Stream Ciphers Using a Random Update Function: Study of the Entropy of the Inner State

Andrea Röck
INRIA Paris-Rocquencourt, Team SECRET
France

Africacrypt, June 12, 2008

Outline

- ► Stream Cipher Model
- ► Entropy Estimation
 - Previous Results
 - New Entropy Estimator
- ► Collision Attacks
- ► Conclusion

Part 1 Stream Cipher Model

Stream Cipher Model

- ▶ Initial State : S_0
- ▶ Update Function : $S_{k+1} = \Phi(S_k)$ for $k \ge 0$
- \blacktriangleright Keystream : $Y_k = g(S_k)$
- ightharpoonup Ciphertext : $Z_k = X_k \oplus Y_k$

Probabilistic Model (Information of an adversary)

- ► State space :
- Initial distribution :
- ► Random update function :

$$\Omega_n = \{\omega_1, \omega_2, \dots \omega_n\}$$

$$\{p_i\}_{i=1}^n$$
 with $p_i = Pr[S_0 = \omega_i]$

$$Pr[\Phi = \varphi] = 1/n^n$$
 for all $\varphi \in \mathcal{F}_n = \{\varphi : \Omega_n \to \Omega_n\}$

State Entropy

Probability that the state has the value ω_i after k iterations of Φ :

$$p_i^{\Phi}(k) = Pr[S_k = \omega_i] = Pr[\Phi^k(S_0) = \omega_i]$$

► Shannon's entropy *H*: is a measure of the information contained in a random variable. It must hold that:

$$H \le \log_2(n)$$

State entropy after k iterations of Φ :

$$H_k^{\Phi} = \sum_{i=1}^n p_i^{\Phi}(k) \log_2 \left(\frac{1}{p_i^{\Phi}(k)}\right)$$

▶ Average state entropy after k iterations, taken over all functions $\varphi \in \mathcal{F}_n$:

$$\mathbf{H_k} = \mathbf{E}(H_k^{\Phi})$$

Motivation

- ▶ A random function allows us to study some interesting properties of our stream cipher model, on average over all function $\varphi \in \mathcal{F}_n$.
- ▶ Some new stream ciphers use an update function which behaves almost like a random function. (e.g.: the eSTREAM candidate MICKEY (version 1) [Babbage et Dodd 05])
- ▶ The image size of Φ^k is smaller than n, thus we *loose entropy*.

Questions:

- ▶ How much entropy do we loose in the internal state?
- ► Can this loss be efficiently exploited into a collision attack?

Part 2 Entropy Estimation

Previous Results

Example of a Functional Graph

$$\varphi: x \to x^2 + 2 \pmod{20}$$

Asymptotic values for $n \to \infty$:

Expected number of cycle points : $\mathbf{cp}(n) \sim \sqrt{\pi n/2}$

- ► Expected number of cycle points : $\mathbf{cp}(n) \sim \sqrt{\pi n/2}$
- **Expected maximal tail length** : $\mathbf{mt}(n) \sim \sqrt{\pi n/8}$

- **Expected number of cycle points** : $\mathbf{cp}(n) \sim \sqrt{\pi n/2}$
- ► Expected maximal tail length : $\mathbf{mt}(n) \sim \sqrt{\pi n/8}$
- **Expected** number of r-nodes : $\mathbf{rn}(n,r) \sim \frac{n}{r!e}$

- **Expected number of cycle points** : $\mathbf{cp}(n) \sim \sqrt{\pi n/2}$
- ► Expected maximal tail length : $\mathbf{mt}(n) \sim \sqrt{\pi n/8}$
- **Expected number of** r**-nodes** : $\mathbf{rn}(n,r) \sim \frac{n}{r!e}$
- **Expected** number of image points : $\mathbf{ip}(n,k) \sim n(1-\tau_k)$ where $\tau_0=0$ and $\tau_{k+1}=e^{-1+\tau_k}$

- ► Expected number of cycle points : $\mathbf{cp}(n) \sim \sqrt{\pi n/2}$
- lacksquare Expected maximal tail length : $\mathbf{mt}(n) \sim \sqrt{\pi n/8}$
- **Expected** number of r-nodes : $\mathbf{rn}(n,r) \sim \frac{n}{r!e}$
- Expected number of image points : $\mathbf{ip}(n,k) \sim n(1-\tau_k)$ where $\tau_0=0$ and $\tau_{k+1}=e^{-1+\tau_k}$

