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Part 1
Stream Cipher Model



Stream Cipher Model

» |nitial State :

» Update Function :

» Keystream :
» Ciphertext :

initialisation
K, IV = 5,9

random number generator

L state S} d

{

lter functio
g

keystream Y
|

plaintext X ciphertext Zj
S0
Sk+1 = ®(Sg) for k >0
Vi = g(Sk)
Z = Xk © Yk
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Probabilistic Model (Information of an adversary)

initialisation
K, IV = S5),®

random number generator

state Sy

)

{

lter functio
g

plaintext Xy, N

» State space :

» Initial distribution :

» Random update function :

Qn = {wl,wg, c.
{pi}iz, with p; = Pr|Sy = w;]

Pr|® =¢|] =1/n"
forall p € Fp, ={p: Q, — Q,}

ciphertext Zy
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State Entropy

» Probability that the state has the value w; after k iterations of ® :

pi (k) = Pr[S, = w;] = Pri®*(Sy) = w;]

» Shannon’s entropy H : is a measure of the information contained in a
random variable. It must hold that :

H <log,(n)

» State entropy after k iterations of ® :

= Zp 105 (e

» Average state entropy after k iterations, taken over all functions ¢ € F,, :

H, = E(H})

%I INRIA 3/24



Motivation

» A random function allows us to study some interesting properties of our stream
cipher model, on average over all function ¢ € F,, .

» Some new stream ciphers use an update function which behaves almost like a

random function. (e.g. : the eSTREAM candidate MICKEY (version 1)
[Babbage et Dodd 05])

» The image size of ®* is smaller than n, thus we /oose entropy.

Questions :

» How much entropy do we loose in the internal state?

» Can this loss be efficiently exploited into a collision attack?
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Part 2
Entropy Estimation



Previous Results



Example of a Functional Graph

”‘\@4 s

w:x—x*+2 (mod 20)
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Properties of Random Functions [Flajolet Odlyzko 90]

R T

15

Asymptotic values for n — oo :

» Expected number of cycle points : cp(n) ~ y/mn/2
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Properties of Random Functions [Flajolet Odlyzko 90]

Asymptotic values for n — oo :

» Expected number of cycle points : ~ \/Tn/2

» Expected maximal tail length : /8
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Properties of Random Functions [Flajolet Odlyzko 90]

10e
13\ 19 03.2 A
17 Se\ @
L 14
D
e O\- 9 12./‘\.{6
15 r=2
Asymptotic values for n — oo :
» Expected number of cycle points : cp(n) ~ \/mn/2
» Expected maximal tail length : mt(n) ~ \/mn/8
» Expected number of r-nodes : rn(n,r) ~ -
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Properties of Random Functions [Flajolet Odlyzko 90]

15 | —

Asymptotic values for n — oo :

» Expected number of cycle points : cp(n) ~ \/mn/2
» Expected maximal tail length : mt(n) ~ \/mn/8

» Expected number of r-nodes : rn(n,r) ~ -

» Expected number of image points : ip(n, k) ~n(1 — 73)
where 79 = 0 and 71 = e 117k
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Properties of Random Functions [Flajolet Odlyzko 90]
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Properties of Random Functions [Flajolet Odlyzko 90]
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Bounding Entropy with Image Points

» Upper bound given by number of image points [Hong Kim 05] :

Hy <loga(n) + loga(1 — 7%)

» Example for n = 219

16 T T T T T . .
image size (logy) —
14r cycle points (logy) —
2
> 121 | maximal tail length —
) empirical entropy —
= 10 _
+
=
S = =
o
g o ‘
Q 4| i
2 |
O | | | | |
0 2 4 6 8 10 12
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New Entropy Estimator



New Entropy Estimator (1)

Motivation:

» Find an entropy estimator which is more precise than the upper
bound given by the number of image points.

Ideas:
» We assume a uniform initial distribution.

» If a state can be produced by exactly » other states after one
iteration, it has probability 7 /n.
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New Entropy Estimator (2)

» Definition :
Number of points which are reached by r points after k iterations.

p € Fo: mf(r) =#{i| [ ()] = r}

1
A : = — E 1
verage : rng(n,r) — rn, (1)
weFn
» Example for £k =2 and r =3 :
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New Entropy Estimator (3)

» Theorem :
For a uniform initial distribution the expected entropy of the inner
state after k iterations is :
& r
Hy = logy(n) — 7; rong(n, ) - log,(7)
» Theorem :
For an arbitrary initial distribution P = {p1,ps,...,pn} the
expected entropy of the inner state after k iterations is :

n

1
HE I‘lflk n,r) U Z (pj, + -+ + pj,) logy
1<j1<--<gr<n

Pir D,
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Computation of rng(n,r) (1)

» k=1 : Use directly the asymptotic value rn(n,r) ~ -

» k£ > 1 : Use the fact that such a tree node consists of :
1. A node.

2. A SET of trees with a depth < £ — 1.
3. A CONCATENATION of j trees of depth > k — 1 and

1 < 7 <. Their roots are reached by respectively i1,...,1;
nodes after k — 1 iterations such that ¢y +--- +1¢; = r.

3 '/‘/.
R
Sk A
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Computation of rng(n,r) (2)

» By analyzing the generating function of our property we find a
ci(r) such that for n — oo :

rng(n,r) ~ n cg(r)

» We can compute ¢ (r) in O (k r*log(r)).

» For a uniform initial distribution we can write :

n

Hy ~ log(n) — Z cr(r)rlogy(r) — Z c(r)rlogs(r)

r=1 r=R+1
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Remarks

» ci(7)rlog,(r) decreases very fast.

