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Part 1
Stream Cipher Model



Stream Cipher Model
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» State with values s € €}, for all £ > 0

\J

State space 0, = {w1,ws,...wn}
Initial state sg
Initial distribution {p;}*_; with p; = Pr[so = w;]

» Update function p € F, ={p: Q, — Q,}
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Our Stream Cipher Model

Assumption: Use random function model for the update function
» ¢ is randomly chosen out of F,,

» All statistical statements are made on average over all ¢ € F,

Motivation

» New stream cipher proposals which might fit into this model
e.g. MICKEY (version 1) [Babbage and Dodd 05]

» The image of ©*) is (much) smaller than n thus we loose entropy

Questions
» How much entropy do we loose in the state?

» Can this loss be efficiently exploited into a collision attack?
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Notations

» Probability of a state being w; after k iterations of :
pf (k) = Prie™(so) = wi

» Entropy of the state after k iterations of o:

» Expected entropy after k iterations taken over all ¢ € F,,:

E(Hy,)
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Part 2
Entropy Estimation



Previous Results



Properties of Random Functions

[Flajolet Odlyzko 90]
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Properties of Random Functions
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[Flajolet Odlyzko 90]
» # Cycle points: CP(n) =./mn/2
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Properties of Random Functions

S

80\./'1

[Flajolet Odlyzko 90]

» # Cycle points: CP(n) T n/2

» Maximal tail length: MTL(n) =+/mn/8

» # r-nodes: RN (n,r)=n/rle

WINRIA 4/21



Properties of Random Functions

80\2./ 1
[Flajolet Odlyzko 90]
» # Cycle points: CP(n) =/mn/2
» Maximal tail length: MTL(n) T n/8
» # r-nodes: RN (n,r) =n/rle
» # Image points: IP(n,k) =(1—1)n

where 79 = 0 and 71 = e 1%
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Bounding Entropy with Image Points

[Hong Kim 05]

» Upper bound given by number of image points:

» Example for n = 219

16
14
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10

S N B~ O o

E(Hy) <loga(n) + loga(1 — %)

image size —

cycle points —
maximal tail length —
empirical entropy —
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New Entropy Estimator



New Entropy Estimator (1)

Motivation:

» Find an entropy estimator which is more precise than the upper
bound given by the number of image points

Ideas:
» We assume a uniform initial distribution

» If a state can be produced by exactly » other states after one
iteration, it has probability 7 /n
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New Entropy Estimator (2)

» Average number of states produced by r states after k iterations:

n ci(r)

» Expected Entropy:

E(Hy) = chk(r)zlogz—
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Calculation of c.(r) (1)

» k= 1: Use directly RN (n,k) =n/rle
» k > 1: Use the fact that such a tree node has

g children with 7, ...,7; descendants after £ — 1 iterations,
i1—|—°°°—|—ij:T, and
arbitrary tree children of depth < k
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Calculation of c.(7) (2)

By analyzing the generating function of our property we get
1
cr(r) = Efl(k)S(k, r,1)

> fi(k) = ettk=D/e with f1(1) =1

» S(k,r,m) =
S(k,r,m) = ZL@O C’“_z(!m)uS(k,r —mu,m+1) f1<m<r
1 ifr=20
0 fOo<r<m
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Remarks

» We ignore the incoming cycle nodes
» Complexity of computing cx(r) with » < R and k < K:

O (K R’log(R))

> E(Hy) = log(n) = 30,1, er(r)rlogy(r) =307 iy ci(r)rlogy(r)
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Estimation of Entropy Loss with different Methods

k 0 1 2 3 7 8
empirical data | 0.0000 | 0.8272 | 1.3456 | 1.7252 2.6690 | 2.8324
n — 916

image points | 0.0000 | 0.6617 | 1.0938 | 1.4186 2.2546 | 2.4032
R =30 0.0000 | 0.8272 | 1.3457 | 1.7254 2.6561 | 2.8004
R =50 0.0000 | 0.8272 | 1.3457 | 1.7254 2.6693 | 2.8324

» For small k£ our new estimator is more precise than the upper

bound given by the number of image points

» For larger kK we need a bigger R to have a small error
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Part 3
Collision Attacks



Collision Attacks

Ildeas:

» Using a random function leads to a loss of entropy
» A reduced entropy leads to higher probability of a collision

» If two states are the same, then the subsequent output sequences
are identical

» Two proposals for an attack on MICKEY in [Hong Kim 05]
(no real attacks)
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Attack 1
(Proposition [Hong Kim 05])

» Search for collision after k iterations
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Attack 1

(Proposition [Hong Kim 05])

» Search for collision after k iterations
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Attack 1

» Upper bound: E(Hj) < logy(n)

(Analysis (1))

—logy(k) + 1

» Birthday paradox: Need ~ \/% values in the last row

Attack 1
Space complexity [Hong Kim 05] | ~ /7
Data complexity (new) ~Vkn
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Attack 1
(Remark)

Under which circumstances is the attack effective?

» If we have functions which loose on average more than 2log, (k)
bits after k iterations

This means that we don’'t use a random function, but the principle
of the attack stays the same
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Attack 2
(Proposition [Hong Kim 05])

» lterate 2k times and search for collision in the second half of the
Intermediate states
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Attack 2
(Proposition [Hong Kim 05])

» lterate 2k times and search for collision in the second half of the
Intermediate states

L
N\ /

01 k Nl e
collision
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Attack 2
(Proposition [Hong Kim 05])

» lterate 2k times and search for collision in the second half of the
Intermediate states

[

\ /
01 k Nl g
collision

» [Hong Kim 05]: Magnitude of m such that m k ~ /n/k
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Attack 2

» Probability of collision is smaller than 1 — Pr{noColT otal]

(Analysis (new))

» By counting arguments we get:

PrinoColTotal] =

nin—1)---

(n —2km + 1)

n2km

» Birthday Paradox: We need 2mk ~ \/n

Attack 1

Attack 2

Space complexity

2

~ /2

Data complexity

~Vkn

~Vn
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Attack 3 (new)
(Distinguished Points)

» lterate until we reach a distinguished point
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Attack 3 (new)
(Distinguished Points)

» lterate until we reach a distinguished point
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Attack 3 (new)
(Distinguished Points)

» lterate until we reach a distinguished point

01 collision
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Attack 3 (new)

(Analysis)

» We assume that in total we need again about \/n data points

» Let ¢ = d/n be the ratio of distinguished points, 0 < ¢ < 1

» We assume that like for random points the average length of a
row is about 1/c¢

Attack 1 | Attack 2 | Attack 3
Space complexity | ~ /% | ~/n/2 | ~cyn
Data complexity | ~Vkn | ~+/n ~\/n
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Part 4

Conclusion



Conclusion

Entropy Estimator:

» We studied a stream cipher model with a random update function

» We introduced a new estimator of the state entropy after several
iterations of the update function

» For small k it is more precise than the previous upper bound
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Conclusion

Collision Attacks:

» Using a random update function introduces an entropy loss

» Till now it was not well studied if this introduce a real threat for
our stream cipher model

» We showed that the proposed attacks are less effective than
expected
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