Parallel generation of ℓ -sequences

Cédric Lauradoux

Princeton University

USA

currently at UCL/INGI, Belgium

Andrea Röck

INRIA Paris-Rocquencourt

France

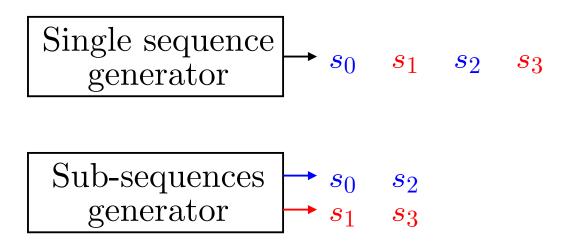
SETA, September 17, 2008

Outline

- Introduction
- Parallel generation of m-sequences (LFSRs)
 - Synthesis of sub-sequences
 - Multiple steps LFSR
- ▶ Parallel generation of ℓ -sequences (FCSRs)
 - Synthesis of sub-sequences
 - Multiple steps FCSR
- Conclusion

Part 1 Introduction

Sub-sequences generator



- ► Goal: parallelism
 - better throughput
 - reduced power consumption

 $ightharpoonup S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.

- $ightharpoonup S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.
- $S_d^i = (s_i, s_{i+d}, s_{i+2d}, \cdots)$: Decimated sequence, with $0 \le i \le d-1$.
 - $S_d^0 = (s_0, s_d, \cdots), \cdots, S_d^{d-1} = (s_{d-1}, s_{2d-1}, \cdots)$

- $ightharpoonup S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.
- ► $S_d^i = (s_i, s_{i+d}, s_{i+2d}, \cdots)$: Decimated sequence, with $0 \le i \le d-1$.
 - $S_d^0 = (s_0, s_d, \cdots), \cdots, S_d^{d-1} = (s_{d-1}, s_{2d-1}, \cdots)$
- $\triangleright x_j$: Memory cell.

- $ightharpoonup S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.
- ► $S_d^i = (s_i, s_{i+d}, s_{i+2d}, \cdots)$: Decimated sequence, with $0 \le i \le d-1$.
 - $S_d^0 = (s_0, s_d, \cdots), \cdots, S_d^{d-1} = (s_{d-1}, s_{2d-1}, \cdots)$
- $\triangleright x_i$: Memory cell.
- $(x_j)_t$: Content of the cell x_j .

- $ightharpoonup S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.
- ► $S_d^i = (s_i, s_{i+d}, s_{i+2d}, \cdots)$: Decimated sequence, with $0 \le i \le d-1$.
 - $S_d^0 = (s_0, s_d, \cdots), \cdots, S_d^{d-1} = (s_{d-1}, s_{2d-1}, \cdots)$
- $\triangleright x_i$: Memory cell.
- $(x_j)_t$: Content of the cell x_j .
- $\triangleright X_t$: Entire internal state of the automaton.

- $ightharpoonup S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.
- $\gt S_d^i = (s_i, s_{i+d}, s_{i+2d}, \cdots)$: Decimated sequence, with 0 < i < d - 1.
 - $S_d^0 = (s_0, s_d, \cdots), \cdots, S_d^{d-1} = (s_{d-1}, s_{2d-1}, \cdots)$
- $\triangleright x_i$: Memory cell.
- $(x_i)_t$: Content of the cell x_i .
- $\triangleright X_t$: Entire internal state of the automaton.
- $ightharpoonup next^d(x_i)$: Cell connected to the output of x_i .

► Automaton with linear update function.

- ► Automaton with linear update function.
- Let $s(x) = \sum_{i=0}^{\infty} s_i x^i$ be the power series of $S = (s_0, s_1, s_2, \ldots)$. There exists two polynomials p(x), q(x):

$$s(x) = \frac{p(x)}{q(x)}.$$

- Automaton with linear update function.
- Let $s(x) = \sum_{i=0}^{\infty} s_i x^i$ be the power series of $S = (s_0, s_1, s_2, \ldots)$. There exists two polynomials p(x), q(x):

$$s(x) = \frac{p(x)}{q(x)}.$$

ightharpoonup q(x): Connection polynomial of degree m.