0
10 I I I I I I I I I
+ =) =
310—2_ - i; ?1:
o\ — I
o010~ 4 L 1 k= 5 —
~z HE
310_6— s ]]2; S_
F10-8| k=10 —
10—10

| | | | | | | |
O 10 20 30 40 50 60 70 80 90 100
r

» Approximation : i
Hi(R) = log,(n ch ) v logy ()

r=1

» We ignore the incoming cycle nodes.
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Estimation of Entropy Loss with different Methods

k 1 2 3 10 50 100
empirical data 0.8273 | 1.3458 | 1.7254 || 3.1130 || 5.2937 || 6.2529
n = 216
image points 0.6617 | 1.0938 | 1.4186 || 2.6599 || 4.7312 || 5.6913
R =50 0.8272 | 1.3457 | 1.7254 || 3.1084 || 2.6894 || 1.2524
Hi(R) | R=200 |0.8272 | 1.3457 | 1.7254 | 3.1129 || 5.2661 || 5.5172
R =1000 | 0.8272 | 1.3457 | 1.7254 || 3.1129 || 5.2918 || 6.2729
» For small k our new estimator is more precise than the upper
bound given by the number of image points.
» For larger £ we need a bigger R to have a small error.
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Part 4
Collision Attacks



Collision Attacks (1)

» Collision :

o Different initial states Sy, S, and k, k" >= 0 such that
Sk = S5
e A given Sy, k, k' >=0 and k # kK’ such that S}, = 5.

» We compare the attack with a direct search for a collision in the
initial state.

» Three criteria :
e Number of initial states.

e Space complexity.
e Query complexity.
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Collision Attacks (2)

Ideas:

» Using a random function leads to a loss of entropy.
» A reduced entropy leads to higher probability of a collision.

» If two states are the same, then the subsequent output sequences
are identical.

» Two proposals for an attack on MICKEY in [Hong Kim 05]
(no real attacks).
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Attack 1
(Proposition [Hong Kim 05])

» Search for collision after k iterations.
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Attack 1
(Proposition [Hong Kim 05])

» Search for collision after k iterations.
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Attack 1
(Proposition [Hong Kim 05])

» Search for collision after k iterations.

01 k
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Attack 1
(Proposition [Hong Kim 05])

» Search for collision after k iterations.

01 k
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Attack 1

(Proposition [Hong Kim 05])

» Search for collision after k iterations.

4

0

1

collision

%I INRIA

16 /24



Attack 1
(Analysis)

» Upper bound: Hy < log,(n) —log,(k) + 1

» Birthday paradox: Need ~ \/2n/k values in the last row.

Attack 1
. . . 2n
# initial states ~ /T

space complexity [Hong Kim 05] | ~ /2"
query complexity (new) ~ V2kn
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Attack 1
(Remark)

Under which circumstances is the attack effective?

» If we have functions which loose on average more than 2log, (k)
bits after k iterations.

This means that we don’'t use a random function, but the principle
of the attack stays the same.
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Attack 2
(Proposition [Hong Kim 05])

» lterate 2k times and search for collision in the second half of the
Intermediate states.
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01 k 2k —1
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Attack 2
(Proposition [Hong Kim 05])

» lterate 2k times and search for collision in the second half of the
Intermediate states.

L
N\ /

01 k Nl e
collision
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Attack 2
(Proposition [Hong Kim 05])

» lterate 2k times and search for collision in the second half of the
Intermediate states.

[

\ /
01 k Nl g
collision

» [Hong Kim 05]: Magnitude of m such that m k ~ \/n/k.
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Attack 2

(Analysis (new))

» Let Pr|A] be the probability of no collision in the 2km points.

» Probability of collision in km points is smaller than 1 — Pr[A].

» By counting arguments : Pr|[A| =

nn—1)---(n—2km+1)

n2km
» Birthday Paradox: We need 2mk ~ /n
Attack 1 | Attack 2
# initial states 2?7% N %
space complexity n |~ @
query complexity | ~ v/2kn | ~ \/n
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Attack 3 (new)
(Distinguished Points)

» Iterate until we reach a distinguished point.
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Attack 3 (new)
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» Iterate until we reach a distinguished point.
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Attack 3 (new)
(Distinguished Points)

» Iterate until we reach a distinguished point.

=
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Attack 3 (new)
(Distinguished Points)

» Iterate until we reach a distinguished point.

01 collision
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Attack 3 (new)

(Analysis)

» We assume that in total we need again about /n data points.

» Let ¢ = d/n be the ratio of distinguished points, 0 < ¢ < 1.

» We assume that like for random points the average length of a
row is about 1/c.
> Eg. 1 =22 kpuw=+/n, and 0.7 < 28204 <1
(ile. 279 < e <1).

loga(n)

Attack 1 | Attack 2 | Attack 3
# initial states 2~ \2/—]? ~ c\/n
space complexity 27'”’ ~ \/Tﬁ ~ C\/T
query complexity | ~ V2kn | ~ /n ~ /N
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Part 5

Conclusion



Conclusion

Entropy Estimator:

» We studied a stream cipher model with a random update function.

» We introduced a new estimator which can be iteratively
computed.

» For small k it is more precise than the previous upper bound.
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Conclusion

Collision Attacks:

» Using a random update function introduces an entropy loss.

» Till now it was not well studied if this introduce a real threat for
our stream cipher model.

» We showed that the proposed attacks are less effective than
expected.

%I INRIA 24/24



