Entropy Approximation for FCSRs

Andrea Röck

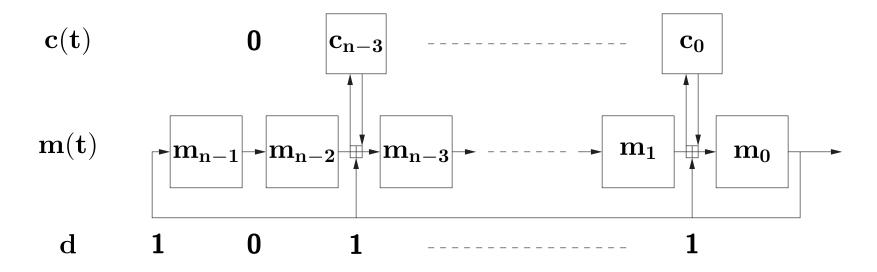
Caen, 8th March 2007

Outline

- ► FCSR
- Entropy after one Feedback
- Final Entropy
 - Method
 - Algorithm
 - Approximations
- Results

Part 1 FCSR

Feedback with Carry Shift Register



- ightharpoonup m(t) main register
- ightharpoonup c(t) carry register
- ▶ d determines feedback, $2^{n-1} \le d < 2^n$

Notations

- ▶ *n* length of main register
- $\rightarrow m = \sum_{i=0}^{n-1} m_i \ 2^i$
- $d^* = d 2^{n-1}$
- $ightharpoonup I_d = \{i | 0 \le i \le n-2 \text{ and } d_i^* = 1\}$
- $\blacktriangleright \ell = HammingWeight(d^*)$
- $ightharpoonup c = \sum_{i \in I_d} c_i \ 2^i$
- ightharpoonup (m(t), c(t)) state after t iterations

State Update Function

$$i = n - 1$$

$$m_{n-1}(t+1) = m_0(t)$$

 $ightharpoonup 0 \le i < n-1 \text{ and } i \in I_d$

$$\langle c_i, m_i \rangle (t+1) = m_{i+1}(t) + c_i(t) + m_0(t)$$

 $1 \quad 0 = 1 + 0 + 1$

 $ightharpoonup 0 \le i < n-1 \text{ and } i \not\in I_d$

$$m_i(t+1) = m_{i+1}(t)$$

[Klapper, Goresky 94]

Let

$$\triangleright q := 1 - 2 d$$

$$\triangleright p := m + 2c$$

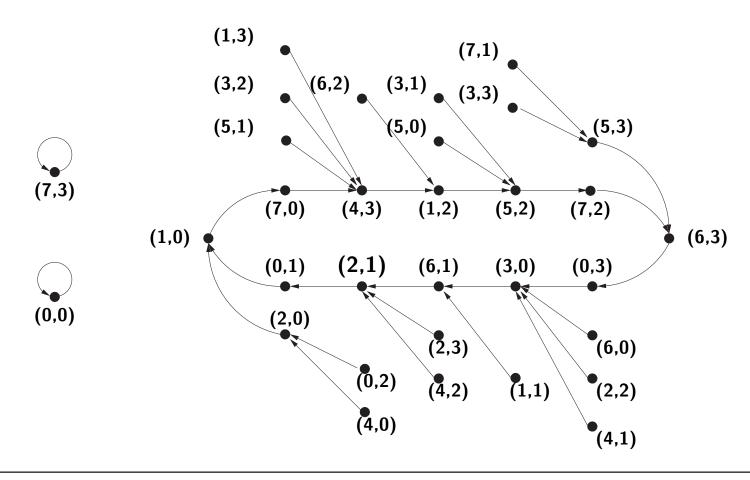
It holds that

- $\triangleright 0 \le p \le |q|$
- ightharpoonup Output of FCSR is 2-adic expansion of $\frac{p}{q}$
- ightharpoonup Two fixed points (0,0) and $(2^n-1,d^*)$

e.g. [Koblitz 97]

▶ If q is odd, p and q are coprime and the order of 2 modulo q is |q|-1 then the FCSR has the maximal period of |q|-1. In this case we say the FCSR is optimal.

Functional Graph



Entropy of State at time t

- $ightharpoonup p_{(m,c)}(t)$ probability of the state being (m,c) at time t.
- \blacktriangleright (m(0), c(0)) is uniformly distributed.
- $ightharpoonup p_{(m,c)}(t)$ is well defined due to initial distribution.
- Entropy:

$$H(t) := \sum_{(m,c)} p_{(m,c)}(t) \log_2 \frac{1}{p_{(m,c)}(t)}$$

Part 2 Entropy after one Feedback

Entropy after one Feedback

- ▶ Initial entropy: $n + \ell$
- Question:

Entropy loss after one feedback?

Method:

Count the number of (m(0),c(0))'s which produce the same (m(1),c(1)).

Fix $(\mathbf{m}(\mathbf{1}), \mathbf{c}(\mathbf{1}))$

From
$$m_{n-1}(t+1) = m_0(t)$$
: $m_0(0)$

$$i \notin I_d$$
: From $m_i(t+1) = m_{i+1}(t)$: $m_{i+1}(0)$

 $ightharpoonup i \in I_d$: From

$$\langle c_i, m_i \rangle (t+1) = m_{i+1}(t) + c_i(t) + m_0(t)$$

same $(m_i(1), c_i(1))$ with

$$(m_{i+1}(0), c_i(0)) = (0, 1)$$
 or $(1, 0)$

Method (1)

- ▶ j: number of $i \in I_d$ where $m_i(1) \neq m_0(0)$ and thus $m_{i+1}(0) \neq c_i(0)$.
- (m(1),c(1)) can be produced by 2^j different (m(0),c(0))'s.
- ▶ There are $2^{n-j} \binom{\ell}{j}$ such (m(1), c(1))'s

Method (2)

► Entropy after one iteration:

$$\sum_{j=0}^{\ell} 2^{n-j} \binom{\ell}{j} \frac{2^j}{2^{n+\ell}} \log_2 \frac{2^{n+\ell}}{2^j} = n + \frac{\ell}{2}$$

Part 3 Final Entropy

Final Entropy

► Goal: Entropy when we reached the cycle

▶ **Idea:** How many (m, c)'s create the same p = m + 2c.

Final Entropy

Method

[Arnault, Berger, Minier - SASC 07] (1)

Definition:

Two states (m,c) and (m',c') are said equivalent if m+2c=m'+2c'=p.

Proposition:

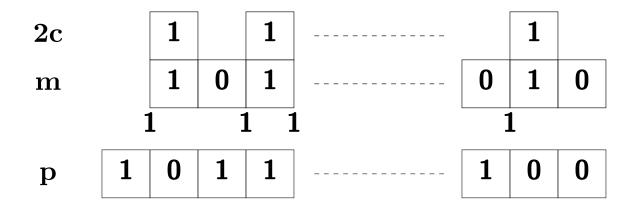
Two non-invariant states of a FCSR automaton with optimal period are equivalent if and only if they converge to the same state of the main cycle in the same number of steps.

[Arnault, Berger, Minier - SASC 07] (2)

▶ Theorem:

The length of the tail of the graph of an optimal FCSR automaton is at most n+3.

Method (1)



Bitwise addition with carry

Method (2)

- We group p with similar binary representation into sets B_i .
- ► Each time we calculate

$$\triangleright G(i) = \#\{(m,c) : p = m + 2c\} \text{ for } p \in B_i$$

- $\triangleright |B_i|$
- fraction of entropy

$$|B_i| \, rac{G(i)}{2^{n+\ell}} \log_2 \left(rac{2^{n+\ell}}{G(i)}
ight)$$

Final Entropy

Algorithm

$\hbox{\it Case}\,\,p<2^n$

$$\rightarrow i = \lfloor \log_2(p) \rfloor$$

$$\ell' = \#\{j \in I_d | j \le i\}$$

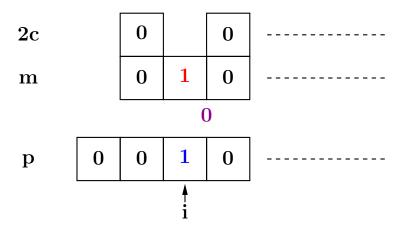
► Two cases:

$$\triangleright d_{i-1} = 0$$

$$\triangleright d_{i-1} = 1$$

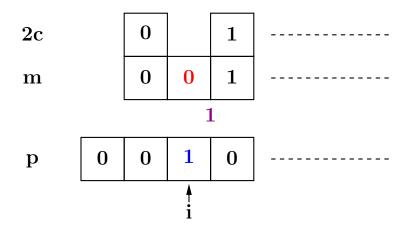
$$p<2^{\rm n}$$
 and $d_{i-1}=0$ (1)

- ▶ Not important if we have a carry at i-1
- ▶ 2 possibilities at each feedback position



$$p<2^{\rm n}$$
 and $d_{i-1}=0$ (1)

- ▶ Not important if we have a carry at i-1
- ▶ 2 possibilities at each feedback position



$$p<2^{\rm n}$$
 and $d_{i-1}=0$ (2)

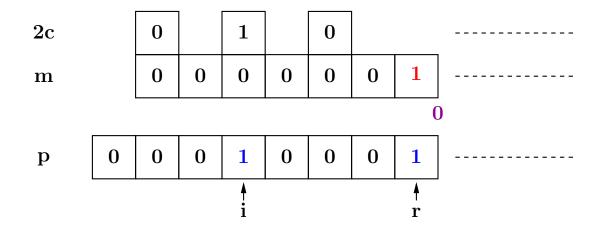
- $ightharpoonup 2^{\ell'}$ possible (m,c)'s
- $ightharpoonup 2^i$ such p's
- ► Fraction of entropy:

$$2^{i}2^{\ell'-n-\ell}(n+\ell-\ell')$$

$$\mathbf{p}<\mathbf{2}^{\mathrm{n}}$$
 and $\mathbf{d_{i-1}}=\mathbf{1}$ (1)

$$r(p) = \max\{j < i | d_{j-1} = 0, p_j = 1\}$$

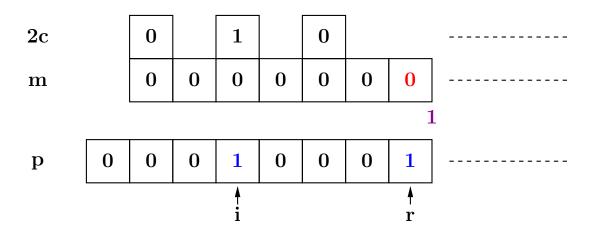
- ightharpoonup No carry can be forwarded over r
- ▶ Possible range: $-1 \le r < i$



$$\mathbf{p}<\mathbf{2}^{\mathrm{n}}$$
 and $\mathbf{d_{i-1}}=\mathbf{1}$ (1)

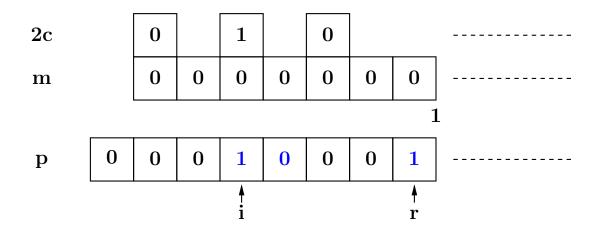
$$r(p) = \max\{j < i | d_{j-1} = 0, p_j = 1\}$$

- ightharpoonup No carry can be forwarded over r
- ▶ Possible range: $-1 \le r < i$



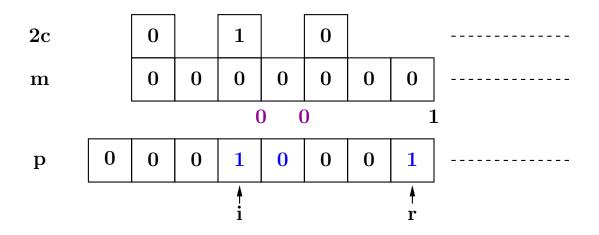
$$\mathbf{p}<\mathbf{2}^{\mathrm{n}}$$
 and $\mathbf{d_{i-1}}=\mathbf{1}$ (2)

- ