary

knows when it is more profitable to compare the output to the precomputation list.

8.2 Input Based Attacks

In an input based attack the adversary is able to observe or to manipulate the input of the

generator. The goal of this action is to reduce the number of possible outputs, so that it

becomes easier to guess them, or even to force the generator to produce designated output.

There are three different kinds of input based attacks, chosen input attacks, replayed input

attacks, and known input attacks. We are going to present the different attacks by the

means of several examples.

8.2.1 Chosen Input Attacks

Here, the adversary has the power to directly manipulate the input of the generator. Such

a situation appears relatively seldom, but allows very effective attacks.

At first, we shall study this attack by the example of the DSA generator [KSWH98,

p. 8 ff.]. The generator is based on the SHA hash function and was designed to produce

DES keys. All additions are done modulo 2N , where 160 ≤ N ≤ 512. In our example

we use N = 160, because this value represents the weakest version of the generator. The

generator contains an inner state Xi, i ≥ 1. New input Wi is processed every time an

output is generated. If no input is available, Wi is set to zero. The output is produced by

output[i] ≡ SHA(Wi +Xi (mod 2160)) and

Xi+1 ≡ Xi + output[i] + 1 (mod 2160).

An efficient attack would be to set the input of the generator to

Wi ≡ Wi−1 − output[i− 1] − 1 (mod 2160).
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This new input forces the generator to cycle immediately, but does not give any information

about the actual value of the output.

Another chosen input attack is shown in [KSWH98], this time on the RSAFEF 2.0

generator (see Section 8.1). At first, the adversary has to find an input inputn, such that

MD5(inputn) has all ones in the n low order bytes. If the generator is fed with this input

every time an output is generated, then the RNG is forced to cycle after 2128−8n outputs,

since the low order n bytes never change. It is quite expensive to find a suitable inputn
for greater values of n. We may use the birthday paradox [MvOV01, p. 53 and p. 369

f.] to reduce the precomputation effort. This paradox states that if we choose elements

out of a set of size 2N according to a uniform distribution, we may expect to have chosen

two identical elements after 2
N

2 attempts. We use this effect to find two values x1 and

x2 such that MD5(x1) +MD5(x2) modulo 2128 has all ones in the n low order bytes.

The generator is fed with the series x1x2x1x2 . . ., which has the same effect as feeding the

generator with inputn. However, due to the birthday paradox it is much easier to find

suitable x1 and x2. With n = 16 we only need approximately 264 = 2
16·8

2 searches, but

force the generator to cycle immediately.

There also exists another chosen input attack on the RSAREF 2.0 generator. In this

case, we are not forcing the generator to cycle but to repeat a specific previous output. If

no input was processed for j consecutive outputs, then the generator can be brought into

the previous state Ci−j by feeding an input Xi such that MD5(Xi) = −j (mod 2128).

Replayed Input Attack

An attack which is similar, but not as effective as the chosen input attack, is the replayed

input attack. In this case the adversary may replay existing input, but is not able to

manipulate it arbitrarily.

8.2.2 Known Input Attack

During this kind of attack, the adversary is able to observe part of the input but he or

she may not manipulate it. The knowledge of the input may be used to limit the number

of possible output values and, thus, to reduce the strength of the generator, or to support

other attacks, like for example brute force. Known input attacks can occur if the entropy

estimation of the input is incorrect, or if observable input devices are applied. The first

case means that the collected entropy contains less entropy regarding an adversary than

the user may assume. The case of observable input can occur if remote user input, which

was sent over a network, is employed as an input source. Generally, any information that

is transferred over a network is a dangerous source of randomness.

One example of a known input attack on the Kerberos session key generator can be

found in [DLS97]. As we have already shown in Section 8.1, the strength of the generator

is at most 32 bits. The random function is seeded with a 32 bit key every time a DES key
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is requested. The seeding is done by a XOR combination of

• the time of day seconds since UTC 0:00 Jan. 1, 1970,

• the process ID of the Kerberos server process,

• the cumulative count of session keys generated,

• the fractional part of time of day seconds since UTC 0:00 Jan. 1, 1970 in

microseconds, and

• the hostid of the machine on which the Kerberos server is running [DLS97, p. 4].

Almost all entropy of the key is contained in the least significant 12 bits of the seed. The

remaining first 20 bits stay constant for a period of about 12 days (220 seconds). If the seed

is determined once by a 32 bit brute force attack, we can use this information to reduce

the strength of the generator down to 12 bits. 12 bits can be cracked easily by brute force.

The 12 day period of the validity of the first 20 bits makes the session keys also vulnerable

for a precomputation attack. The adversary has to calculate the cipher text for a given

plaintext and for all 212 possible keys if the first 20 bits are known. Subsequently, all the

cipher text and key pairs have to be stored in a sorted table. To find the right key, only

the matching entry in the table must be found. With precomputation, the session key can

be found within a few hundreds of milliseconds, without it takes a few seconds. Thus, we

see, that the knowledge of part of the input helps to gain the DES-key much easier.

8.3 State Compromise Extension Attacks

In this case we assume that at a given moment the adversary already knows part of the

inner state of the generator. The attack tries to extend this knowledge to further points

in time and to previous or future output, respectively. Such a situation may occur if the

generating process was forked or if the RNG was started in an insecure state. The second

case happens when the generator uses a fixed initial value (e.g. all zeros) and completely

trusts in the processing of input, or if the generator was seeded from a file which was

accessible to the adversary. During the generation process, the inner state may be revealed

if it gets swapped onto an insecure part of the hard disk. A swapping happens for example

if the memory in the processor becomes too small and old data has to be removed to make

space for new data. [Gut98] suggests a few guidelines to protect the inner state of the

generator. One of them would be to choose the strictest access possible for any file that is

applied during the generation of random numbers. Generally, all generators of the PRNG

category are jeopardized by state compromise extension attacks, since they never process

any input. However, also other generators are vulnerable to these attacks as we will see

by the example of the ANSI X9.1 random number generator [KSWH98, p. 5 ff.].
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This RNG employs a secret and fixed Triple-DES key K. The output is generated with

the help of the current time, the internal state Xi, i ≥ 1, and the DES encryption function

EK by

Ti = EK(currenttimestamp),

output[i] = EK(Ti ⊕Xi), and

Xi+1 = EK(Ti ⊕ output[i]).

The operation ⊕ represents the bit-wise XOR operator. In all of the following attacks we

assume that the adversary was able to learn the secret key K.

8.3.1 Permanent Compromise Attack

This attacks means that a generator never fully recovers from a compromised state. The

adversary is able to determine future and even previous output values.

Let us assume we could expose the key K of the ANSI X9.17 generator. Since the key

is never changed by any new input, we process this information for the future at least

until the whole generator including the key is reseeded. Some times later we observe two

successive outputs (output[i], output[i + 1]). Assuming the current timestamp contains

only 10 unknown bits, which is a realistic value, there are 210 guesses for each Ti and Ti+1.

Xi+1 can be calculated by two different methods

Xi+1 = DK(Ti+1 ⊕ output[i+ 1]) and

Xi+1 = EK(Ti ⊕ output[i]),

where DK stands for the DES decryption. For each guess of Ti, Xi+1 is calculated and stored

in a sorted table. Subsequently, the calculation is done for each Ti+1. The correct value of

Xi+1 appears as a result of both computations. Thus, we only need about 211 calculations

to reveal the current state Xi+1 of the generator (210 calculations for determining Xi+1

from Ti and Ti+1, respectively).

8.3.2 Backtracking Attack

A backtracking attack uses the compromised state to gain information about previous

outputs. With the ANSI X9.17 RNG it is as easy to learn about future outputs as previous

once if we use the same method as in the permanent compromised attack.

8.3.3 Integrative Guessing Attack

In this attack the adversary knows the current state S of the generator at time t and

observes subsequent output. In contrast to a permanent compromise attack it is sufficient

to know only a function of the output, not the output itself. Such a function could be an
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encryption with the help of a generated key. An iterative guessing attack uses guessable

but unknown input to determine the state S at time t + ε.

In the case of the ANSI 9.17 generator it is quite easy to apply this attack for ε = 1.

Let us suppose, that we know the current state of the generator at time i including K, Xi

and output[i] and that we see a function of output[i+ 1]. We use the previous assumption

that the time contains only 10 bits of entropy. Then, we need to test at most 210 possible

input values and compare the results with the function of the output[i + 1] to predict the

inner state Xi+1.

8.3.4 Meet-In-The-Middle Attack

The Meet-In-The-Middle attack combines the methods of the iterative guessing attack

and the backtracking attack. The knowledge of the state S at time t and t+ 2ε is used to

determine the state at time t+ ε.

Let us assume that the ANSI X9.17 generator produces a sequence of eight consecutive

cipher keys for encrypting a plaintext. The output of the generator is unknown but we

were able to learn the states Xi and Xi+1 and the encrypted ciphertext, which used the key

produced at time t + 4. We assume that each timestamp contains 10 bit of entropy. The

Meet-In-The-Middle attack allows us to find the key with much less costs than 280 attempts.

In the same way as was described for the permanent compromise attacks, we calculate Xi+4

from the front and from the back by guessing Ti+1,i+2,i+2,i+4 and Ti+5,i+6,i+7,i+8. About 241

calculations must be done. The values of the computations from both sides are stored in

two lists and are compared to each other. 216 matches will be found. A final 216 key search

reveals the proper key to the observed ciphertext.

Time Entropy Issues

The entropy of a time stamp must be estimated very carefully. In particular, when the

generator is used to generate successive outputs in a very short period of time. If two

keys are generated by consecutive calls of a RNG, the corresponding timestamps will differ

only by a few bits. This property allows different kind of attacks but it makes especially

Meet-In-The-Middle attack even more effective.

Some of these attacks may be easily prevented by simple countermeasures. State

compromise attacks can be avoided by frequently changing the complete state of the

generator. The power of input based attacks can be reduced by using different input

sources and by combining all the collected data with the help of a cryptographic hash

function.

A detailed description of attacks and possible counter measures can be found in

[KSWH98].
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Chapter 9

/dev/random

The device /dev/random is probably the most common random number generator within

the Linux kernel. It was designed by Theodore T’so and is part of the Linux kernel since

Linux 1.3.30 (1995). In our discussion we refer to Version 1.89 [Ts’99] of the generator.

/dev/random gathers entropy from external events like user input or unpredictable

interrupts. The generator estimates the collected entropy and produces at most that many

random bytes.

A variant of this generator is /dev/urandom. This device produces as many random

bytes as are requested by the user without checking if enough entropy was gathered.

