Entropy Loss and Random Functions

Andrea Röck INRIA, projet CODES

Outline

2 Entropy Loss

3 Attacks

Part 1 Introduction By random function we refer to a function φ which was randomly chosen out of $\mathcal{F}_n = \{\varphi : \Omega_n \to \Omega_n\}$, where Ω_n is a set of n elements.

Stream Cipher Model

- S state with $s_t \in \Omega_n$, $t \ge 0$
- $\varphi \in \mathcal{F}_n$ random function which updates S
- P plaintext
- *C* ciphertext
- g filter function

Entropy of the State

- $\{p_i\}_{i=1}^n$ distribution of initial state
- $p_i^{\varphi}(t)$ probability of i after t iterations of φ
- entropy:

$$H_t^{\varphi} = \sum_{i=1}^n p_i^{\varphi}(t) \log_2\left(\frac{1}{p_i^{\varphi}(t)}\right)$$

• $E(H_t)$ expected entropy after k iterations

Part 2 Entropy Loss

Properties of Random Functions (1) [Flajolet, Odlyzko 98]

$$f(x) = x^2 \mod 8$$

Properties of Random Functions (2) [Flajolet, Odlyzko 98]

Expected number of image points after
 k iterations is

$$(1- au_k)n$$

with $\tau_0 = 0$ and $\tau_{k+1} = e^{\tau_k - 1}$.

- Expected cicle points $cp(n) = \sqrt{\frac{\pi n}{2}}$.
- Expected maximal tail length $mtl(n) = \sqrt{n \ 2\pi} \log(2).$

Properties of Random Functions (3) [Flajolet, Odlyzko 98]

- Expected number of *r*-nodes after one iteration is
 n 1
 - er!(By an *r*-node we refer to a node with r incomming edges in the functional graph or respectively a preimage of size r)

Upper bound with image points

Entropy by means of \boldsymbol{r} nodes

• Uniform initial distribution

$$E(H_1^U) = \frac{n}{e} \sum_{r=1}^n \frac{1}{r!n} \log_2 \frac{r}{n}$$

• Arbitrary initial distribution

$$\frac{1}{\binom{n}{r}} \sum_{1 \le i_1 < \dots < i_r \le n} (p_{i_1} + \dots + p_{i_r}) \log_2 \frac{1}{p_{i_1} + \dots + p_{i_r}}$$

Method	Approximation	$n = 2^{16}$
image points	log(n) - 0.6617	15.3383
r nodes (uniform)	log(n) - 0.8272	15.1728
test		15.1728

Part 3 Attacks