- Automaton with linear update function.
- Let $s(x) = \sum_{i=0}^{\infty} s_i x^i$ be the power series of $S = (s_0, s_1, s_2, \ldots)$. There exists two polynomials p(x), q(x):

$$s(x) = \frac{p(x)}{q(x)}.$$

- ightharpoonup q(x): Connection polynomial of degree m.
- $ightharpoonup Q(x) = x^m q(1/x)$: Characteristic polynomial.

- Automaton with linear update function.
- ▶ Let $s(x) = \sum_{i=0}^{\infty} s_i x^i$ be the power series of $S = (s_0, s_1, s_2, \ldots)$. There exists two polynomials p(x), q(x):

$$s(x) = \frac{p(x)}{q(x)}.$$

- ightharpoonup q(x): Connection polynomial of degree m.
- $ightharpoonup Q(x) = x^m q(1/x)$: Characteristic polynomial.
- ightharpoonup m-sequence: S has maximal period of 2^m-1 . (iff q(x) is a primitive polynomial)

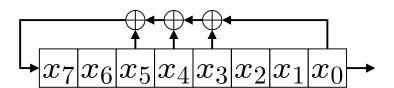
- Automaton with linear update function.
- ▶ Let $s(x) = \sum_{i=0}^{\infty} s_i x^i$ be the power series of $S = (s_0, s_1, s_2, \ldots)$. There exists two polynomials p(x), q(x):

$$s(x) = \frac{p(x)}{q(x)}.$$

- ightharpoonup q(x): Connection polynomial of degree m.
- $ightharpoonup Q(x) = x^m q(1/x)$: Characteristic polynomial.
- ightharpoonup m-sequence: S has maximal period of 2^m-1 . (iff q(x) is a primitive polynomial)
- \triangleright Linear complexity: Size of smallest LFSR which generates S.

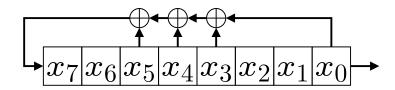
Fibonacci/Galois LFSRs

Fibonacci setup.

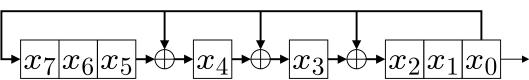


Fibonacci/Galois LFSRs

Fibonacci setup.



Galois setup.



▶ Instead of XOR, FCSRs use additions with carry.

- ▶ Instead of XOR, FCSRs use additions with carry.
 - Non-linear update function.

- ▶ Instead of XOR, FCSRs use additions with carry.
 - Non-linear update function.
 - Additional memory to store the carry.

- ▶ Instead of XOR, FCSRs use additions with carry.
 - Non-linear update function.
 - Additional memory to store the carry.
- ▶ S is the 2-adic expansion of the rational number: $\frac{h}{q} \leq 0$.

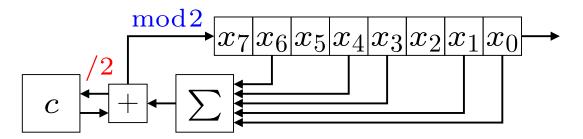
- ▶ Instead of XOR, FCSRs use additions with carry.
 - Non-linear update function.
 - Additional memory to store the carry.
- ► S is the 2-adic expansion of the rational number: $\frac{h}{q} \le 0$.
- \triangleright Connection integer q: Determines the feedback positions.

- ▶ Instead of XOR, FCSRs use additions with carry.
 - Non-linear update function.
 - Additional memory to store the carry.
- ▶ S is the 2-adic expansion of the rational number: $\frac{h}{q} \le 0$.
- \triangleright Connection integer q: Determines the feedback positions.
- ▶ ℓ -sequences: S has maximal period $\varphi(q)$. (iff q is odd and a prime power and $ord_q(2) = \varphi(q)$.)

- ▶ Instead of XOR, FCSRs use additions with carry.
 - Non-linear update function.
 - Additional memory to store the carry.
- ▶ S is the 2-adic expansion of the rational number: $\frac{h}{q} \le 0$.
- \triangleright Connection integer q: Determines the feedback positions.
- ▶ ℓ -sequences: S has maximal period $\varphi(q)$. (iff q is odd and a prime power and $ord_q(2) = \varphi(q)$.)
- \triangleright 2-adic complexity: size of the smallest FCSR which produces S.