Consequently, the output of /dev/urandom may contain only little entropy and would

thus be vulnerable to attacks. This fact makes this variant inappropriate for cryptographic

applications. Therefore, for security-sensitive tasks /dev/random is applied.

Compared with our three RNG categories, /dev/random belongs to the entropy

gathering category, whereas /dev/urandom belongs to the class of hybrid generators.

9.1 General Structure

The main feature of the random device consists of two pools. The primary pool P1 is

used to gather entropy from external events E , whereas the secondary pool P2 is used to

produce random bytes. On demand, bytes are shifted from P1 to P2.

There exist two functions that interfere with the pools, the mixing function m and the

generation function gen. The mixing function merges input into the pool, whereas the

generation function produces random numbers from the pool.

The gathering of entropy from external events happens in two steps. At first, the

extracting function e : E → D converts the events from E into data from the set D, which

satisfy a given format. Those data bytes are then merged into P1 by means of the mixing

function m.

To produce random bytes from P2 we apply the generation function gen. If P2 contains

enough entropy, the bytes are generated exclusively from P2. Otherwise, bytes are shifted

from P1 to P2 to achieve a maximal entropy in P2, prior to the production of the random
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bytes. Thus, /dev/random checks only the amount of entropy in P1 and not in P2 to

guarantee that the generator contains enough entropy for a secure production of random

bytes.

The shifting of the bytes from P1 to P2 uses the function s = gen◦m. For this purpose

the random bytes are, at first, produced from P1 by means of the generation function gen.

Subsequently, those bytes are merged into P2 using the mixing function m.

The transition function T is responsible for processing new input, for shifting

information from the primary to the secondary pool and for mixing the secondary pool

after random numbers have been produced. The last feature is done by the function

t : P2 → P2.

Thus, T consists of

• e : E → D,

• m : D → P1,

• s : P1 → P2,

• t : P2 → P2.

To estimate the amount of entropy contained in P1 and P2, an entropy counter is associated

with each pool. If input is mixed into one pool, its counter is increased by the estimated

entropy of the input. Conversely, if random numbers are generated from one pool, its

counter is decreased by the number of generated random bytes. The estimation of the

input will be given in Section 9.3.1.

Finally, one should not picture a pool as a box, which contains variable amounts of

bytes where each byte has an entropy of 1.0. Actually a pool is an array of fixed length
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that is always completely filled with bytes. Only the entropy count provides information

about the entropy contained in the pool, where the entropy is estimated over the whole

content of the array. Every time input is merged into the pool the content of the array is

changed and every time random bytes are generated from the pool, the whole content is

used as input for the generation function.

9.2 State Space

The primary pool P1 is responsible for gathering entropy, the secondary pool P2 is employed

to generate the random bytes. Generally, the size of the buffer can be set to any arbitrary

multiple of 64 byte, but we will use the default sizes of 512 byte for P1 and 128 byte for

P2.

The generator produces the random numbers exclusively from P2 as long as no

information is shifted from P1. Information is shifted if more random numbers are

requested than entropy is contained in P2 and every time after 128 random bytes have

been produced. The second case is called catastrophic reseeding and renews the whole

content of P2, independently from its current entropy count. Thus, in the worst case, 128

bytes of random numbers are generated from the 128 bytes of P2 without any new input

from P1. If the entropy estimation of the input, and consequently the entropy count of the

two pools is correct, then we obtain a strength of 128 bytes for /dev/random.

At the very beginning the pools are seeded with all zeros. As soon as input arrives from

external events, the pools change into a more and more unpredictable state. The start-up

of a computer does not contain many unpredictable events. Most of the time these events

will appear in almost the same order. Hence, the designer of /dev/random recommends to

store the state of the two pools during shut-down and restore it during start-up. However,

one has to ensure that the stored data are really refreshed at every shut-down and that

they are not observable from any other person.

9.3 Transition Function

The transition function is responsible for processing the input, shifting the bits from the

primary pool to the secondary pool and mixing the secondary pool after an output has

been produced.

9.3.1 Processing the Input

/dev/random gathers entropy from unpredictable external events. At first, the function e

extracts the time and specific additional data from the event E . Both pieces of information

are combined in the extracted data D. Subsequently, the entropy gained of the new event

is estimated, D is fed into one pool and the corresponding entropy counter is increased
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by the estimated amount. Normally the input is mixed into the primary pool, but if the

entropy count of the primary pool has reached the pool size, then the input is also mixed

directly into the secondary pool.

In the design of the input processing functions the main focus was set to efficiency,

since the input routine is carried out during the processing of interrupts.

Entropy Estimation

The entropy of an input is estimated by the following equation

∆1
n = timen − timen−1,

∆2
n = ∆1

n − ∆1
n−1,

∆3
n = ∆2

n − ∆2
n−1,

∆n = min(|∆1
n|, |∆2

n|, |∆3
n|),

entropyn = log2

(⌊

∆n

2

⌋

(mod 212)

)

.

The variable timen represents the timestamp of the external event from a specific source.

Each source has its own sequence {timen}n≥0. The reduction modulo 212 limits the entropy

to at most 12 bits.

This approach of entropy estimation acts on the assumption that the uncertainty of

a new input-time is reflected in the differences to the previous times. We have found

no theoretical proof that this algorithm gives a consistent estimator of the entropy of the

source. Such a proof would be of high interest, since entropy estimation plays an important

role for the security of /dev/random.

Finally, the entropy count of the pool, into which the new data was mixed, is increased

by the estimated entropy.

Mixing Function

The mixing function is realized by a simple hash function. It processes arbitrary large

input and inserts the results into the pool. The main purpose of the hash function is to

avoid statistically significant coalitions. Thus, the entropy of the input is preserved. (see

Section 3.2.4)

The hash function combines a cyclic redundancy check polynomial (CRC-32) [Wil93]

and a twisted generalized feedback shift register (twisted GFSR) [L’E04]. It always

processes one 32-bit word at once and puts the resulting 32-bit word at a specific position

in the pool. This position is determined by a pointer and rotates to the left after each

processed word.

The mixing function of /dev/random uses a CRC-32 polynomial. Such polynomials are

usually employed to generate the checksum of a plaintext. For that purpose, the binary

representation of the plaintext is interpreted as a polynomial p(x) with coefficients 0 or 1
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(e.g., 11001001 is seen as 1 + x + x4 + x7). The CRC-32 checksum is the product of x32

and p(x), reduced modulo the CRC-32 polynomial c(x). Most CRC-32 implementations

process the input byte-wise. For this purpose they employ a table, which assigns each byte

its corresponding CRC-32 value. These 32 bits are combined with the previous results to

determine the final checksum. Our mixing function uses this table only for processing one

byte, not for longer strings. The result of this operation is a 32-bit word.

The processing of a word in the mixing function happens in different steps. At first,

the word is rotated. The amount of rotation changes after every word by a fixed quantity.

In a second step the word is combined with values from the pool, as it is usual for

feedback shift registers. Which words are chosen from the pool, starting from the pointer,

is determined by a so-called polynomial. The generator defines polynomials for different

pool sizes, such that the words are chosen evenly from all over the pool. Theodore T’so

states in the code that the content of the pool is “(essentially) the input modulo the

generator polynomial” and that for “random primitive polynomials, this is a universal class

of hash functions” [Ts’99, line 359ff]. He does not claim that the provided polynomials are

primitive, but argues that their irreducible factors are large enough such that periodicity

is not a problem. We give this information without examining it in more detail.

Finally, the resulting word is shifted by 3 bits to the right. The former three least

significant bits b2b1b0 are set at the beginning of a byte b = b2b1b000000. Then, by means

of the CRC-Table, the CRC-32 value of the byte b is calculated and combined by XOR

with the shifted word.

The resulting word is now put into the pool at the position of the pointer.

9.3.2 Shifting the information

Prior to the generation of random numbers from the secondary pool P2, the number of

requested bits is compared to the estimated entropy of the pool. If the entropy count of

P2 is too low, then the generator shifts bytes from the primary pool P1 until the entropy

count of P2 reaches its maximum, which is the size of the pool.

In addition, P2 is totally rebuilt after each generation of 128 random bytes. This process

is called a catastrophic reseeding. An output counter keeps track of the number of generated

output bytes. If the counter exceeds 128 bytes, it is reset to zero and a catastrophic

reseeding is initiated. For this purpose, 340 bytes (the size of a temporary buffer) are

transfered from P1 to the P2. After the catastrophic reseeding only the entropy count of

P1 is decreased by the number of shifted bits, the count of P2 remains unchanged. Due to

the catastrophic reseeding, at most 128 random bytes are generated from P2 without any

new input from the P1 primary pool. Thus, even when an adversary is capable of inverting

the output function and compromises the content of P2 after 128 observed output bytes,

he or she should not be able to take any profit from this knowledge.

We will give a short example, to illustrate in which situations bytes are shifted from

P1 to P2.
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1. Present state of the entropy counter ecP1
and ecP2

and the output counter oc.

ecP1
= 482,

ecP2
= 40,

oc = 117.

2. Required output: 60 bytes.

(a) Shift bytes from P1 to P2.

ecP1
= 394,

ecP2
= 128,

oc = 117.

(b) Produce 60 bytes from P2.

ecP1
= 394,

ecP2
= 68,

oc = 177.

3. Required output: 45 bytes.

(a) Catastrophic reseeding. Shift 340 bytes from P1 to P2.

ecP1
= 54,

ecP2
= 68,

oc = 0.

(b) Produce 45 bytes from P2.

ecP1
= 54,

ecP2
= 23,

oc = 45.

The counter of P1 may change during the calculation if any input is processed in the mean

time. If ecP1
is less than 340 prior to a catastrophic reseeding, then still 340 bytes are

shifted and ecP1
is set to 0.

For shifting the bytes, /dev/random first uses the generation function gen to produce

random numbers from P1. Then it merges those number into P2 by means of the mixing

function m. In the end, the entropy counters of both pools have to be refreshed. The

counter ecP1
is decreased by the amount of shifted data and ecP2

is increased by the same

value.
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Figure 9.2: Shifting of bytes

9.3.3 Mixing the Secondary Pool

The generation function basically calculates the hash value of the secondary pool to produce

the random numbers. In addition, it merges parts of the intermediate hash result back

into the pool. This procedure is called t : P2 → P2 and helps to prevent backtracking

attacks, which means that an adversary should not be able to gain any information about

previous outputs even if he or she knows the current state of the generator.

The intermediate hash result is merged into the pool by means of the mixing function,

but without changing the entropy count. The secondary pool is therefore changed at each

output, independent of any new external input.

