Entropy Approximation for FCSRs

Andrea Röck

Limoges, 13th February 2007

Outline

- ► FCSR
- Entropy after one Feedback
- Final Entropy
 - Method
 - Algorithm
 - Approximations
- Results

Part 1 FCSR

Feedback with Carry Shift Register

- $\blacktriangleright m(t)$ main register
- $\blacktriangleright c(t)$ carry register
- ▶ d determines feedback, $2^{n-1} \leq d < 2^n$

Notations

n length of main register $\blacktriangleright m = \sum_{i=0}^{n-1} m_i 2^i$ $d^* = d - 2^{n-1}$ ▶ $I_d = \{i | 0 \le i \le n-2 \text{ and } d_i^* = 1\}$ $\triangleright \ell = HammingWeight(d^*)$ $\triangleright c = \sum_{i \in I_d} c_i \ 2^i$ \triangleright (m(t), c(t)) state after t iterations

State Update Function

•
$$i = n - 1$$

 $m_{n-1}(t+1) = m_0(t)$
• $0 \le i < n - 1$ and $i \in I_d$
 $\langle c_i, m_i \rangle (t+1) = m_{i+1}(t) + c_i(t) + m_0(t)$
 $1 \quad 0 = 1 + 0 + 1$
• $0 \le i < n - 1$ and $i \notin I_d$
 $m_i(t+1) = m_{i+1}(t)$

[Klapper, Goresky 94]

Let

$$P q := 1 - 2 d$$

 $P p := m + 2c$

It holds that

 $\triangleright 0 \leq p \leq |q|$

▷ Output of FCSR is 2-adic expansion of $\frac{p}{q}$

d

 \triangleright Two fixed points (0,0) and $(2^n - 1, d^*)$

e.g. [Koblitz 97]

▷ If q is odd, p and q are coprime and the order of 2 modulo q is |q| - 1 then the FCSR has the maximal period of |q| - 1. In this case we say the FCSR is optimal.

Functional Graph

6/36

Entropy of State at time \boldsymbol{t}

- ▶ p_(m,c)(t) probability of the state being (m, c) at time t.
 ▶ (m(0), c(0)) is uniformly distributed.
- *p*_(*m*,*c*)(*t*) is well defined due to initial distribution.
 Entropy:

$$H(t) := \sum_{(m,c)} p_{(m,c)}(t) \log_2 \frac{1}{p_{(m,c)}(t)}$$

Part 2 Entropy after one Feedback

Entropy after one Feedback

- **Initial entropy:** $n + \ell$
- Question: Entropy loss after one feedback?

Method:

Count the number of (m(0), c(0))'s which produce the same (m(1), c(1)).

Fix $(\mathbf{m}(\mathbf{1}),\mathbf{c}(\mathbf{1}))$

▶ From $m_{n-1}(t+1) = m_0(t)$: $m_0(0)$ ▶ *i* ∉ *I_d*: From $m_i(t+1) = m_{i+1}(t)$: $m_{i+1}(0)$ ▶ *i* ∈ *I_d*: From

$$\langle c_i, m_i \rangle (t+1) = m_{i+1}(t) + c_i(t) + m_0(t)$$

same $(m_i(1), c_i(1))$ with $(m_{i+1}(0), c_i(0)) = (0, 1)$ or (1, 0)

Method (1)

- ▶ *j*: number of $i \in I_d$ where $m_i(1) \neq m_0(0)$ and thus $m_{i+1}(0) \neq c_i(0)$.
- ▶ (m(1), c(1)) can be produced by 2^j different (m(0), c(0))'s.

▶ There are
$$2^{n-j} \binom{\ell}{j}$$
 such $(m(1), c(1))$'s

Method (2)

Entropy after one iteration:

$$\sum_{j=0}^{\ell} 2^{n-j} \binom{\ell}{j} \frac{2^j}{2^{n+\ell}} \log_2 \frac{2^{n+\ell}}{2^j} = n + \frac{\ell}{2}$$

Part 3 Final Entropy

Final Entropy

Goal: Entropy when we reached the cycle

▶ Idea: How many (m, c)'s create the same p = m + 2c.

Final Entropy Method

[Arnault, Berger, Minier - SASC 07] (1)

Definition:

Two states (m,c) and (m',c') are said equivalent if m+2c=m'+2c'=p.

Proposition:

Two non-invariant states of a FCSR automaton with optimal period are equivalent if and only if they converge to the same state of the main cycle in the same number of steps.

[Arnault, Berger, Minier - SASC 07] (2)

Theorem:

The length of the tail of the graph of an optimal FCSR automaton is at most n + 3.

Method (1)

Bitwise addition with carry

Method (2)

- We group p with similar binary representation into sets B_i.
- Each time we calculate
 - ▷ $G(i) = #\{(m, c) : p = m + 2c\}$ for $p \in B_i$ ▷ $|B_i|$
 - ▷ fraction of entropy

$$B_i \left| \frac{G(i)}{2^{n+\ell}} \log_2\left(\frac{2^{n+\ell}}{G(i)}\right) \right|$$

Final Entropy Algorithm

$\hbox{\rm Case}\ p<2^n$

$$i = \lfloor \log_2(p) \rfloor$$
$$\ell' = \#\{j \in I_d | j \le i\}$$

► Two cases:

$$\triangleright d_{i-1} = 0$$

 $\triangleright d_{i-1} = 1$

$p<2^{\rm n}$ and $d_{i-1}=0$ (1)

