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Part 1

FCSR



Introduction

I Feedback with Carry Shift Register (FCSR):
Introduced by [Goresky Klapper 97], [Marsaglia Zamand 91] and
[Couture L’Ecuyer 94].

I Binary FCSR in Galois architecture [Goresky Klapper 02].

I Used in stream cipher e.g. the eSTREAM candidate
F-FCSR [Arnault Berger 05].
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FCSR in Galois architecture (1)
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I n: Size of main register.

I d: Integer which determines feedback positions. Carry bit if di = 1.

I (m(t), c(t)): State at time t with

• m(t) =
∑n−1

i=0 mi(t)2i: 2-adic description of the main register.

• c(t) =
∑n−1

i=0 ci(t)2i: 2-adic description of the carry register,
where ci(t) = 0 for di = 0.
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FCSR in Galois architecture (2)
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I Update function:

mn−1(t + 1) = m0(t),

di = 1 : 2ci(t + 1) + mi(t + 1) = m0(t) + ci(t) + mi+1(t),

di = 0 : mi(t + 1) = mi+1(t).
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Properties

I q = 1− 2d thus q < 0.

I p = m + 2c thus 0 ≤ p ≤ |q|.

I The output of the FCSR is the 2-adic description of

p

q
.

I The output of the FCSR has the maximal period of |q| − 1 if and only if 2 has
order |q| − 1 modulo q.
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Entropy
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I We have

• n bits in the main register and
• ` = HammingWeight(d)− 1 carry bits.

I Initial Entropy: n + ` bits.

I Entropy after one iteration: H(1).
I Final Entropy: Hf .
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Part 2

Entropy after one Iteration



Idea

I Initial entropy: n + `.

I Question:
Entropy loss after one feedback?

I Method:

• Counting the number of (m(0), c(0))’s which produce the same (m(1), c(1)).
• Using the equations of the update function.
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Method

I Let (m(0), c(0)) be an initial state which produces (m(1), c(1)).
I We want a different (m′(0), c′(1)) to produce the same (m(1), c(1)).
I Only possible positions to change are i such that di = 1 and

mi+1(0) + ci(0) = 1.

I For j such positions there are

• 2j − 1 other initial states which produce the same (m(1), c(1)).
• (

`
j

)
2n − j states (m(1), c(1)) in this category.

I Entropy after one iteration:

H(1) =
∑̀

j=0

2n−j

(
`

j

)
2j

2n+`
log2

(
2n+`

2j

)
= n +

`

2
.
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Part 3

Final Entropy



Final Entropy

I Goal: Entropy when we reached the cycle.

I Idea: How many (m, c)’s create the same p = m + 2c.

I Lemma: Let us take an FCSR with maximal period and let v(p) denote the
number of states (m, c) with p = m + 2c. Each 0 ≤ p ≤ |q| correspond to a
point to the cycle which is reached by v(p) initial values after the same

number of iterations and thus has a probability of v(p)

2n+`.

I Method: Get v(p) by looking at bit per bit addition of m and 2c.

I Final Entropy:

Hf =
|q|∑

p=0

v(p)
2n+`

log2

(
2n+`

v(p)

)
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Notations

I i = blog2(p)c: Most significant bit in p which is 1.

I `′ = #{j ≤ i|dj−1 = 1}: Number of feedback positions smaller or equal to i.

I r(p) = max{j < i|dj−1 = 0, pj = 1}: Index where a carry of the bit by bit
addition is not forwarded.

I f1(r): Helping function.

f1(r) =

{
2r for r ≥ 0
1 for r = −1

I `′′(r) = #{j < r|dj−1 = 1}: Number of feedback positions smaller than r.
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4 Cases (1)

I Case a: 1 < i < n and di−1 = 0

Ha(n, i, `, `′) = 2i 2`′−n−`(n + `− `′).

I Case b: 1 < i < n and di−1 = 1

Hb(n, r, `, `′, `′′) = f1(r)2−n−`
[

2`′−2
(
3 2`′−`′′−1 + 1

)
(n + `− `′′)

−2`′′S1(`′ − `′′)
]
.

10/14



4 Cases (2)

I Case c: i = n and 2n ≤ p ≤ |q|

Hc(n, r, `, `′′) = f1(r)2−n
[

2−1
(
2`−`′′ − 1

)
(n + `− `′′)

−2`′′−`S2(`− `′′)
]
.

I Case d: 0 ≤ p ≤ 1 (“i = 0”)

Hd(n, `) = 2−n−`(n + `).
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Approximation

I Approximating
∑2k

x=2k−1+1 x log2(x) and
∑2k−1

x=1 x log2(x) by using

1
2

(
x log2(x) + (x + 1) log2(x + 1)

)
≈

∫ x+1

x

y log2(y) dy

for large x.

I Result for some arbitrary values of d.

n d ` Hf lb Hf ub Hf lb Hf , k > 5 ub Hf , k > 5
8 0xAE 4 8.3039849 8.283642 8.3146356 8.3039849 8.3039849
16 0xA45E 7 16.270332 16.237686 16.287598 16.270332 16.270332
24 0xA59B4E 12 24.273305 24.241851 24.289814 24.273304 24.273305
32 0xA54B7C5E 17 32.241192 32.289476 32.272834 32.272834
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Part 4

Lower Bound



Lower Bound of the Final Entropy

I Proof that final entropy is ≥ n for all FCSR in Galois architecture by using
previous algorithm.

I Induction Base:
An FCSR, where the feedback positions are all group together at the least
significant position, has a final entropy larger than n.

I Induction Step:
If we move a feedback position one position to the left, the final entropy
increases.
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Part 5

Conclusion



Conclusion

I After one iteration we loose already `/2 bits of entropy.

I We presented an algorithm which calculates the final state entropy of an FCSR
with maximal period.

I The algorithm works in O(n2) if the values of the sums
∑2k

x=2k−1+1 x log2(x)

and
∑2k−1

x=1 x log2(x) are known. Otherwise we need O(2`) steps to calculate
the sums.

I The approximation of the sum works very well for large k.

I For all FCSR the final entropy is larger than n bits.
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