9.3.4 Input Space

The input data is collected from the time between certain unpredictable events. The four

main sources of entropy that have been implemented are:

• mouse-interrupt timing including the position of the mouse,

• keystroke timing including the ASCII-code of the pressed key,

• interrupt timing from unpredictable interrupts (no timer interrupts), and

• the finishing time of block requests.

Each new input data consists of the timestamp and an additional number which is

determined by the specific source, like the code of the key pressed or the ID of the

interrupt. Since arbitrarily many events may appear between two successive random

number generations, the input space is infinite.

9.4 Output Function

The output function first checks if enough entropy is contained in the secondary pool

P2 and then applies the generation function gen to produce the random numbers. The
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essential part of the generation function consists of a cryptographic hash function like

SHA-1 (Secure Hash Algorithm, [Nat02]) or MD5 (Message-Digest Algorithm, [Riv92]).

At a first state, the output function uses the current time as an additional input for the

generator, but without increasing the entropy count of the primary pool P1. In the next

step, the number of requested output bits is compared to the current value of the entropy

count of P2. If the entropy count is too low, information is shifted from P1. In several

iterations an output buffer is filled with the required random bytes. When the generation

is finished the whole buffer is returned to the user at once.

Each iteration calculates a 160 bit hash value. For this purpose the hash function is

reset to its initial values at the beginning of each iteration. Then the whole secondary

buffer is fed into the hash function, always 64 bytes at once. After every 64 bytes a part

of the current hash value is put back into the secondary pool using the mixing function

(see Section 9.3.3). In the end the 160 bit hash value is cut into two halves and the two

halves are combined again by a bitwise XOR. This folding is done to mask the hash value.

Thus, even an adversary who is able to revert the hash function, cannot reconstruct the

secondary pool. The resulting 80 bits are used to fill the output buffer.

In the end of each iteration the current time is again employed as an input for the

generator.

9.5 Security

/dev/random applies several methods to frustrate attacks on the generator.

Two separated pools are used, one for processing the input and one for generating

the output. This partition prevents iterative guessing attacks, because the input does not

directly influence the output.

Furthermore, /dev/random is part of the kernel. Thus, chosen input attacks are hardly

possible, since the generator directly uses the data from system events.

The generator employs a cryptographic hash function for producing the output.

Therefore, by the state-of-the-art, the output function is not vulnerable against direct

cryptographic attacks. In addition, the folding of the output masks the hash value. Thus,

even if an adversary would be able to invert the hash function, he or she could not determine

the state of the secondary pool from the generated random numbers. The folding has no

big effect on the security of the algorithm, since the hash function can be assumed to be

cryptographic secure, but it also does not weaken it.

Every time we generate an output, a part of the result is mixed back into pool. This

helps to prevent backtracking attacks. If an assailant is able to compromise the current

state of the generator, he or she cannot reconstruct previous output.

/dev/random extracts entropy from external events and uses it to produce random

numbers. If we assume that during the processing of the input no entropy is lost and that

the estimation of the entropy was correct, then the output of the generator reaches a per-bit
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entropy of 1.0. Normally not much entropy is lost during the processing of the input, but

the estimation of the entropy is the weakness of the generator. The security of /dev/random

highly depends on the quality of the entropy estimation. The first problem is the estimation

function itself. There exists no theoretical proof which guarantees the consistency of the

estimator. A constant overestimation of the entropy would have fatal consequences on the

security of the output. Another problem may result from inappropriate random sources.

If, for example, the user input is carried out over a network, then the corresponding

events may be observable. Consequently, the input loses its entropy with respect to an

adversary. However, the entropy estimation function will produce an estimation of the

entropy independently of the fact that the input might be known.

Altogether, if the input sources are unpredictable, not observable and not manipulable,

then /dev/random is a trustable source of randomness. Since /dev/urandom never checks

the quality of its generated random numbers, it should not be applied for security-sensitive

applications.

9.6 Empirical Results

Statistical Tests

Graffam used Version 1.04 of /dev/random to produce an 11Mbyte file of random numbers

on a heavily used Intel P5 based machine. This output passed all tests in the DIEHARD

battery of Marsaglia [Mar95]. The results of the test can be found in [Gra99]. However,

the empirical findings only show that the output of the hash function and thus the output

of the generator passes all the tests. This property is required for all cryptographic hash

functions and certainly applies to SHA-1 and MD-5. For judging the quality of the output

it would be more meaningful to directly analyze the entropy of the input sources.

Throughput

The throughput of /dev/random depends on the frequency of the input. It may differ

between 1500 bytes/s on a loaded machine [Gra99] and a few bytes per seconds if the

machine is inactive [SS02].

9.7 Portability

The generators /dev/random and /dev/urandom are part of the Linux kernel. Linux-

like environments for Windows such as cygwin (http://www.cygwin.com) make these

generators also available for Windows operation systems.
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9.8 Conclusion

The devices /dev/random and /dev/urandom are part of the Linux kernel and are therefore

available to all Linux users. If /dev/random runs on a loaded machine with many

unpredictable events, it produces good random numbers. But if only a few unpredictable

events are available, then the generator gets slow and the output becomes more vulnerable

to attacks. The main problem of this generator is speed. As most of the entropy-gathering

generators, it is much slower than PRNGs or hybrid generators. /dev/random is not

suitable if a large amount of random numbers is required, but it may be used to generate

short random sequences, like random keys for encryption algorithms. /dev/urandom

can never be recommended, neither for cryptographic applications nor for large-scale

simulations.

Factsheet for /dev/random

Cryptographic SHA-1 or

Primitives used MD5

Strength 128 byte

Statistical Test DIEHARD battery

Results available

Speed 8 - 12K bits/s 1

Portability part of Linux Kernel

Table 9.1: Summary of /dev/random

1By convention, K corresponds to 1024 and M to 10242 bits.



Chapter 10

Yarrow

Yarrow is a generic concept for building RNGs. It was developed at Counterpane Systems

by N. Fergueson, J. Kelsey, and B. Schneier [KSF99]. Additional information and source

code can be found in [Sch03].

Yarrow was designed to prevent attacks as they are described in [KSWH98] and to

assure high efficiency and portability. Additionally, the generic structure allows to adjust

each component of the generator to the individual needs of the user and to the current

state-of-the-art.

In this chapter we will discuss the concept of Yarrow and introduce Yarrow-160 as a

specific implementation.

10.1 General Structure

Yarrow employs a cryptographic hash function to feed input into two separated pools, the

fast pool Pf and the slow pool Ps. If enough entropy is gathered into the two pools, then

a secret key K for a block cipher is generated from their content. The random numbers

are produced by encrypting the value of a counter C by means of the encryption function

and the secret key.

Yarrow uses established cryptographic primitives like hash functions and block ciphers

and can therefore benefit from their resistance against cryptographic attacks. Both

primitives have to satisfy certain conditions. The hash function employed in Yarrow

must fulfill the requirements for a cryptographic hash function, i.e., it must be collision-

free, one-way and the results of any arbitrary set of input samples must be distributed

uniformly over the whole output space of the function. The chosen block cipher must

resist known-plaintext and chosen-plaintext attacks and its output must meet the statistical

standards for random numbers, even if the plaintext or the key are highly patterned. Every

cryptographic primitive that satisfies this requirements can be used within the generic

concept. Yarrow-160 choses SHA-1 (Secure Hash Algorithm) as hash function and Triple-

DES (Triple Data Encryption Standard) as block cipher.

The concept of Yarrow consists of four main components:

75
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Figure 10.1: General structure of Yarrow

1. The Entropy Accumulator processes the input from external sources. It is responsible

for mixing the input into the two pools and for estimating the collected entropy.

2. The Reseed Mechanism generates a new key from the pools if they are in an

unpredictable state.

3. The Reseed Control initiates a reseeding of the key if enough entropy is collected in

the pools.

4. The Generation Mechanism applies a block cipher and the secret key to produce

random numbers from the value of a counter. It also changes the key periodically

without using the content of the two pools. This replacement of the key is called

generator gate.

The input is fed continuously into the two pools using the entropy accumulator. If the

two pools contain enough entropy the reseed control initiates a reseeding of the secret key,

whereas the reseeding procedure is accomplished by the reseed mechanism. The generation

mechanism produces the random numbers and renews the key periodically without using

the content of the two pools.

The transition function involves the entropy accumulator, the reseed mechanism, the

reseed control and the generator gate of the generator mechanism. The output function

only involves the generation of the random numbers within the generation mechanism.
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10.2 State Space

The state of Yarrow consists of two pools, the fast pool Pf and the slow pool Ps, a secret

key K and a counter C. Input from external sources is fed into the two pools. If the

estimated entropy of the pools exceeds a given threshold, then K and C are refreshed using

the pools. At this time, the content of the pool is assumed to be unguessable for any

observer. The fast pool is responsible for frequent reseeding of the key. The slow pool

is used to guarantee a less frequent but high quality reseeding. Finally, a block cipher

employs the secret key to encrypt the value of the counter for generating the random

numbers. The size of the counter corresponds to the block size of the block cipher, thus,

in Yarrow-160 we use a 64-bit counter.

Each pool has its own entropy counter for each separate input source. Let us assume

that there are three different entropy sources. Then the fast pool contains the counter

fec1, fec2 and fec3, and the slow pool contains sec1, sec2 and sec3 (see Figure 10.2). IfPSfrag replacements
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Figure 10.2: Entropy counter of the two pools

the entropy gathering component processes any input, then, at first, the entropy of the

input is estimated. Subsequently, the input is mixed into one of the two pools and the

corresponding entropy counter is increased. For example, if input from source 1 is mixed

into the fast pool then fec1 is increased. Likewise, if input from source 3 is mixed into

the slow pool then sec3 is increased. As soon as a pool has been used for reseeding, all its

entropy counts are reset to zero.

Input is always fed into the two pools alternatingly. The content of a pool represents

the hash value over the whole previous input of the pool, concatenated together. Yarrow

employs a hash function as well as a block cipher. Let us assume that the hash function

has an m-bit output and the block cipher uses a k-bit key. The strength of the generator

is then limited to min(m, k) bits. The k bits of the key are responsible for generating the
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random number, but as the key is created from the pools, its entropy cannot exceed the

size of a pool (m bits). Yarrow-160 uses SHA-1 as its hash function and Triple-DES as its

block cipher. Thus, m = 160, k = 192, and the strength of Yarrow-160 is limited to 160

bits.

10.3 Transition Function

The transition function consists of the entropy gathering, the reseed control, the reseed

mechanism, and the generator gate.