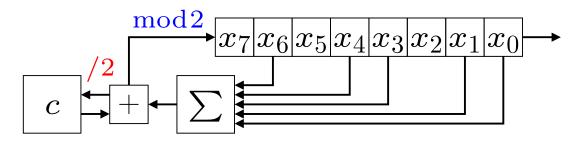
Fibonacci/Galois FCSRs [Klapper Goresky 02]

Fibonacci setup.

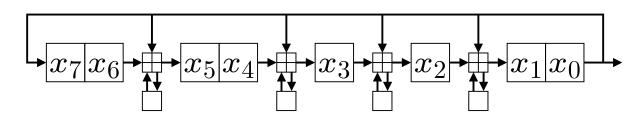


Fibonacci/Galois FCSRs [Klapper Goresky 02]

Fibonacci setup.



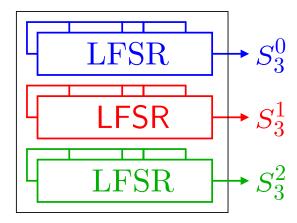
Galois setup.



Part 2

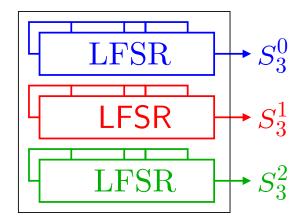
Parallel generation of m-sequences (LFSRs)

Synthesis of Sub-sequences (1)



Use Berlekamp-Massey algorithm to find the smallest LFSR for each sub-sequence.

Synthesis of Sub-sequences (1)



- Use Berlekamp-Massey algorithm to find the smallest LFSR for each sub-sequence.
- ▶ All sub-sequences are generated using d LFSRs defined by $Q^*(x)$ but initialized with different values.

Synthesis of Sub-sequences (2)

Theorem [Zierler 59]: Let S be produced by an LFSR whose characteristic polynomial Q(x) is irreducible in \mathbf{F}_2 of degree m. Let α be a root of Q(x) and let T be the period of S. For $0 \le i < d$, S_d^i can be generated by an LFSR with the following properties:

- ullet The minimum polynomial of $lpha^d$ in ${f F}_{2^m}$ is the characteristic polynomial $Q^{\star}(x)$ of the new LFSR with:
- Period $T^* = \frac{T}{acd(d,T)}$.
- Degree m^* is the multiplicative order of 2 in \mathbf{Z}_{T^*} .

Multiple steps LFSR [Lempel Eastman 71]

ightharpoonup Clock d times the register in one cycle.

Multiple steps LFSR [Lempel Eastman 71]

- ► Clock *d* times the register in one cycle.
- ightharpoonup Equivalent to partition the register into d sub-registers

$$x_i x_{i+d} \cdots x_{i+kd}$$

such that $0 \le i < d$ and i + kd < m.

Multiple steps LFSR [Lempel Eastman 71]

► Clock *d* times the register in one cycle.

ightharpoonup Equivalent to partition the register into d sub-registers

$$x_i x_{i+d} \cdots x_{i+kd}$$

such that $0 \le i < d$ and i + kd < m.

▶ Duplication of the feedback:

The sub-registers are linearly interconnected.

Fibonacci LFSR

$$next^{1}(x_{0}) = x_{3}$$

$$next^{1}(x_{i}) = x_{i-1} \text{ if } i \neq 0$$

$$(x_{3})_{t+1} = (x_{3})_{t} \oplus (x_{0})_{t}$$

$$(x_{i})_{t+1} = (x_{i-1})_{t} \text{ if } i \neq 3$$

$$next^{2}(x_{0}) = x_{2}$$

$$next^{2}(x_{1}) = x_{3}$$

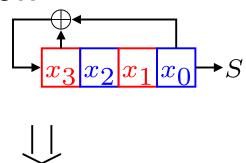
$$next^{2}(x_{i}) = x_{i-2} \text{ if } i > 1$$

$$(x_{i})_{t+2} = (x_{i-2})_{t} \text{ if } i < 2$$

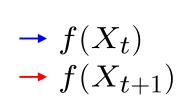
$$(x_{2})_{t+2} = (x_{3})_{t} \oplus (x_{0})_{t}$$