- ► Expected number of cycle points : $\mathbf{cp}(n) \sim \sqrt{\pi n/2}$
- ► Expected maximal tail length : $\mathbf{mt}(n) \sim \sqrt{\pi n/8}$
- **Expected** number of r-nodes : $\mathbf{rn}(n,r) \sim \frac{n}{r!e}$
- Expected number of image points : $\mathbf{ip}(n,k) \sim n(1-\tau_k)$ where $\tau_0=0$ and $\tau_{k+1}=e^{-1+\tau_k}$

Bounding Entropy with Image Points

▶ Upper bound given by number of image points [Hong Kim 05] :

$$\mathbf{H_k} \le log_2(n) + log_2(1 - \tau_k)$$

 \blacktriangleright Example for $n=2^{16}$

image size (\log_2) — cycle points (\log_2) — maximal tail length — empirical entropy —

New Entropy Estimator

New Entropy Estimator (1)

Motivation:

► Find an entropy estimator which is more precise than the upper bound given by the number of image points.

Ideas:

- ▶ We assume a uniform initial distribution.
- ▶ If a state can be produced by exactly r other states after one iteration, it has probability r/n.

New Entropy Estimator (2)

Definition:

Number of points which are reached by r points after k iterations.

$$\varphi \in \mathcal{F}_n : \operatorname{rn}_k^{\varphi}(r) = \#\{i | |\varphi^{-k}(i)| = r\}$$

Average:
$$\mathbf{rn_k}(n,r) = \frac{1}{n^n} \sum_{\varphi \in \mathcal{F}_n} \mathrm{rn}_k^{\varphi}(r)$$

Example for k=2 and r=3:

New Entropy Estimator (3)

Theorem :

For a uniform initial distribution the expected entropy of the inner state after k iterations is :

$$\mathbf{H_k} = \log_2(n) - \sum_{r=1}^{n} \mathbf{rn_k}(n, r) \frac{r}{n} \log_2(r)$$

► Theorem:

For an arbitrary initial distribution $P = \{p_1, p_2, \dots, p_n\}$ the expected entropy of the inner state after k iterations is :

$$\mathbf{H}_{\mathbf{k}}^{\mathbf{P}} = \sum_{r=1}^{n} \mathbf{rn}_{\mathbf{k}}(n, r) \frac{1}{\binom{n}{r}} \sum_{1 \le j_1 < \dots < j_r \le n} (p_{j_1} + \dots + p_{j_r}) \log_2 \frac{1}{p_{j_1} + \dots + p_{j_r}}$$

Computation of $\mathbf{rn}_{\mathbf{k}}(n,r)$ (1)

- ▶ k=1 : Use directly the asymptotic value $\mathbf{rn}(n,r)\sim \frac{n}{r!e}$
- $\triangleright k > 1$: Use the fact that such a tree node consists of :
 - 1. A node.
 - 2. A *SET* of *trees* with a depth < k 1.
 - 3. A *CONCATENATION* of j trees of depth $\geq k-1$ and $1 \leq j \leq r$. Their roots are reached by respectively i_1, \ldots, i_j nodes after k-1 iterations such that $i_1 + \cdots + i_j = r$.

Computation of $\mathbf{rn}_{\mathbf{k}}(n,r)$ (2)

▶ By analyzing the generating function of our property we find a $c_k(r)$ such that for $n \to \infty$:

$$\mathbf{rn}_{\mathbf{k}}(n,r) \sim n \ c_k(r)$$

- ▶ We can compute $c_k(r)$ in $O\left(k \ r^2 \log(r)\right)$.
- For a uniform initial distribution we can write :

$$\mathbf{H_k} \sim \log(n) - \sum_{r=1}^{R} c_k(r) r \log_2(r) - \sum_{r=R+1}^{n} c_k(r) r \log_2(r)$$

Remarks

 $ightharpoonup c_k(r)r\log_2(r)$ decreases very fast.

► Approximation :

$$H_k(R) = \log_2(n) - \sum_{r=1}^{R} c_k(r) \ r \ \log_2(r)$$

▶ We ignore the incoming cycle nodes.

Estimation of Entropy Loss with different Methods

k		1	2	3	10	50	100
empirical data		0.8273	1.3458	1.7254	3.1130	5.2937	6.2529
$n = 2^{16}$							
image points		0.6617	1.0938	1.4186	2.6599	4.7312	5.6913
	R = 50	0.8272	1.3457	1.7254	3.1084	2.6894	1.2524
$H_k(R)$	R = 200	0.8272	1.3457	1.7254	3.1129	5.2661	5.5172
	R = 1000	0.8272	1.3457	1.7254	3.1129	5.2918	6.2729

- ightharpoonup For small k our new estimator is more precise than the upper bound given by the number of image points.
- \blacktriangleright For larger k we need a bigger R to have a small error.