10.3.1 Entropy Gathering

Input from different sources is fed into the two pools alternatingly. At first, the entropy

of the input is estimated. Then the input is mixed into the pools and the corresponding

entropy counter is increased. Each pool represents the hash value of its whole input

concatenated together. This can be realized by continuously feeding the hash function

with the new input and storing the current hash digest in the pool. To collect all the

uncertainty from the input, the hash function should satisfy the following conditions:

1. Almost all entropy of the input should be preserved in the hash value independent

of the construction of the input string.

2. It should not be possible to find any input strings which are able to reduce the current

entropy of the hash value.

3. It must be impossible for an adversary to force the pool into a weak state, such that

the pool is unable to collect new entropy.

4. If an adversary can choose which bits in which input string he knows but does not

know n bits, there must still be 2n possible states of the pool.

We need a cryptographic hash function to satisfy all this requirements. As stated before,

in Yarrow-160 SHA-1 is used.

The designers of Yarrow claim that entropy overestimation is one big flaw of other

RNGs. Yarrow therefore follows a quite conservative estimation policy. The amount of

entropy of each source and each pool is estimated and recorded separately and is reset

after each reseeding. Because of the separated entropy counters, the overestimation of one

source cannot jeopardize the whole entropy estimation. The reseeding control uses the

entropy counter of the pools to determine the next reseeding of the key.

The entropy of each input string is estimated in three steps:

1. Each program that provides input from a specific source like inter-keystroke-timing

or the noise of an unplugged microphone, has to provide an entropy estimation for

every generated input.
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2. In addition, Yarrow uses a statistical estimator to calculate the entropy of the string.

No information about the details of this estimator are available in the documentation

of the generator.

3. The third reference value represents a global maximum entropy density. The authors

of [KSF99] assume that a string does not contain more than p percent of entropy

independent of the input source. Therefore, they limit the entropy estimation to

p ∗ l(i) bits, where l(i) is the length of the input i. In Yarrow-160, p is set to 50%.

As final entropy estimator, the minimum of all three values is applied.

10.3.2 Reseed Control

The reseed control initiates a reseeding of the secret key as soon as the pools are assumed

to be in an unguessable state. Each pool counts the estimated entropy separately for each

input source and resets the counter to zero after a pool has been used for reseeding. The

entropy counts are applied to indicate when the pool reaches an unguessable state.

The fast pool Pf is responsible for frequent reseeding. As soon as the entropy count of

one source exceeds a given threshold tf , the key is reseeded from the fast pool (e.g.: fec2 >

tf ). This reseeding guarantees that the generator swiftly recovers from a compromised key.

In Yarrow-160 is tf = 100 bits.

The slow pool enables high quality reseeding. Only if the entropy count of at least r

sources exceeds the threshold ts the key is reseeded (e.g.: if r = 2, sec1 > ts, and sec3 > ts).

This behavior avoids that the overestimation of one input source endangers the entropy

of the key. A reseeding of the slow pool always uses the fast pool as well. In Yarrow-160

r = 2 and ts = 160 bits. r may be adjusted for different environments, e.g., if there are

three good and fast sources of entropy, r may be set to 3.

10.3.3 Reseed Mechanism

The reseed mechanism generates a new k-bit key from the content of the pools and the old

key and refreshes the content of the counter. We will discuss the reseeding from the fast

pool. If both pools are applied for the reseeding, then the content of the slow pool is first

fed into the fast pool before the key is generated from the fast pool. After the content of

a pool was used for reseeding, all its entropy counters are reset to zero. The generation of

the new key is done is several steps.

Initialization: At first, v0 := Pf is set to the content of the fast pool, where Pf = h(if )

is the result of the the hash function h on the concatenated input if of the fast pool.

Iteration: In the second step, the hash function is iterated in the following way,

vi = h(vi−1|v0|i) for i = 1, ..., Nt.
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Here, the symbol | represents the concatenation operator and Nt ≥ 0 determines the

number of iterations. The goal of this iterative calculation is to make the reseeding

computationally more complex. Thus, attacks based on guessing input are made

much harder, but this procedure also reduces the efficiency of the generator.

Key Generation: This step uses the old key K and the hash function h to create the new

key K′. The function h′ is responsible for creating a key of length k independently

of the length m of the hash digest (e.g. in Yarrow-160 m = 160 and k = 192). The

new key is calculated by

K′ = h′(h(vNt
|K), k)

where h′(M, k) is defined by

s0 := M

si := h(s0|...|si−1)

h′(m, k) = first k bits of (s0|s1|...).

Reset Counter: As a last step, the counter is initialized with C = EK(0), where EK

represents the encryption function of the block cipher with key K.

In the end all variables are cleared from any storage, the entropy count of the used pools

is reset and the seed file is filled with 2k bits. If no seed file is used, then the last step can

be ignored.

10.3.4 Generator Gate

To prevent backtracking attacks, the key K of the block cipher is renewed from time to

time, without reseeding it from any pool. Kelsey et al. [KSF99] call this process a generator

gate. After every Ng output blocks the output function is employed to create k bits, which

are not used as an output but to reset the key. A generator gate is not a reseeding because

no external entropy is added. If an adversary can compromise the secret key and the

current value of the counter at a given time, he or she is able to reconstruct the previous

outputs of the RNG since the last generator gate or the last reseeding of the key. Let C
be the n-bit counter. If more than 2

n

2 bits are generated from one key, collisions get more

and more likely by the birthday paradox [MvOV01, p. 53]. The authors in [KSF99] thus

recommend to choose Ng in the range 1 ≤ Ng ≤ 2
n

3 . A smaller Ng reduces the number of

previous output bits an adversary can learn from a compromised key but also slows down

the RNG. In Yarrow-160 the parameter Ng is set to 10.

10.3.5 Input Space

The size of the input strings is unlimited. The SHA-1 hash function only accepts 512 bit

blocks at once, larger strings are processed block by block. In addition, the number of
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input strings between two output generations is not restricted. Thus, the input space for

the transition function is theoretically infinite.

10.4 Output Function

The output function encrypts the content of an n-bit counter, by means of a block cipher

and the secret key K, to generate the random number. The n-bit counter C is incremented

every time a block of random numbers is produced,

Cm+1 = Cm + 1 (mod 2n).

The output of the generator is produced by simply encrypting the content of C,

om = EK(Cm).

The number of generated output blocks between two reseedings is limited to min(2n, 2
k

3Ng).

The first value prevents cycling of the counter. The second one should prevent that two

identical keys are produced by the generator gate. Due to the birthday paradox, the chances

of two equal keys exceeds 50% if more than 2
k

3Ng output blocks would be generated.

The Yarrow-160 implementation uses a three key Triple-DES as the block cipher.

10.5 Security

Yarrow was especially designed to prevent all the attacks described in [KSWH98]. By the

separation of the pools and the key, input samples do not have an intermediate influence

on the output, which avoids iterative guessing attacks. The fast pool allows the generator

to quickly recover from a compromised key, the slow pool prevents damage caused by

overestimation of the input entropy. Due to the generator gate the number of output bits

that can be leaned through a backtracking attack is limited. Yarrow further profits from

the resistance of the block cipher against cryptographic attacks and the collision immunity

of the hash function.

Possible weaknesses of the generator are the strength and bad input samples. The

strength of the Yarrow-160 generator is only 160 bits. This can be improved by using a

hash function with a larger hash digest and a block cipher with a larger key size. Although

Yarrow implements many features to compensate an overestimation of the input entropy,

very inappropriate samples can still weaken the generator. Therefore, one should carefully

select the input sources.

10.6 Empirical Results

No empirical test results for Yarrow could be found in published literature. The results

from such a test would depend on the used cryptographic primitives like the hash function
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or the block cipher on the one hand and on the quality of the entropy sources on the other

hand. To obtain such statements about the quality of the generated random numbers, it

would be advisable to not only use statistical tests on the output of the generator, which

would be highly influenced by the block cipher, but also to test the input sources used.

10.7 Portability

Yarrow is a design concept for RNGs. Thus, specific implementations can be adjusted

to any platform and to any specific requirements of the user. [Sch03] provides a C-

implementation of Yarrow-160 for WinNT and Win95 operating systems. A further

implementation of Yarrow is applied as random device in the Mac OS X operating system.

10.8 Conclusion

The yarrow generator is an attack oriented concept for implementing RNGs. Single

components can easily be replaced and adjusted to individual needs. [KSF99] analyzes

the particular elements of the generator and their behavior during attacks. Unfortunately,

there exist no results of empirical tests or efficiency of specific implementations of a yarrow

based generator. Furthermore, Counterpane ended their support of Yarrow. In any case,

Yarrow is a simple and robust possibility to combine entropy gathering with a PRNG

(The counter and the block cipher together are nothing else but a PRNG). A drawback of

Yarrow is the small strength, but one may weaken this problem by choosing an appropriate

hash function and block cipher.

Factsheet for Yarrow

Cryptographic SHA-1

Primitives used 3DES

Strength 160 bits

Statistical Test None

Results available

Speed No results

Portability Yes

Table 10.1: Summary of Yarrow
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Blum-Blum-Shub Generator

The Blum-Blum-Shub generator (BBS), or x2 mod N generator as it is called sometimes,

is an example of a nonlinear congruential generator. It was first introduced by L. Blum,

M. Blum, and M. Shub in [BBS86]. The generator does not process any input after it was

seeded once and, thus, falls into the PRNG category.

The main property of the BBS generator is that it is proven to be next-bit unpredictable

to the left and to the right, if the prime factors of a large integer N are unknown.

Consequently, the security of the generator is based on the intractability of factoring

large integers, which is, for example, also used in the RSA encryption scheme. Next-

bit unpredictability to the right (to the left) means that for every positive polynomial p

and for sufficiently large m the following condition holds. If m− 1 consecutive output bits

are known, then for every polynomial-time algorithm it is impossible to guess the next

(previous) output bit with a probability larger than 1
2

+ 1
p(n)

(see also Definition 5.5).

The BBS generator is quite slow, but due to the characteristic explained above, it is

often recommended for cryptographic tasks which only need a small amount of random

numbers.

11.1 General Structure

The BBS generator is part of the PRNG category. Consequently, the production of random

numbers is totally determined after a seed was chosen. At first, we need two prime numbers

P , Q which satisfy the condition

P ≡ Q ≡ 3 (mod 4).

The Blum integer N , as it is called in [Sch93], is set to

N = PQ.

As a last preparation we need an integer x ∈ [1, N − 1] which is relatively prime to N .
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state

Figure 11.1: General structure of BBS

11.2 State Space

The generator is seeded with

x0 ≡ x2 (mod N).

The variable xi represents, for all i ≥ 1, the current state of the generator, which is only

changed by the transition function T .

