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Stream Cipher Model



Stream Cipher Model

state ϕ

filter
function

I State with values sk ∈ Ωn for all k ≥ 0

• State space Ωn = {ω1, ω2, . . . ωn}
• Initial state s0

• Initial distribution {pi}n
i=1 with pi = Pr[s0 = ωi]

I Update function ϕ ∈ Fn = {ϕ : Ωn → Ωn}
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Our Stream Cipher Model

Assumption: Use random function model for the update function

I ϕ is randomly chosen out of Fn

I All statistical statements are made on average over all ϕ ∈ Fn

Motivation

I New stream cipher proposals which might fit into this model
e.g. MICKEY (version 1) [Babbage and Dodd 05]

I The image of ϕ(k) is (much) smaller than n thus we loose entropy

Questions

I How much entropy do we loose in the state?

I Can this loss be efficiently exploited into a collision attack?

2/21



Notations

I Probability of a state being ωi after k iterations of ϕ:

pϕ
i (k) = Pr[ϕ(k)(s0) = ωi]

I Entropy of the state after k iterations of ϕ:

Hϕ
k =

n∑

i=1

pϕ
i (k) log2

(
1

pϕ
i (k)

)

I Expected entropy after k iterations taken over all ϕ ∈ Fn:

E(Hk)
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Part 2

Entropy Estimation



Previous Results
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Bounding Entropy with Image Points [Hong Kim 05]

I Upper bound given by number of image points:

E(Hk) ≤ log2(n) + log2(1− τk)

I Example for n = 216
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New Entropy Estimator



New Entropy Estimator (1)

Motivation:

I Find an entropy estimator which is more precise than the upper

bound given by the number of image points

Ideas:

I We assume a uniform initial distribution

I If a state can be produced by exactly r other states after one

iteration, it has probability r/n
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New Entropy Estimator (2)

I Average number of states produced by r states after k iterations:

n ck(r)

I Expected Entropy:

E(Hk) =
n∑

r=1

n ck(r)
r

n
log2

n

r

≈ log(n)−
n∑

r=1

ck(r) r log2(r)
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Calculation of ck(r) (1)

I k = 1: Use directly RN(n, k) = n/r!e

I k > 1: Use the fact that such a tree node has

• j children with i1, . . . , ij descendants after k − 1 iterations,

i1 + · · ·+ ij = r, and

• arbitrary tree children of depth < k

k = 2
r = 3k′ = 1

i2 = 1

k′ = 1
i1 = 2
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Calculation of ck(r) (2)

By analyzing the generating function of our property we get

ck(r) =
1
e
f1(k)S(k, r, 1)

I f1(k) = ef1(k−1)/e with f1(1) = 1

I S(k, r,m) =



S(k, r,m) =
∑br

uc
u=0

ck−1(m)u

u! S(k, r −mu,m + 1) if 1 ≤ m ≤ r

1 if r = 0

0 if 0 < r < m
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Remarks

I We ignore the incoming cycle nodes

I Complexity of computing ck(r) with r ≤ R and k ≤ K:

O
(
K R2 log(R)

)

I E(Hk) = log(n)−∑R
r=1 ck(r)r log2(r)−

∑n
r=R+1 ck(r)r log2(r)
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Estimation of Entropy Loss with different Methods

k 0 1 2 3 . . . 7 8
empirical data 0.0000 0.8272 1.3456 1.7252 . . . 2.6690 2.8324
n = 216

image points 0.0000 0.6617 1.0938 1.4186 . . . 2.2546 2.4032
R = 30 0.0000 0.8272 1.3457 1.7254 . . . 2.6561 2.8004
R = 50 0.0000 0.8272 1.3457 1.7254 . . . 2.6693 2.8324

I For small k our new estimator is more precise than the upper

bound given by the number of image points

I For larger k we need a bigger R to have a small error
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Part 3

Collision Attacks



Collision Attacks

Ideas:

I Using a random function leads to a loss of entropy

I A reduced entropy leads to higher probability of a collision

I If two states are the same, then the subsequent output sequences

are identical

I Two proposals for an attack on Mickey in [Hong Kim 05]
(no real attacks)
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Attack 1
(Proposition [Hong Kim 05])

I Search for collision after k iterations
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Attack 1
(Analysis (1))

I Upper bound: E(Hk) ≤ log2(n)− log2(k) + 1

I Birthday paradox: Need ∼ √
n
k values in the last row

Attack 1

Space complexity [Hong Kim 05] ∼ √
n
k

Data complexity (new) ∼
√

k n
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Attack 1
(Remark)

Under which circumstances is the attack effective?

I If we have functions which loose on average more than 2 log2(k)
bits after k iterations

This means that we don’t use a random function, but the principle

of the attack stays the same
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Attack 2
(Proposition [Hong Kim 05])

I Iterate 2k times and search for collision in the second half of the

intermediate states
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Attack 2
(Proposition [Hong Kim 05])

I Iterate 2k times and search for collision in the second half of the

intermediate states

m

10 k 2k − 1
collision

I [Hong Kim 05]: Magnitude of m such that m k ∼
√

n/k
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Attack 2
(Analysis (new))

I Probability of collision is smaller than 1− Pr[noColTotal]

I By counting arguments we get:

Pr[noColTotal] =
n(n− 1) · · · (n− 2km + 1)

n2km

I Birthday Paradox: We need 2mk ≈ √
n

Attack 1 Attack 2

Space complexity ∼ √
n
k ∼ √

n/2
Data complexity ∼

√
k n ∼ √

n
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Attack 3 (new)
(Distinguished Points)

I Iterate until we reach a distinguished point
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Attack 3 (new)
(Distinguished Points)

I Iterate until we reach a distinguished point

m

10 collision
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Attack 3 (new)
(Analysis)

I We assume that in total we need again about
√

n data points

I Let c = d/n be the ratio of distinguished points, 0 < c < 1

I We assume that like for random points the average length of a

row is about 1/c

Attack 1 Attack 2 Attack 3

Space complexity ∼ √
n
k ∼ √

n/2 ∼ c
√

n

Data complexity ∼
√

k n ∼ √
n ∼ √

n
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Part 4

Conclusion



Conclusion

Entropy Estimator:

I We studied a stream cipher model with a random update function

I We introduced a new estimator of the state entropy after several

iterations of the update function

I For small k it is more precise than the previous upper bound
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Conclusion

Collision Attacks:

I Using a random update function introduces an entropy loss

I Till now it was not well studied if this introduce a real threat for

our stream cipher model

I We showed that the proposed attacks are less effective than

expected
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