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Part 1

FCSR



Feedback with Carry Shift Register

c(t)

m(t)

d 1 0 1 1

mn−1 m1 m0

0 cn−3 c0

mn−2 mn−3

I m(t) main register

I c(t) carry register

I d determines feedback, 2n−1 ≤ d < 2n
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Notations

I n length of main register

I m =
∑n−1

i=0 mi 2i

I d∗ = d− 2n−1

I Id = {i|0 ≤ i ≤ n− 2 and d∗i = 1}
I ` = HammingWeight(d∗)

I c =
∑

i∈Id
ci 2i

I (m(t), c(t)) state after t iterations
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State Update Function

I i = n− 1
mn−1(t + 1) = m0(t)

I 0 ≤ i < n− 1 and i ∈ Id

〈 ci, mi 〉(t + 1) = mi+1(t) + ci(t) + m0(t)
1 0 = 1 + 0 + 1

I 0 ≤ i < n− 1 and i 6∈ Id

mi(t + 1) = mi+1(t)
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[Klapper, Goresky 94]

I Let

. q := 1− 2 d

. p := m + 2c

It holds that

. 0 ≤ p ≤ |q|

. Output of FCSR is 2-adic expansion of p
q

. Two fixed points (0, 0) and (2n − 1, d∗)
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e.g. [Koblitz 97]

. If q is odd, p and q are coprime and the order of 2
modulo q is |q| − 1 then the FCSR has the maximal

period of |q| − 1. In this case we say the FCSR is

optimal.
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Functional Graph

(1,3)

(3,2)

(5,1)

(0,0)

(2,1)

(7,0) (4,3) (1,2) (5,2)

(3,3)

(7,1)

(5,3)

(7,2)

(6,3)

(0,3)(3,0)(6,1)(0,1)

(1,0)

(6,2) (3,1)

(4,1)

(2,2)

(6,0)(2,3)

(4,2) (1,1)
(0,2)

(4,0)

(2,0)

(5,0)

(7,3)

6/36



Entropy of State at time t

I p(m,c)(t) probability of the state being (m, c) at time t.

I (m(0), c(0)) is uniformly distributed.

I p(m,c)(t) is well defined due to initial distribution.

I Entropy:

H(t) :=
∑

(m,c)

p(m,c)(t) log2
1

p(m,c)(t)
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Part 2

Entropy after one Feedback



Entropy after one Feedback

I Initial entropy: n + `

I Question:
Entropy loss after one feedback?

I Method:
Count the number of (m(0), c(0))’s which produce the

same (m(1), c(1)).
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Fix (m(1), c(1))

I From mn−1(t + 1) = m0(t): m0(0)

I i 6∈ Id: From mi(t + 1) = mi+1(t): mi+1(0)

I i ∈ Id: From

〈ci,mi〉(t + 1) = mi+1(t) + ci(t) + m0(t)

same (mi(1), ci(1)) with

(mi+1(0), ci(0)) = (0, 1) or (1, 0)
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Method (1)

I j: number of i ∈ Id where mi(1) 6= m0(0) and thus

mi+1(0) 6= ci(0).

I (m(1), c(1)) can be produced by 2j different

(m(0), c(0))’s.

I There are 2n−j
(

`
j

)
such (m(1), c(1))’s
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Method (2)

I Entropy after one iteration:

∑̀

j=0

2n−j

(
`

j

)
2j

2n+`
log2

2n+`

2j
= n +

`

2

11/36



Part 3

Final Entropy



Final Entropy

I Goal: Entropy when we reached the cycle

I Idea: How many (m, c)’s create the same p = m + 2c.
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Final Entropy

Method
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[Arnault, Berger, Minier - SASC 07] (1)

I Definition:
Two states (m, c) and (m′, c′) are said equivalent if

m + 2c = m′ + 2c′ = p.

I Proposition:
Two non-invariant states of a FCSR automaton with

optimal period are equivalent if and only if they

converge to the same state of the main cycle in the

same number of steps.

14/36



[Arnault, Berger, Minier - SASC 07] (2)

I Theorem:
The length of the tail of the graph of an optimal FCSR

automaton is at most n + 3.
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Method (1)

p 0 01 1 011

m

1 11 1

2c 1 11

0 001 1 1

Bitwise addition with carry
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Method (2)

I We group p with similar binary representation into sets

Bi.

I Each time we calculate

. G(i) = #{(m, c) : p = m + 2c} for p ∈ Bi

. |Bi|

. fraction of entropy

|Bi| G(i)
2n+`

log2

(
2n+`

G(i)

)
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Final Entropy

Algorithm
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Case p < 2n

I i = blog2(p)c
I `′ = #{j ∈ Id|j ≤ i}

I Two cases:

. di−1 = 0

. di−1 = 1
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p < 2n and di−1 = 0 (1)

I Not important if we have a carry at i− 1

I 2 possibilities at each feedback position

2c

p

m

0

i

0

00 0

0

0

1

0

1
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p < 2n and di−1 = 0 (1)

I Not important if we have a carry at i− 1

I 2 possibilities at each feedback position

2c

p

m

0

i

0

00 0

0

0

1

0

1

1

1

1

0
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p < 2n and di−1 = 0 (2)

I 2`′ possible (m, c)′s

I 2i such p’s

I Fraction of entropy:

2i2`′−n−`(n + `− `′)
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p < 2n and di−1 = 1 (1)