For a given N the strength of the generator is limited to φ(N). Here, φ is Euler’s

totient function, which specifies the number of elements in ZN that are relatively prime to

N and consequently, it represents the quantity of all possible seeds. Not all seeds produce

an adequate period length. Thus, in practice, the strength is much smaller than φ(N).

Since no input is processed, the generator is periodic. The authors show in [BBS86, p.

377, Theorem 6] that λ(λ(N)) is a multiple of the period length of the output. Here, λ(N)

is Carmichael’s function.

Definition 11.1 (Carmichael’s λ function )

Let M = 2eP e1
1 . . . P

ek

k , where P1, . . . .Pk are distinct odd primes. Carmichael’s λ function

is defined by

λ(2e) =







2e−1 if e = 1 or 2,

2e−2 if e > 2,

and λ(M) = lcm[λ(2e), (P1 − 1)P e1−1
1 , . . . , (Pk − 1)P ek−1

k ].

Furthermore, Blum, Blum, and Shub demonstrate in [BBS86, p. 377 f.] that the full period

can only be reached if the following conditions are satisfied.
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• P and Q are special prime numbers (see Definition 11.2), where

P = 2P1 + 1,

Q = 2Q1 + 1,

and P1 and Q1 are prime numbers corresponding to (11.1).

• Since 2 is a quadratic residue with respect to at least one of the two prime numbers

P1 and Q1, there exists a y such that

y2 ≡ 2 (mod P1) or

y2 ≡ 2 (mod Q1).

• For the seed x0 = x2, the smallest integer k such that xk0 ≡ 1 (mod N) must be

equal to λ(N)
2

.

Definition 11.2 (Special prime number)

A prime P is special if

P = 2P1 + 1, (11.1)

P1 = 2P2 + 1, (11.2)

and P1, P2 are odd primes.

Due to the requirements above we see that only a limited number of Blum integers N and

seeds x guarantee a full period length. Blum, Blum, and Shub showed that there exists an

algorithm that determines the period length of a specific seed in polynomial time.

11.3 Transition Function

The transition function T : S → S depends only on the current state of generator and not

on any external input

xi ≡ x2
i−1 (mod N) ∀i ≥ 1.

11.4 Output Function

The original BBS generator takes the least significant bit of xi as an output,

on = leastSignBit(xi).

The performance of the generator can be increased without loosing security, by using the

least significant log2(li) bits as an output, where li is the length of the state xi. Therefore,

more bits can be produced during each iteration.
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An advantage of this generator is that the i’th output can be calculated directly by

using the least significant bit(s) from

xi = x
2imod ((P−1)(Q−1))
0 (mod N).

Therefore, several output bits can be calculated in parallel, which also improves the speed

of the generator.

11.5 Security

The BBS generator is proven to be next-bit unpredictable to the left and to the right if the

prime factors of N are unknown. The security is thus based on the inability of factoring

large integers into their prime components. The same security assumption is used for RSA

encryption.

For a good BBS generator with a long period time the seed x0 and the prime numbers

P and Q must satisfy several requirements. It is not possible to use every arbitrary

random number for seeding the generator and, consequently, the strength of the generator

is reduced. Since this generator does not process any input, the unpredictability of the

output is completely based on the unpredictability of the seed. If the seed is guessed once

the whole output of the generator can be calculated. Due to this property, a reduced

strength has a more severe impact than on entropy gathering or hybrid generators.

The BBS generator is certainly also vulnerable to all PRNG specific attacks. If the

process, which holds the generator gets forked, then all future generated random numbers

of the original and the cloned process are identically.

11.6 Empirical Results

The BBS generator passed the NIST test suit as can be seen in [Sot99]. The throughput

of the generator was measured in [Ced00] and reached a value of 3 Kbits/s on a Pentium

III 700 processor. The generator is thus much slower than AES or our hybrid generators.

11.7 Portability

The BBS generator is a mathematical algorithm and does not process any input. It can

therefore be implemented in any programming language and any operating system.

11.8 Conclusion

The BBS generator does not process any input and can thus be applied when a

reconstructible sequence of random numbers is desired like in the case of stream ciphers.
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However, this also means that the generator never recovers from a compromised state or

seed. It is highly vulnerable to any attack which clones the process. Another flaw of this

generator is the limited number of appropriate seeds, since not all seeds guarantee the full

period length of the generator. For large N and small amounts of required random bits,

this may not be a severe problem.

The costly search of accurate seeds makes the BBS generator inappropriate in

connection with frequent random reseeding. Consequently, it is not suitable for producing

large amounts of random numbers. In any case the quality and unpredictability of the

seed should always be checked carefully, before using the generator.

Factsheet for BBS

Cryptographic None

Primitives used

Strength ≤ log2 φ(N)

Statistical Test NIST

Results available test suite

Speed 3 Kbits/s

Portability Yes

Table 11.1: Summary of BBS
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Chapter 12

AES

AES (Advanced Encryption Standard) became a Federal Information Processing Standard

for encrypting and decrypting data on November 26th, 2001 (see FIPS PUB 197 [Nat01a]).

It represents limited cases of the Rijndael algorithm, which was designed by Daemen and

Rijmen [DR02]. For AES the length of the data blocks is fixed to 128 bits and the length

of the cipher key can vary between 128, 192, or 256 bits.

Hellekalek and Wegenkittl proposed in [HW03] the usage of AES as a random number

generator for statistical purpose. We will study its qualities as a RNG for cryptographic

applications. Generally, every other cryptographic block cipher could be applied as random

number generator instead of AES. The benefits of AES are the high speed and the possible

key sizes up to 256 bits. In comparison to this, Triple-DES has only a key length of 192

bits. Furthermore, the quality of the generator was exhaustively tested in [HW03] by

means of state-of-the-art statistical tests.

12.1 General Structure

AES is originally a symmetric block cipher for encrypting data. [HW03] discusses two

different ways of using AES as a random number generator, AES in Counter mode and

AES in PRNG mode. The first one encrypts the value of a counter, the second one

iteratively applies the encryption algorithm on the inner state of the generator. Neither

of the two modes process any input, therefore both versions of the AES generator fall into

the PRNG category.

In our further discussion we will fix the length of the cipher key to 128 bits as was done

in all the tests of [HW03]. However, for optimal strength we suggest to use a key of length

256 bits. EK(x) represents the encryption of x using AES and the key K.

The fist kind of random number generator discussed in [HW03] uses AES in Counter

mode (see Figure 12.1). A 128 bit Counter C starts in c0 and generates the sequence

c0, c1, ..., where ci = ci−1 + 1 (mod 2128). The output of the generator at time i is EK(ci).

As ci has 128 bits, the counter and the output have both the full period length of 2128.

Furthermore, this mode allows to calculate each output value independently of its successor,
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Figure 12.1: General structure of AES in Counter mode
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Figure 12.2: General structure of AES in PRNG mode
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which supports parallel processing.

The second kind uses AES in PRNG mode (see Figure 12.2). The sequence of random

numbers x0, x1, ... is produced by successive usage of AES, e.g. in Output Feedback mode

(OFB). This means the output xi is generated by xi := E
(i)
K (x0) = EK(xi−1). The period

length of the output may be less than 2128, if there exist a j < 2128 such that EK(xi−1) =

xi−j.

12.2 State Space

The internal state of the generator consists of the cipher key and the current value of the

counter (Counter mode) or the current value of xi (PRNG mode), respectively.

In Counter mode, an adversary has to guess the key K and the current content ci of

the counter. Consequently, in our setting we reach a strength of 256 bits. This value can

be improved to 320 or 384 bits, by using key sizes of 192 or 256 bits.

In PRNG mode, the current value of xi is also the output of the generator and can be

therefore not counted as part of the secret internal state. An adversary only has to guess

the key K to predict the generated random numbers. Thus, this mode achieves a strength

of 128 bits in our setting or 192 or 256 bits, with longer choices of keys.

By using Rijndael instead of AES with a block size of 256 bits and a key length of 256

bits, we could even enhance the strength up to 612 bits in Counter mode and respectively,

up to 256 bits in PRNG mode.

[HW03] discusses AES as a RNG for statistic applications, the main focus was set

on the statistical quality of the output. Hellekalek and Wegenkittl studied the impact of

different structures and regularities in the key or the plaintext (i.e., ci or xi, respectively)

on the output of the generator. The article showed that the generated random numbers

passed all statistical tests independent of any regularities in the seed. Nevertheless, if the

generators are used in a cryptographic context, it is necessary for both generator modes

that the key as well as the initial values c0 and x0, respectively, are seeded from a reliable

random source. Only in this way the full strength of the generator can be guaranteed.

For constant security, regular reseeding would be desirable. [HW03] does not mention any

specific reseeding mechanism, but suggestions may be found for example in Chapter 10.

12.3 Transition Function

In Counter mode the transition function simply increments the counter,

ci = ci−1 + 1 (mod 2128).

The PRNG mode uses AES repeatedly on the inner state xi of the generator,

xi = EK(xi−1).
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Since the AES algorithm is also used as output function for the Counter mode we will

defer the detailed description of the algorithm to Section 12.4.

Neither of the two modes processes any input and therefore the output of both

generators is periodic. In either case the period length is limited to 2128 output blocks,

which represent the size of the counter and all possible values of xi respectively. Whereas

in counter mode the full period length is reached, the period length in PRNG mode may

be reduced due to the birthday paradox. If there exists a j < 2128 such that

EK(xi−1) = xi−j,

then the period length in PRNG mode is limited to j which is less than 2128. By using

a version of Rijndael with a block size of 256 bits we can enhance the limit of the period

length to 2256 data blocks.

12.4 Output Function (AES)

The output function of the generator in Counter mode is the encrypting function EK of

the AES algorithm, thus for all i ≥ 1

on = EK(ci).

The PRNG mode does not have any output function. A part of the inner state of the

generator is directly used as output, therefore,

on = xi

for all i ≥ 1.

In this section we will give a short introduction of the AES algorithm. More detailed

information can be found in the Federal Standard publication FIPS PUB 197 [Nat01a] and

in Daemen and Rijmen’s monograph [DR02].

AES is a nonlinear block cipher that encrypts and decrypts input blocks of 128 bits to

output blocks of 128 bits. It thereby employs a key of length 128, 192, or 256 bits. We

will limit our discussion to the case of a 128 bit key as was used for the tests in [HW03].

The algorithm works on instances of bytes and words (4 bytes). In the following, we

will use the hexadecimal representation {h1h2} to display a byte. In the description of

the algorithm a byte is interpreted as a polynomial of degree seven with coefficients in

the finite field GF (2), e.g., (01100011) represents the polynomial x6 + x5 + x + 1. The

addition of two polynomials happens coefficient-wise, the multiplication is done modulo

the irreducible polynomial x8 + x4 + x3 + x+ 1 and is therefore invertible for all non-zero

polynomials. The polynomials together with the addition and the multiplication form a

finite field GF (28).