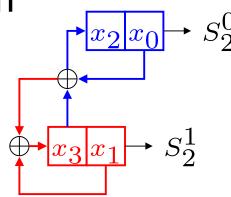
$$(x_{3})_{t+2} = \underbrace{(x_{3})_{t} \oplus (x_{0})_{t}}_{(x_{3})_{t+1}} \oplus (x_{1})_{t}$$

1-decimation



2-decimation





Comparison

- Synthesis of Sub-sequences:
 - Larger memory size: $d \times m^*$
 - More logic gates: $d \times wt(Q^*)$

Comparison

Synthesis of Sub-sequences:

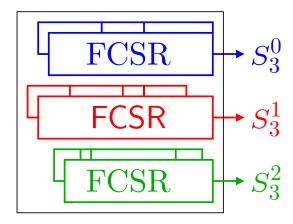
- Larger memory size: $d \times m^*$
- More logic gates: $d \times wt(Q^*)$

Multiple steps LFSR:

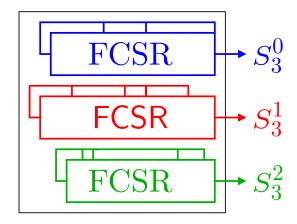
- Same memory size: m
- More logic gates: $d \times wt(Q)$

Part 3

Parallel generation of ℓ -sequences (FCSRs)



We use an algorithm based on Euclid's algorithm [Arnault Berger Necer 04] or on lattice approximation [Klapper Goresky 97] to find the smallest FCSR for each subsequence.



- We use an algorithm based on Euclid's algorithm [Arnault Berger Necer 04] or on lattice approximation [Klapper Goresky 97] to find the smallest FCSR for each subsequence.
- ightharpoonup The sub-sequences do **not** have the same q.

▶ A given S_d^i has period T^* and minimal connection integer q^* .

- ▶ A given S_d^i has period T^* and minimal connection integer q^* .
- **Period:** (True for all periodic sequences)
 - $T^* \left| \frac{T}{\gcd(T,d)} \right|$

- ▶ A given S_d^i has period T^* and minimal connection integer q^* .
- ▶ **Period:** (True for all periodic sequences)
 - ullet $T^\star \left| rac{T}{\gcd(T,d)} \right|$
 - If gcd(T, d) = 1 then $T^* = T$.

- ightharpoonup A given S_d^i has period T^* and minimal connection integer q^* .
- **Period:** (True for all periodic sequences)
 - $T^* \left| \frac{T}{\gcd(T,d)} \right|$
 - If gcd(T, d) = 1 then $T^* = T$.

- ▶ If gcd(T,d) > 1: T^* might depend on i!E.g. for S = -1/19 and d = 3: T/gcd(T, d) = 6.
 - S_3^0 : The period $T^* = 2$.
 - S_3^1 : The period $T^* = 6$.

- **▶** 2-adic complexity [Goresky Klapper 97]:
 - General case: $q^{\star}|2^{T^{\star}}-1$.

- **▶** 2-adic complexity [Goresky Klapper 97]:
 - General case: $q^*|2^{T^*}-1$.
 - gcd(T, d) = 1: $q^*|2^{T/2} + 1$.

- > 2-adic complexity [Goresky Klapper 97]:
 - General case: $q^*|2^{T^*}-1$.
 - gcd(T, d) = 1: $q^*|2^{T/2} + 1$.
- ▶ Conjecture [Goresky Klapper 97]: Let S be an ℓ -sequence with connection integer $q=p^e$ and period T. Suppose p is prime and $q \notin \{5,9,11,13\}$. For any d_1,d_2 relatively prime to T and incongruent modulo T and any i,j:

 $S_{d_1}^i$ and $S_{d_2}^j$ are cyclically distinct.