Not important if we have a carry at i - 1
 2 possibilities at each feedback position

$p<2^{\rm n}$ and $d_{i-1}=0$ (1)

Not important if we have a carry at i - 1
 2 possibilities at each feedback position

$p<2^{\rm n}$ and $d_{i-1}=0$ (2)

▶
$$2^{\ell'}$$
 possible $(m,c)'s$

- $\blacktriangleright 2^i$ such p's
- Fraction of entropy:

$$2^{i}2^{\ell'-n-\ell}(n+\ell-\ell')$$

$p<2^{\rm n}$ and $d_{i-1}=1$ (1)

$$r(p) = \max\{j < i | d_{j-1} = 0, p_j = 1\}$$

 \blacktriangleright No carry can be forwarded over r

▶ Possible range: $-1 \le r < i$

$p<2^{\rm n}$ and $d_{i-1}=1$ (1)

$$r(p) = \max\{j < i | d_{j-1} = 0, p_j = 1\}$$

 \blacktriangleright No carry can be forwarded over r

▶ Possible range: $-1 \le r < i$

$p<2^{\rm n}$ and $d_{i-1}=1$ (2)

$p<2^{\rm n}$ and $d_{i-1}=1$ (2)

$p<2^{\rm n}$ and $d_{i-1}=1$ (2)

$p<2^{\rm n}$ and $d_{i-1}=1$ (3)

$p < 2^n$ and $d_{i-1} = 1$ (4)

- ▷ For all $0 \le x \le 2^{\ell' \ell'' 1} 1$ there exists exactly one p' with x(p') = x.
- ▷ carry at i 1: $(m_i, c_{i-1}) = (0, 0)$
- ▷ no carry at i 1: $(m_i, c_{i-1}) = (1, 0)$ or (0, 1)

▶ possible (m', c') to create 1p'

$$x(p') + 2(2^{\ell' - \ell'' - 1} - x(p')) = 2^{\ell' - \ell''} - x(p')$$

25/36

▶
$$2^r ps$$
 for each p'

RINRIA

$p<2^{\rm n}$ and $d_{i-1}=1$ (4)

Fix i and r

▶ $y 2^{\ell''}$ possible (m, c)'s, for all $2^{\ell' - \ell'' - 1} + 1 \le y \le 2^{\ell' - \ell''}$ ▶ $2^r 2^{\ell' - \ell'' - 1}$ such p's

$p < 2^n$ and $d_{i-1} = 1$ (5)

Fraction of entropy:

For r = -1 we replace 2^r by 1.

$2^{\mathrm{n}} \leq \mathrm{p} < |\mathrm{q}|$ (1)

- ▶ Need carry at position n-1
- ▶ r(p), ℓ'' , $I_{d'}$, p', (m', c'), and x(p') defined as above
- ▶ $r(p) < \log_2(d^*) + 1$, otherwise p > |q|.
- ▶ Possible range: $-1 \le r < \log_2(d^*) + 1$
- For all 1 ≤ x ≤ 2^{ℓ-ℓ"} − 1 there exists exactly one p' with x(p') = x. (Exclude x(p') = 0 since there is no possibility for a carry.)
- ▶ $2^r ps$ for each p'

$2^{\mathrm{n}} \leq \mathrm{p} < |\mathrm{q}|$ (2)

x 2^{ℓ"} possible (m, c)'s, for each 1 ≤ x ≤ 2^{ℓ-ℓ"} − 1. 2^r (2^{ℓ-ℓ"} − 1) such p's

$2^{\mathrm{n}} \leq \mathrm{p} < |\mathrm{q}|$ (3)

► Fraction of entropy:

$$2^{r} 2^{-n-1} (2^{\ell-\ell''}-1) (n+\ell-\ell'') - 2^{r} 2^{\ell''-n-\ell} \sum_{x=1}^{2^{\ell-\ell''}-1} x \log_2(x)$$

For r = -1 we replace 2^r by 1.

Final Entropy

Approximations

Problem

- Complexity of Algorithm O (n²) if we know value of the sums.
- Calculation of

$$\sum_{x=1}^{2^{k}-1} x \log_2(x) \text{ and } \sum_{x=2^{k-1}+1}^{2^{k}} x \log_2(x)$$

impractical for large k

Upper / Lower Bound

As we know the indefinite integral of $x \mapsto x \log_2(x)$ we can use:

$$\int_{2^{k-1}}^{2^{k}} x \log_2(x) dx < \sum_{x=2^{k-1}+1}^{2^{k}} x \log_2 x < \int_{2^{k-1}+1}^{2^{k}+1} x \log_2(x) dx$$
$$\int_{1}^{2^{k}} x \log_2(x) dx < \sum_{x=1}^{2^{k}} x \log_2 x < \int_{2}^{2^{k}+1} x \log_2(x) dx$$

33/36

Better Approximation (1)

$$\int_{x}^{x+1} y \log_2(y) \approx \frac{1}{2} \Big(x \log_2(x) + (x+1) \log_2(x+1) \Big)$$

► Good approximation for large k.

Better Approximation (2)

35/36

Part 4 Results

Results

n	d	ℓ	entropy	$\log_2(q -1)$
16	OxA54E	7	16.2728	16.3689
24	OxA59B4E	12	24.2733	24.3716

n	d	lower bound	upper bound	approx
16	OxA54E	16.1005	16.4173	16.2728
24	OxA59B4E	24.1063	24.4131	24.2733

► For k < 5, I used the real value of the sums in the approximation.