A 32-bit word is interpreted as a polynomial of degree three with coefficients in

GF (28). The addition is again done coefficient-wise, the multiplication is done modulo
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the polynomial c(x) = x4 + 1. This polynomial is not irreducible and therefore not all

polynomials have an inverse. However, the AES algorithm only uses this multiplication

in connection with a constant polynomial a(x) = {03}x3 + {01}x2 + {01}x+ {02}, which

does have an inverse. The choices of a(x) and c(x) allows an efficient implementation of

the multiplication. If b = (b0, b1, b2, b3) represents the word we want to multiply with a,

then the result d = (d0, d1, d2, d3) is determined by

d0 = {02} • b0 ⊕ {03} • b1 ⊕ b2 ⊕ b3,

d1 = b0 ⊕ {02} • b1 ⊕ {03} • b2 ⊕ b3,

d2 = b0 ⊕ b1 ⊕ {02} • b2 ⊕ {03} • b3, and

d3 = {03} • b0 ⊕ b0 ⊕ b2 ⊕ {02} • b3.

In this equation, • represents the multiplication in GF (28) and ⊕ the bit-wise XOR

operation. The multiplication {02} • bi, 0 ≤ i ≤ 3, can be implemented by a shift of

bi one bit to left and a bit-wise XOR with the byte {1b}. Furthermore, {03} • bi is nothing

else than {02} • bi ⊕ bi. Consequently, the whole multiplication with a can be efficiently

implemented by using a couple of XOR and shift operations.

All calculations are done on the state, a 4x4 byte matrix. At the beginning, the input

block of 16 bytes in0, in1, . . . , in15 is copied into the state.

in0, in1, . . . , in15 ⇒

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

Here, Sr,c represents the byte in state at row r and column c and we set Sr,c = inr+4c. In

a next step, an initial 4-word RoundKey is added to the state, by combining each word with

a column of the state. Subsequently, a sequence of manipulations is applied to the state

10 times in a row. The number of iterations is necessary to prevent short cut attacks.

Such an attack would allow to obtain the key with less effort than brute force. For more

information about design decisions see [DR02]. Each iteration consists of the following

manipulations:

• The first manipulation does a byte substitution by means of a non-linear, inverse,

2-dimensional matrix, the s-box. This substitution represents two steps. In the

beginning the inverse of each byte is calculated. {00} is assigned to itself. The

second step applies the following affine transformation on the byte,

b′i = bi ⊕ b(i+4) mod 8 ⊕ b(i+5) mod 8 ⊕ b(i+5) mod 8 ⊕ b(i+6) mod 8 ⊕ b(i+7) mod 8 ⊕ di,

where bi represents the i’th bit of the byte we want to transform, b′i is the i’th bit

of the transformed byte, and di is the i’th bit of the constant byte d = {63}. The

operator ⊕ denotes the XOR operation. Both steps are combined together in the

s-box, where each original byte is assigned to its transformed value.
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• The next manipulation rotates each row of the state by r positions, where 0 ≤ r ≤ 3

represents the number of the row. For example the third row rotates like

S2,0 S2,1 S2,2 S2,3 ⇒ S2,2 S2,3 S2,0 S2,1

• In the third step the columns of state are mixed by multiplying them with the

invertible polynomial a(x). This manipulation is done in all iterations except of the

last one.

• In the end a new RoundKey is added to the state.

After the 10 iterations, the state matrix contains the encrypted data blocks.

The RoundKeys are extracted from the cipher key K and are stored in a linear (4*11)-

word array. The first four word of the array are equal to the four word of the key. The

remaining word are generated by repetitively using the S-box, by rotating the bytes within

a word, and by multiplying the words with polynomial of the form xi−1, where i ≥ 1 and

x = {02}. The exact algorithm can be found in the literature mentioned above.

12.5 Security

AES was developed and analyzed to be highly secure against cryptographic attacks.

Consequently, this security also holds for both generator modes. Part of the security

feature is realized by the consideration of confusion and diffusion. Confusion means that

no analysis of the ciphertext (in our case the output of the generator) gives any information

about the key. Diffusion means that, independently of the key, no simple structure in the

plaintext should lead to simple structures in the ciphertext. For the use of AES as an RNG

this means that it is practically impossible to gain the inner state of the generator out of

the output, or to guess the output if part of the inner state is known to the adversary.

This also means that if we would reseed AES from an entropy pool and an adversary

would be able to inject some regularity into the pool by a chosen input attack, this would

have no effect on the structure of the output. Only the strength of the generator could be

reduced. If the reduced strength is still large enough to resist a brute force attack on the

inner state, then the generated random numbers may still be secure.

However, a severe problem occurs if the inner state of the generator is compromised

once. Due to the bidirectional structure of both generator modes, it would then be possible

to calculate all future and previous random numbers. Thus, it is important for the RNGs

to provide a high strength, which makes it harder for an adversary to guess the current

state. This fact makes AES in PRNG mode less suitable for cryptographic applications,

since this generator uses part of the inner state directly as an output which lowers the

strength by 128 bits.

A possible challenge of AES in Counter mode would be a timing attack on the value

of the counter (see Section 8.1.2). If the content of the counter is known by an adversary,
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then the strength of this mode would be reduced by the 128 bits of the counter. We can

prevent these attacks by using a counter which always takes the same amount of time for

incrementing its value.

Both generator modes are part of the PRNG category, consequently, their output is

periodic. To avoid that any adversary may benefit from this fact, we have to provide

frequent reseeding from a high quality random source.

12.6 Empirical Results

Statistical Tests

In [HW03], Hellekalek and Wegenkittl tested AES with respect to its usage as a RNG

for stochastic simulations. They studied possible impacts of irregularities in the key or

the plaintext on the output of the generators. For this purpose, they used four different

settings:

1. In the first setting, the key K and the initial value x0 where both set to all zeros and

a sequence

xi = EK(xi−1)

for i ≥ 1 was generated.

2. Subsequently, K was set to all zeros and a sequence of highly patterned plaintext

was encrypted. Each plaintext consisted of exactly six ones, which were set into all

possible places in the 128 bits of the input block.

3. In the third setting K was again set to all zeros and the content ci of a 128-bit counter

was encrypted,

xi = EK(ci), for i ≥ 1.

4. In the last setting the plaintext p0 was fixed to all zeros and for each new output the

key was set to ci, the value of a counter,

xi = Eci(p0), for i ≥ 1.

In all settings, the output was transformed into a binary sequence by concatenating the

output blocks.

Subsequently, two different test setups were applied to the produced binary data. In

both setups, the main test was employed 16 times in a row to each parameter pair (n, d),

where n is the length of input sample and d is dimension of the overlapping tuples. The

results of each parameter pair was then compared to its corresponding distribution by

calculating the 1-sided Kolmogorov-Smirnov p-values.

The goal of the first setup was to detect irregularities that were originated in the byte-

orientated design of AES. For this purpose, only every 8th bit of the original sequence
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was used for the test. Subsequently, this data was used as input for an overlapping serial

test with parameters d ∈ {1, 2, 4, 8, 16} and n ∈ {220, 221, . . . , 228}. The corresponding 16

results were then compared with the chi-square distribution of 2d−2d−1 degree of freedom.

The numbers of rejections of the 180 p-values at the 5% and the 1% level were 7 and 4,

respectivly. This result can be regarded as totally noncritical.

The second setup used the gambling-test (as is explained in [Weg99]) with parameters

d ∈ {32, 64, 128, 256}, n ∈ {222, 221, ..., 228} and t = d
2
, where t determines the amount of

dimension reduction. The aim of this setup was to find any irregularities in the distribution

of 0’s and 1’s even in higher dimensions. Of 112 p-values, only 5 and 1 where rejected on

the 5% and the 1% level, respectivly. This indicates that in bit vectors up to the length

of 256 bits (this match two output blocks) no significant irregularity could be found.

The test showed that even highly unbalanced distributions of 1’s can be compensated

and practical no conclusion from the output to the key can be made. For a more detailed

description of the test see [HW03].

Throughput

In [DR02, p62], Daemen and Rijmen list the performance of the Rijndael algorithm for

several processors. For example on an 800MHz Pentium II the algorithm could reach a

throughput of 426 Mbit/s. Both generator modes mainly consists of the AES encryption

(the Counter mode additionally applies an incrementation of the counter). Thus, we can

assume the same magnitude of throughput for both random number generators.

12.7 Portability

The AES algorithm does not employ special properties of the hardware or the processor.

Consequently, both generator modes may be used on arbitrary machines and operating

systems. C/C++ code of the AES algorithm alone can be found for example at http:

//fp.gladman.plus.com/cryptography\_technology/rijndael/.

12.8 Conclusion

AES was examined as a PRNG for stochastic applications in [HW03]. The test showed

that the quality of the output of a random number generator using AES does not depend

on the structure of the key or the plaintext. Thus, any key and initial value arbitrarily

chosen from a random source produces binary sequences of high stochastic quality.

For cryptographic applications we would suggest to use AES in Counter mode, since it

provides a higher strength and period length than the PRNG mode. The AES generator

stands out from other PRNGs because it combines high speed with cryptographic security.

Consequently, if we combine AES in Counter mode with a reliable random source and a

suitable reseeding mechanism, we get a fast RNG for cryptographic applications.
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Factsheet for AES

Cryptographic AES

Primitives used

Strength Counter mode: 256 bits

PRNG mode: 128 bits

Statistical Test Overlapping serial test,

Results available gambling test

Speed 426 Mbits/s

Portability Yes

Table 12.1: Summary of AES
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Chapter 13

HAVEGE

The HAVEGE (HArdware Volatile Entropy Gathering and Expansion) generator produces

random numbers using the uncertainties which appear in the behavior of the processor after

an interrupt. This generator was developed by Sendrier and Seznec at INRIA (Paris, FR)

and is described in [SS02] and [SS03]. The authors distinguish between HAVEG (HArdware

Volatile Entropy Gathering) and HAVEGE. Whereas HAVEG gathers entropy only in a

passive way, HAVEGE uses the data already collected to additionally affect the behavior

of the processor. The main part of this chapter is devoted to HAVEGE, but a description

of HAVEG can be found in Section 13.2.1. In the following, many statements apply to

both generators. For simplicity we will discuss only the more powerful version, HAVEGE,

in such cases.