- > 2-adic complexity [Goresky Klapper 97]:
 - General case: $q^*|2^{T^*}-1$.
 - gcd(T, d) = 1: $q^*|2^{T/2} + 1$.
- ▶ Conjecture [Goresky Klapper 97]: Let S be an ℓ -sequence with connection integer $q=p^e$ and period T. Suppose p is prime and $q \notin \{5,9,11,13\}$. For any d_1,d_2 relatively prime to T and incongruent modulo T and any i,j:

 $S_{d_1}^i$ and $S_{d_2}^j$ are cyclically distinct.

- Based on Conjecture:
 - If q is prime and gcd(T,d)=1 then $q^*>q$.

- 2-adic complexity [Goresky Klapper 97]:
 - General case: $q^*|2^{T^*}-1$.
 - gcd(T, d) = 1: $q^* | 2^{T/2} + 1$.
- **Conjecture** [Goresky Klapper 97]: Let S be an ℓ -sequence with connection integer $q = p^e$ and period T. Suppose p is prime and $q \notin \{5, 9, 11, 13\}$. For any d_1, d_2 relatively prime to T and incongruent modulo T and any i, j:

 $S_{d_1}^i$ and $S_{d_2}^j$ are cyclically distinct.

- Based on Conjecture:
 - If q is prime and gcd(T,d)=1 then $q^*>q$.
 - Let q, p be prime and T = q 1 = 2p:

 $1 \leq d < T$, and $d \neq p$ then $q^* > q$.

ightharpoonup Clock d times the register in one cycle.

- Clock d times the register in one cycle.
- ightharpoonup Equivalent to partition the register into d sub-registers

$$x_i x_{i+d} \cdots x_{i+kd}$$

such that $0 \le i < d$ and i + kd < m.

- ► Clock *d* times the register in one cycle.
- ightharpoonup Equivalent to partition the register into d sub-registers

$$x_i x_{i+d} \cdots x_{i+kd}$$

such that $0 \le i < d$ and i + kd < m.

Interconnection of the sub-registers.

- ► Clock *d* times the register in one cycle.
- ightharpoonup Equivalent to partition the register into d sub-registers

$$x_i x_{i+d} \cdots x_{i+kd}$$

such that $0 \le i < d$ and i + kd < m.

- ▶ Interconnection of the sub-registers.
- ▶ Propagation of the carry computation.

Fibonacci FCSR (1)

► Let the feedback function be defined by

$$g(X_t, c_t) = \sum_{j=0}^{m-1} (x_j)_t a_j + c_t$$

Fibonacci FCSR (1)

► Let the feedback function be defined by

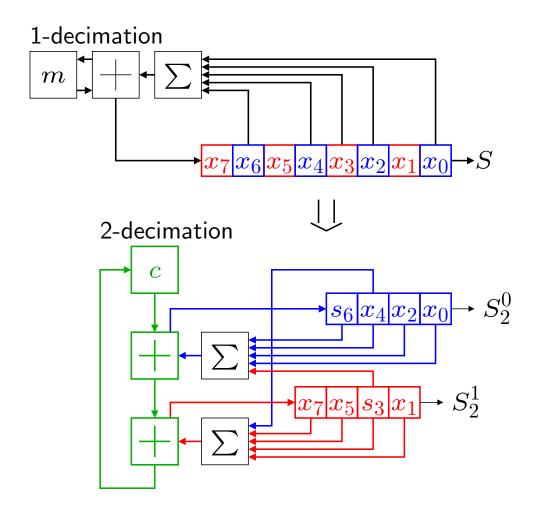
$$g(X_t, c_t) = \sum_{j=0}^{m-1} (x_j)_t a_j + c_t$$

▶ We can use the following equations:

$$(x_i)_{t+d} = \begin{cases} g(X_{t+d-m+i}, c_{t+d-m+i}) \bmod 2 & \text{if } m-d < i < m \\ (x_{i+d})_t & \text{if } i \le m-d \end{cases}$$

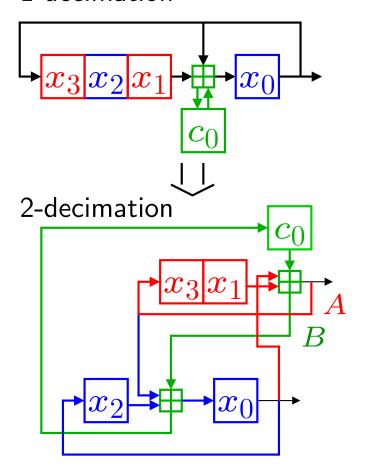
$$c_{t+d} = g(X_{t+d-1}, c_{t+d-1})/2$$

Fibonacci FCSR (2)