Part 4 Collision Attacks

Collision Attacks (1)

► Collision :

- Different initial states S_0 , S_0' and k,k'>=0 such that $S_k=S_{k'}'$.
- A given S_0 , k, k' >= 0 and $k \neq k'$ such that $S_k = S_{k'}$.
- We compare the attack with a direct search for a collision in the initial state.

Three criteria :

- Number of initial states.
- Space complexity.
- Query complexity.

Collision Attacks (2)

Ideas:

- Using a random function leads to a loss of entropy.
- ► A reduced entropy leads to higher probability of a collision.
- ▶ If two states are the same, then the subsequent output sequences are identical.
- ► Two proposals for an attack on MICKEY in [Hong Kim 05] (no real attacks).

(Proposition [Hong Kim 05])

ightharpoonup Search for collision after k iterations.

(Proposition [Hong Kim 05])

► Search for collision after k iterations.

(Proposition [Hong Kim 05])

▶ Search for collision after k iterations.

(Proposition [Hong Kim 05])

▶ Search for collision after k iterations.

(Proposition [Hong Kim 05])

ightharpoonup Search for collision after k iterations.

(Analysis)

- ▶ Upper bound: $\mathbf{H_k} \leq \log_2(n) \log_2(k) + 1$
- ▶ Birthday paradox: Need $\sim \sqrt{2n/k}$ values in the last row.

	Attack 1
# initial states	$\sim \sqrt{rac{2n}{k}}$
space complexity [Hong Kim 05]	$\sim \sqrt{rac{2n}{k}}$
query complexity (new)	$\sim \sqrt{2kn}$

(Remark)

Under which circumstances is the attack effective?

▶ If we have functions which loose on average more than $2 \log_2(k)$ bits after k iterations.

This means that we don't use a random function, but the principle of the attack stays the same.

(Proposition [Hong Kim 05])

▶ Iterate 2k times and search for collision in the second half of the intermediate states.

(Proposition [Hong Kim 05])

▶ Iterate 2k times and search for collision in the second half of the intermediate states.

(Proposition [Hong Kim 05])

▶ Iterate 2k times and search for collision in the second half of the intermediate states.

(Proposition [Hong Kim 05])

▶ Iterate 2k times and search for collision in the second half of the intermediate states.

(Proposition [Hong Kim 05])

▶ Iterate 2k times and search for collision in the second half of the intermediate states.

▶ [Hong Kim 05]: Magnitude of m such that $m k \sim \sqrt{n/k}$.

(Analysis (new))

- ▶ Let Pr[A] be the probability of no collision in the 2km points.
- ▶ Probability of collision in km points is smaller than 1 Pr[A].
- ▶ By counting arguments : $Pr[A] = \frac{n(n-1)\cdots(n-2km+1)}{n^{2km}}$
- ▶ Birthday Paradox: We need $2mk \approx \sqrt{n}$

	Attack 1	Attack 2
# initial states	$\sim \sqrt{rac{2n}{k}}$	$\sim rac{\sqrt{n}}{2k}$
space complexity	$\sim \sqrt{rac{2n}{k}}$	$\sim \frac{\sqrt{n}}{2}$
query complexity	$\sim \sqrt{2kn}$	$\sim \sqrt{n}$

(Distinguished Points)

(Distinguished Points)

(Distinguished Points)

(Distinguished Points)

(Analysis)

- \blacktriangleright We assume that in total we need again about \sqrt{n} data points.
- ▶ Let c = d/n be the ratio of distinguished points, 0 < c < 1.
- We assume that like for random points the average length of a row is about 1/c.
- ► E.g. $n=2^{20}$, $k_{max}=\sqrt{n}$, and $0.7 \leq \frac{\log_2(d)}{\log_2(n)} \leq 1$ (i.e. $2^{-6} \leq c \leq 1$).

	Attack 1	Attack 2	Attack 3
# initial states	$\sim \sqrt{rac{2n}{k}}$	$\sim rac{\sqrt{n}}{2k}$	$\sim c\sqrt{n}$
space complexity	$\sim \sqrt{rac{2n}{k}}$	$\sim \frac{\sqrt{n}}{2}$	$\sim c\sqrt{n}$
query complexity	$\sim \sqrt{2kn}$	$\sim \sqrt{n}$	$\sim \sqrt{n}$

Part 5 Conclusion

Conclusion

Entropy Estimator:

- ▶ We studied a stream cipher model with a random update function.
- ► We introduced a new estimator which can be iteratively computed.
- \blacktriangleright For small k it is more precise than the previous upper bound.

Conclusion

Collision Attacks:

- Using a random update function introduces an entropy loss.
- ► Till now it was not well studied if this introduce a real threat for our stream cipher model.
- ▶ We showed that the proposed attacks are less effective than expected.