HAVEGE extracts entropy from the uncertainty that is injected by an interrupt into

the behavior of the processor. Most random number generators that use entropy gathering

techniques obtain their entropy from external events, like mouse movements or input from

a keyboard. Each of those events causes at least one interrupt and thus changes some

inner states of the processor. In which way those states are changed will be discussed

later (see Section 13.1). HAVEGE gathers the uncertainty produced in the behavior of the

processor by means of the hardware clock counter. Sendrier and Seznec showed in [SS02]

that during one operating system interrupt, thousands of volatile states are changed within

the processor. Thus, the amount of entropy which can be collected by this technique is

considerably larger than the entropy of the original event.

Therefore, even HAVEG, which only uses the entropy gathering mechanism, still

achieves a much higher throughput (about 100 Kbits/s) then other entropy gathering

generators. For example, /dev/random only delivers a few bytes per second on an inactive

machine.

Additionally, HAVEGE uses random data already collected, to affect the behavior of

the processor itself. Consequently, this generator is less dependent on the occurrence of

interrupts and achieves a throughput of more than 100 Mbits/s.
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13.1 General Structure

Before we discuss the structure of HAVEGE, we shall give a short introduction to those

components of the processor which are important for understanding the functionality of

the generator. The intention of our introduction is to give an overview over the operation

mode of the processor. However, implementations of specific processors may vary from our

description. A detailed discussion of this topic can be found in [HP02].

13.1.1 Optimization Techniques of the Processor

Today’s processors use a multitude of different optimization techniques to enhance their

speed. Examples of such techniques are the instruction cache, the data cache, the

instruction pipeline, and the branch predictor. We will shortly explain those techniques

and will show in which way HAVEGE uses them to collect entropy.

An important optimization technique is the so-called cache. A computer contains

memory devices of different speed. Since faster memory is also more expensive, the storage
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volume of the different devices decreases with increasing speed. To take this fact into

account, computer designer have designed architecture to connect mass storage device,

which are the slowest memory component to the fastest, the registers. Another fact to

take into account is Moore’s law [Moo65]: The law states that the number of transistors

per integrated circuit within a processor doubles every 18 months, which means that the

speed is doubling virtually every 2 years. Another version of Moor’s law predict that the

speed of memory devices is doubling only every 10 year. To reduce this gap, fast memory

component like RAM or cache have been designed to increase the locality of data and hide

the latency of memory.

Generally, the cache is a fast memory, which temporally stores (caches) often used data

from a slower memory. As a consequence we not always have to access the slower memory,

which highly reduces the access time of the data. For HAVEGE the instruction cache and

the data L1 cache are important. Both are located within the processor and are applied to

cache the instructions and respectively the data for the processor. To simplify matters we
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will only discuss the data cache. Since instructions are virtually nothing else than data,

the instruction cache works in the same manner.

If the processor needs specific data, it first checks if those data are already located in

the cache. If this is the case, the data can be used directly from the cache. This situation

is called a hit. If those data are not yet in the cache, they are first loaded from the slower

memory into the cache and used by the processor afterwards. This slow case is called a

miss. We have to consider that the cache is much smaller than slower memory. Thus, the

cache is not able to store all data. Nevertheless, the operating system tries to minimize

the number of misses.

Another optimization technique is based on the instruction pipeline. An instruction

can be partitioned into five different steps:

• IF (Instruction Fetch): loads the instruction,

• ID (Instruction Decode): decodes the instruction and loads the register,

• EX (EXecution): executes the instruction,

• MEM (MEMory access): accesses slower memory devices, and

• WB (Write Back): writes result into register.

Each phase is handled by a different unit of the processor. If a new instruction (I2) only

starts after the previous instruction (I1) has finished all its phases, then the different units

are idle most of the time. The instruction pipeline is used to improve the behavior of the

IF I1 I2

ID I1 I2

EX I1

MEM I1

WB I1

Table 13.1: Without instruction pipeline

processor. As soon as a unit has finished its work with one instruction, it starts to work

on the subsequent one. Since the different units are not idle any more, the number of

instructions that can be processed in a given time highly increases. However, problems

occur if there exist dependencies between the individual instructions. How should the

pipeline behave if a program contains statements of the following form?

IF I1

THEN I2, I3, . . .

ELSE I ′2, I
′
3, . . .

Only after I1 was finished, the processor knows which instructions will have to be executed
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IF I1 I2 I3 I4 I5 I6 I7

ID I1 I2 I3 I4 I5 I6

EX I1 I2 I3 I4 I5

MEM I1 I2 I3 I4

WB I1 I2 I3

Table 13.2: Using the instruction pipeline

next. Basically the processor decides, based on rules, whether to take the main branch (I2,

I3, . . . ) or the alternative branch (I ′2, I
′
3, . . . ) and includes the corresponding instructions

into the pipeline. If at the end of I1 it turns out that the wrong branch was chosen, then

all calculations after I1 were useless and the new branch must be loaded into the pipeline.

Consequently, much time is lost by choosing the wrong branch. Since a general program

contains many IF/ELSE statements, the processor needs a mechanism that is as reliable as

possible to predict the correct branch. Such a mechanism is called a branch predictor.

A simple branch predictor is presented in Figure 13.2. Each IF/ELSE decision is

00 01 10 11
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represented by a finite state machine with four states. If the machine is located in one of

the left two states, then the main branch is taken, otherwise this branch gets rejected. The

transition from one state to another depends on the fact if the prediction of the branch was

correct. Even if this machine is quite simple it achieves a good prediction rate on average

programs. The state machine can be represented by two bits, thus, the branch predictor

contains a small memory and by means of a hash function assigns each IF/ELSE decision

two bits of this memory.
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13.1.2 Functionality of HAVEGE

Now that we know how the different optimization techniques work, the question remains in

which way these techniques produce entropy. HAVEGE measures the number of hardware

clock cycles, which are required to process a short sequence of instructions. Since these

instructions use the optimization techniques described above, the number of required clock

cycles highly depends on the current state of those techniques.

In a computer, many processes are executed simultaneously, but the processor is only

able to handle one process at a time. Which process has access to the processor at which

time is controlled by the operating system. This control is called scheduling. While a

process allocates the processor, it writes its own data into the cache. After a new process

is loaded into the processor, the probability of a miss in the cache or a false prediction of

a branch is much higher than if the process would have been working continuously on the

processor. This is due to the fact that the data of the previous process may still be located

in the processor. Figure 13.3 demonstrates that the behavior of the process P1 may differ
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between Case 1 and Case 2. The figure describes which process allocates the processor at

which time. The time gaps between the processes in the second case arise from the cost of

scheduling. In the first case the process was continuously assigned to the processor, in the

second case the calculation was interrupted by the processes P2 and P3.

Altogether we see that the result of the hardware clock cycle measure of HAVEGE

highly depends on the number and type of processes which are handled in the meantime.
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Each processed interrupt changes the measured value of clock cycles, because on the one

hand the handling of the interrupt uses the processor and on the other hand the interrupt

may change the order of the executed processes. Thus, each interrupt injects entropy in

the number of required hardware clock cycles. Sendrier and Seznec state in [SS02, p.12]

that on average, HAVEG is able to collect at least 8K-16K of unpredictable bits on each

operating system interrupt by means of only this gathering technique.

13.1.3 General Structure

HAVEGE contains a table, the so-called Walk-Table, and two pointers PT and PT2. The

two pointers represent the current position of two simultaneous walks within the table.

The design idea of the table was taken from [BD76]. However, the security assumption of

HAVEGE is not based on this article but on the behavior of the processor.

Initially, the table gets filled with random numbers using HAVEG and afterwards

is continuously refreshed by the transition function. The transition function measures

the number of hardware clock cycles that were required to execute a short sequence

of instructions, which depend on the current states of the branch predictor and of the

instruction cache.

The course of the two walks is determined by the content of the table. The size of the

table was chosen to be twice as big as the data L1 cache. Therefore, the probability is

about 50% that the data of the table, which gets accessed by the two walks, is located in

the cache . Hence the number of required clock cycles is not only affected by the occurrence

of interrupts but also by the content of the table.

The output function just combines the current values of the two walks. Since the

content of the table and, thus, the course of the two walks can be assumed to be random,

this simple mechanism is sufficient to generate good random numbers.

We include the inner states of the processor into the inner state of the generator,

because they have an essential impact on the produced random numbers.

13.2 State Space

The internal state of HAVEGE not only consists of the Walk-Table and the two pointers,

which represent the two random walks within the table, but also of all the volatile states

inside of the processor, which affect the number of required clock cycles. Therefore, the

complete state of HAVEGE cannot be observed without freezing the clock of the processor,

since each attempt to read the inner state of the processor alters it at the same time. The

size of the Walk-Table was chosen to be twice as big as the size of the data L1 cache. As

an example, the implementation in [SS03] uses a table of 8K 4-byte integers.

Since the volatile states of the processor are part of the inner state of the generator,

they have to be considerer when determining the strength of HAVEGE. In [SS03] the

authors indicate that there are thousands of such binary states in the processor which are
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changed during an interrupt and therefore influence the outcome of the generator. Thus,

the strength of HAVEGE is the size of the Walk-Table plus thousands of volatile states.

13.2.1 Seed (HAVEG)

Initially the Walk-Table is seeded by HAVEG.

HAVEG is the simpler version of the two generators. It just gathers the entropy that

was injected by an interrupt into the behavior of the processor. For this purpose, HAVEG

uses the method HARDTICK(), which measures the number of hardware clock cycles since

the last call of this method. The call of HARDTICK() is embedded into a small sequence

of instructions, which uses a read and a write command as well as a conditional branch.

In order to detect as many changes as possible in the instruction cache, the sequence of

instructions is repeated as often in the main loop as is necessary to make the loop just fit

into the instruction cache. The uncertainties in the behavior of the processor are observable

in the result of HARDTICK().

The output of HARDTICK() gets included at position K into the Entrop-Array by

means of a simple mixing function. The mixing function consists of cyclic shift and XOR

operations. The shift should compensate the fact that most of the entropy is found in the

least significant bits. The XOR operations are used to combine the new input value with

the old values at position K and K+1 in the array. Thus, the program achieves that each

input value has an influence on each position of the array at least after an adequate time.
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Since HAVEG gains its entropy from the chaotic behavior after an interrupt, the

program counts the number of interrupts occurred. Every time when the result of

HARDTICK() exceeds a given threshold, which empirically indicates the occurrence of an

interrupt, the INTERRUPT counter gets increased. NMININT represents the minimal number

of interrupts that must occur, such that the content of the Entrop-Array can be seen as

random. As soon as INTERRUPT exceeds NMININT, the program leaves the main loop and

the Entrop-Array contains the resulting random numbers.

The disadvantage of this program is that if no interrupts occur, the algorithm gets

highly deterministic and the output contains only little entropy.

13.3 Transition Function

The transition function employs two simultaneous walks through a table filled with random

numbers to additionally affect the behavior of the processor. The table is twice as big as

the data L1 cache. Thus, the probability of a slower access to the table, due to a miss in

the cache is about 50%. If one assumes that the Walk-Table is filled with random numbers,

it is reasonable to claim that the behavior of the processor gets changed in a random way.

However, the total absence of interrupts makes HAVEGE a pure deterministic algorithm,

but the use of the table helps to compensate interrupt shortages.

A short sequence of instructions contain conditional branches, the access of the two

walks on the table, and a call of the HARDTICK()-Method. The sequence is repeated in the

main loop as often as is necessary to make the program just fit into the whole instruction

cache. Thus, the influence of the current value of the branch predictor, the instruction

cache, and the data L1 cache gets maximized.

The two simultaneous walks are represented by the two pointers PT and PT2. The

course of the walk corresponding to PT is affected by its current position, the content of

the table, and the result of HARDTICK(). In addition, the new value of PT is applied to

refresh the content of one cell in the table. The course of the walk corresponding to PT2 is

influenced by its current position, the content of the table, and the value of PT. Thus, the

result of HARDTICK() has a direct and respectively an indirect influence on the behavior

of both walks. An adversary which learned the content of the table as well as of the two

pointers, loses his or her knowledge about the further course of the walks as soon as one

unknown result of HARDTICK() gets processed.

13.3.1 Input Space

Every operating system interrupt, whether it is a software or a hardware interrupt, alters

the volatile states of the processor and, therefore, the state of HAVEGE. The input space

is again infinite, since arbitrary many interrupts may occur during one loop of HAVEGE.
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13.4 Output Function

The output function of the generator is very simple. The two pointers, which represent

the current position of the two walks within the table, are combined with XOR and put

into the output buffer. The XOR should keep adversary from guessing the content of the

Walk-Table by monitoring the output of the generator.

13.5 Empirical Results

Statistical Tests

The quality of HAVEGE and HAVEG was tested in [SS02] and [SS03] by means of a

specific battery of tests. The single tests were performed on 16 Mbyte sequences of random

numbers, and each step of the battery was applied to several sequences.

The battery consists of four steps. In the first step the less time consuming ent test

[Wal98] was used to filter out the worst sequences. In the second and the third step

the FIPS-140-2 test suite [Nat01b] and respectively the NIST statistical suit [R+01] were

applied. In both cases, a generator passes the tests if the result of the tests corresponds

to the average results of the Mersenne twister [MN98] pseudorandom number generator.

According to [SS03], the Mersenne twister is known to reliably satisfy uniform distribution

properties. In the fourth step the DIEHARD test suit [Mar95] was performed.

HAVEGE consistently passed this test battery on all tested platforms (UltraSparcII,

Solaris, Pentium III). This means that the output of HAVEGE is as reliable as

pseudorandom number generators like the Mersenne twister, without suffering from the

general security problems of PRNGs which arise from a compromised state.

Throughput

HAVEG exhaustively uses the the entropy of an interrupt and thus achieves a much

higher throughput than general entropy gathering generators. Sendrier and Seznec showed

in [SS02], using an empirical entropy estimation, that HAVEG collects between 8K

(Iitanium/Linux) and 64K (Solaris/UtrasparcII) of random bits during a system interrupt.

This corresponds to a throughput of a few 100 Kbits per second. For the empirical entropy

estimation, they determined for each machine, the necessary number NMININT of interrupts,

such that the content of the fixed size Entrop-Array continuously passes the battery of

test. From this value they concluded the number of random bits collected per system

interrupt.

Since HAVEGE is less dependent on the occurrence of interrupts it achieves a much

higher throughput. The authors state in [SS03] that HAVEGE needs about 920 million

cycles on a Pentium II to generate 32 Mbytes of random numbers. This is equal to a

throughput of approximately 280 Mbits per second.
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13.6 Security

The security of HAVEGE is built on the large unobservable inner state of the generator.

Each effort of reading the internal state results in an interrupt and, therefore, alters it at the

same time. The only way of reading the total state would be to freeze the hardware clock,

which is only possible in special computer labs for research reasons. The high variety

of possible internal states and of ways to change them makes it practical impossible to

reproduce a sequence of random numbers.

The XOR in the output function prevents that information about the Walk-Table may

be gained from the output.

In contrast to other generators like Yarrow (see Chapter 10) HAVEGE reseeds its

internal state permanently. Therefore, even if an adversary is able to learn the content of

the Walk-Table and the two pointers, he or she loses track of the walks and, thus, of the

future random numbers as soon as the next HARDTICK() result is processed. This means

that the generator is able to recover very fast from a compromised state.

INRIA still studies different possibilities which may reduce the uncertainty in the

behavior of the processor, like for example flooding the processor with user defined

interrupts or changing the temperature of the processor. However, since the correlations

between the different influences are very complex it is unlikely that an adversary is able

to practically affect the result of the generator.

13.7 Portability

HAVEGE is a simple program, which works on user level. It does not use any operating

system calls and can therefore be used together with all machines and operating systems

that use optimization techniques like branch predictors or caches. To run HAVEGE on

a certain computer we simply have to adjust some parameters which correspond to the

specific sizes of the branch predictor, the instruction cache and the data L1 cache. Such

parameters are for example the number of iterations in the code or the size of the Walk-

Table.

An implementation and adjustments for several processors can be found at

http://www.irisa.fr/caps/projects/hipsor/HAVEGE.html.

13.8 Conclusion

HAVEGE is an innovative concept that exhaustively uses the entropy that an interrupt

injects into the behavior of the processor. The quality of the output and the throughput

of the generator is at least as good as of general pseudorandom number generators. In

addition, the security of HAVEGE is hardly reducible. Each attempt to monitor the inner

state of the processor alters it and the continuous reseeding of the Walk-Table prevents
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compromised state attacks.

HAVEG, on its own, is a pure entropy gathering generator. It reaches a higher

throughput than other generators of this kind and may be used alone or in combination

with other generators.

Factsheet of HAVEGE

Cryptographic None

Primitives used

Strength size of table + thousands

of volatile states

Statistical Test NIST test suite,

Results available DIEHARD battery

Speed HAVEG: 8K-16K bits/s

HAVEGE: 280 Mbits/s

Portability Yes

Table 13.3: Summary of HAVEGE
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Chapter 14

Summary of Part II

In the previous chapters we introduced five different random number generators. Each of

them falls into one of the tree categories we described in Chapter 7 and was chosen for a

special reason.

/dev/random is a classical RNG within the Linux kernel and implements an entropy

gathering generator. It may be used to extract small amounts of random numbers from

an ordinary computer.

Yarrow is a generic concept, which offers suggestions how to combine entropy gathering

with a simple PRNG to achieve a higher throughput. Additionally, the designers tried to

take several possible attacks on cryptographic RNGs into account.

BBS is a typical example of a PRNG. After it was seeded once it creates random

numbers without processing any further input. The special property of this generator is

that it is proven to be next-bit unpredictable to the left and to the right. A proof of random

qualities is rare in the class of cryptographic RNGs. Most of the time the assumption

concerning the quality of the generator are based on empirical results and statistical tests.

However, BBS has the disadvantage of low speed and relying on an external random source

for reseeding.

AES in Countermode is another version of a PRNG. In this case the quality of the

output was not confirmed by a mathematical proof but by statistical tests. Nevertheless,

besides resistance against cryptanalytic attacks and nice stochastic properties, AES

provides a high throughput. Like all PRNGs it also requires a reliable random source

for reseeding.

HAVEGE extends the concept of entropy gathering from an ordinary computer. It does

not directly use the occurrence of external events but the uncertainties the corresponding

interrupts inject into the behavior of the processor. In addition, the chaotic behavior of

the processor is enhanced by means of a table which is continuously filled with random

numbers. Thus, HAVEGE achieves a throughput of the same magnitude as fast PRNGs

and is still able to provide a continuous reseeding of the inner state and a high strength of

the generator.

For cryptographic applications which demand high speed and high unpredictability of

111
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the output we recommend to use HAVEGE. If another reliable but slow random source is

available, or if the random sequence should be reconstructible from a shorter seed like in

the case of stream ciphers, then we suggest to use AES in connection with an appropriate

reseeding mechanism. However, the reader has to decide him/herself which generator fits

best for his or her specific needs.
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/dev/random Yarrow BBS HAVEGE AES

Cryptographic SHA-1 or SHA-1 None None AES

Primitives used MD5 3DES

Strength 1024 bits 160 bits ≤ log2 φ(N) size of table + thousands Counter mode: 256 bits

of volatile states PRNG mode: 128 bits

Statistical Test DIEHARD None NIST test suite NIST test suite, Overlapping serial test,

Results available battery DIEHARD battery gambling test

Speed 8 - 12K bits/s No results 3 Kbits/s HAVEG: 8K-16K bits/s 426 Mbits/s

HAVEGE: 280 Mbits/s

Portability part of Yes Yes Yes Yes

Linux Kernel

Table 14.1: Summary of generators
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Germany, 1974.

[Ts’99] T. Ts’o. random.c – A strong random number generator. Linux Ker-

nel 2.4.20, http://www.iglu.org.il/lxr/source/drivers/char/random.c,

September 1999.

[Wal98] J. Walker. ENT a pseudorandom number sequence test program. Available

from http://www.fourmilab.ch/random/, October 1998.

[Weg98] S. Wegenkittl. Generalized φ-Divergence and Frequency Analysis in Markov

Chains. PhD thesis, University of Salzburg, 1998.

[Weg99] S. Wegenkittl. Monkeys, gambling, and return times: assessing pseudorandom-

ness. In WSC ’99: Proceedings of the 31st conference on Winter simulation,

pages 625–631, New York, NY, USA, December 1999. ACM Press.

[Weg01] S. Wegenkittl. Entropy estimators and serial tests for ergodic chains. IEEE

Transactions on Information Theory, 47(6):2480 – 2489, 2001.

[Weg02] S. Wegenkittl. Entropy based tests for randomness and applications to crypto-

graphic generators. http://random.mat.sbg.ac.at/ftp/pub/data/slides.

pdf, June 2002. Slides.

[Wil93] R. N. Williams. A painless guide to CRC error detection algorithms. ftp:

//ftp.rocksoft.com/papers/crc_v3.txt, August 1993.



122 BIBLIOGRAPHY



Curriculum Vitae

Name: Andrea Röck
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