Galois FCSR

1-decimation



$$A = \boxplus [(x_0)_t, (x_1)_t, (c_0)_t] \mod 2
 B = \boxplus [(x_0)_t, (x_1)_t, (c_0)_t] \div 2
 (x_0)_{t+2} = \boxplus [A, B, (x_2)_t] \mod 2
 (c_0)_{t+2} = \boxplus [A, B, (x_2)_t] \div 2
 (x_1)_{t+2} = (x_3)_t
 (x_2)_{t+2} = (x_0)_t
 (x_3)_{t+2} = A$$

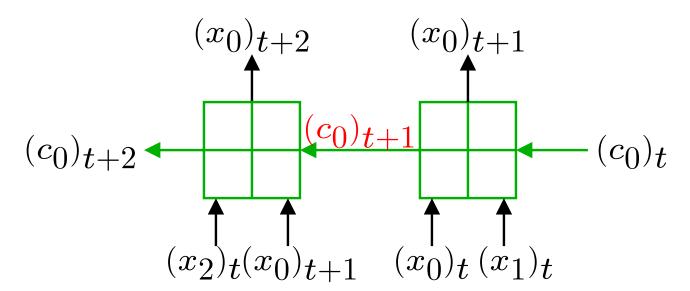
Carry Propagation

 \triangleright Efficient implementation by means of n-bit ripple carry adder:

Carry Propagation

 \triangleright Efficient implementation by means of n-bit ripple carry adder:

2-bit ripple carry adder



Comparison

- Synthesis of Sub-sequences:
 - Period: If gcd(T,d) > 1 it might depend on i.
 - 2-adic complexity: q^* can be much bigger than q.

Comparison

Synthesis of Sub-sequences:

- Period: If gcd(T, d) > 1 it might depend on i.
- 2-adic complexity: q^* can be much bigger than q.

▶ Multiple steps FCSR:

- Same memory size.
- Propagation of carry by well-known arithmetic circuits.

Part 4 Conclusion

▶ The decimation of an ℓ -sequence can be used to increase the throughput or to reduce the power consumption.

- ▶ The decimation of an ℓ -sequence can be used to increase the throughput or to reduce the power consumption.
- ➤ A separated FCSR for each sub—sequence is not satisfying.

- ▶ The decimation of an ℓ -sequence can be used to increase the throughput or to reduce the power consumption.
- ➤ A separated FCSR for each sub—sequence is not satisfying. However, the multiple steps FCSR works fine (even with carry).

- ▶ The decimation of an ℓ -sequence can be used to increase the throughput or to reduce the power consumption.
- ➤ A separated FCSR for each sub—sequence is not satisfying. However, the multiple steps FCSR works fine (even with carry).
- ▶ Efficient software implementation: 14-bit FCSR with q = 18433.

Implementation	Throughput
classic	2.7 MByte/s
decimated $(d=8)$	19 MByte/s

- ▶ The decimation of an ℓ -sequence can be used to increase the throughput or to reduce the power consumption.
- ➤ A separated FCSR for each sub—sequence is not satisfying. However, the multiple steps FCSR works fine (even with carry).
- ▶ Efficient software implementation: 14-bit FCSR with q = 18433.

Implementation	Throughput
classic	2.7 MByte/s
decimated $(d=8)$	19 MByte/s

Future Work: How to find the best q for hardware/software implementation?

Watermill generator

- ▶ The decimation of an ℓ -sequence can be used to increase the throughput or to reduce the power consumption.
- ➤ A separated FCSR for each sub—sequence is not satisfying. However, the multiple steps FCSR works fine (even with carry).
- ▶ Efficient software implementation: 14-bit FCSR with q = 18433.

Implementation	Throughput
classic	2.7 MByte/s
decimated $(d=8)$	19 MByte/s

Future Work: How to find the best q for hardware/software implementation?

Watermill generator