I r(p) = max{j < i|dj−1 = 0, pj = 1}
I No carry can be forwarded over r

I Possible range: −1 ≤ r < i

110 0 0 0 0 0

00

0

0000

0 1

p

m

2c

0

1

ri
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p < 2n and di−1 = 1 (1)

I r(p) = max{j < i|dj−1 = 0, pj = 1}
I No carry can be forwarded over r

I Possible range: −1 ≤ r < i

110 0 0 0 0 0

00

0

0000

0 1

p

m
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0

1
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1
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p < 2n and di−1 = 1 (2)

I For i > j > r with dj−1 = 0:

. pj = 0 (definition of r(p))

. carry is forwarded

2c

m

p

ri

0 0 0 0 0

0 00

0

000

0

0

01 1

1

1

23/36



p < 2n and di−1 = 1 (2)

I For i > j > r with dj−1 = 0:

. pj = 0 (definition of r(p))

. carry is forwarded

2c

m

p

ri

0 0 0 0 0
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p < 2n and di−1 = 1 (2)

I For i > j > r with dj−1 = 0:

. pj = 0 (definition of r(p))

. carry is forwarded

2c

m

p

ri

0 0 0 0 0

0 00

0

000

0

0

01 1

1

100

1

11

11

0
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p < 2n and di−1 = 1 (3)

I `′′ = #{j ∈ Id|j < r}
I Id′(r, i) = {j|r < j < i and dj−1 = 1}
I p′ and (m′, c′):

p and (m, c) reduced on Id′(r, i)

I x(p′):
number of possibilities for m′ and c′ to generate p′ but

with a carry at position i− 1.
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p < 2n and di−1 = 1 (4)

. For all 0 ≤ x ≤ 2`′−`′′−1 − 1 there exists exactly one p′

with x(p′) = x.

. carry at i− 1: (mi, ci−1) = (0, 0)

. no carry at i− 1: (mi, ci−1) = (1, 0) or (0, 1)

I possible (m′, c′) to create 1p′

x(p′) + 2(2`′−`′′−1 − x(p′)) = 2`′−`′′ − x(p′)

I 2r ps for each p′
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p < 2n and di−1 = 1 (4)

I Fix i and r

I y 2`′′ possible (m, c)′s, for all 2`′−`′′−1 + 1 ≤ y ≤ 2`′−`′′

I 2r 2`′−`′′−1 such p’s
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p < 2n and di−1 = 1 (5)

I Fraction of entropy:

2r+`′−2−n−`
(
3 2`′−`′′−1 + 1

)
(n + `− `′′)

− 2r+`′′−n−`

2`′−`′′∑

y=2`′−`′′−1+1

y log2(y)

I For r = −1 we replace 2r by 1.
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2n ≤ p < |q| (1)

I Need carry at position n− 1

I r(p), `′′, Id′, p′, (m′, c′), and x(p′) defined as above

I r(p) < log2(d∗) + 1, otherwise p > |q|.
I Possible range: −1 ≤ r < log2(d∗) + 1

I For all 1 ≤ x ≤ 2`−`′′ − 1 there exists exactly one p′

with x(p′) = x. (Exclude x(p′) = 0 since there is no

possibility for a carry.)

I 2r ps for each p′
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2n ≤ p < |q| (2)

I Fix r

I x 2`′′ possible (m, c)′s, for each 1 ≤ x ≤ 2`−`′′ − 1.

I 2r
(
2`−`′′ − 1

)
such p’s
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2n ≤ p < |q| (3)

I Fraction of entropy:

2r 2−n−1 (2`−`′′ − 1) (n + `− `′′)

− 2r 2`′′−n−`

2`−`′′−1∑
x=1

x log2(x)

I For r = −1 we replace 2r by 1.
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Final Entropy

Approximations
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Problem

I Complexity of Algorithm O
(
n2

)
if we know value of

the sums.

I Calculation of

2k−1∑
x=1

x log2(x) and
2k∑

x=2k−1+1

x log2(x)

impractical for large k
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Upper / Lower Bound

As we know the indefinite integral of x 7→ x log2(x) we

can use:

∫ 2k

2k−1
x log2(x)dx <

2k∑

x=2k−1+1

x log2 x <

∫ 2k+1

2k−1+1
x log2(x)dx

∫ 2k

1
x log2(x)dx <

2k∑
x=1

x log2 x <

∫ 2k+1

2
x log2(x)dx
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Better Approximation (1)

I Idea:
∫ x+1

x

y log2(y) ≈ 1
2

(
x log2(x) + (x + 1) log2(x + 1)

)

I Good approximation for large k.
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Better Approximation (2)

I Get

2k∑

y=2k−1+1

y log2 y = 22k−3
(

3k + 1− 3
2 ln(2)

)

+2k−2(k + 1) + O(1)
2k−1∑
y=1

y log2 y = 22k−1
(

k − 1
2 ln(2)

)
− k2k−1 + O(1)
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Part 4

Results



Results

n d ` entropy log2(|q| − 1)
16 OxA54E 7 16.2728 16.3689
24 OxA59B4E 12 24.2733 24.3716

n d lower bound upper bound approx

16 OxA54E 16.1005 16.4173 16.2728
24 OxA59B4E 24.1063 24.4131 24.2733

I For k < 5, I used the real value of the sums in the

approximation.
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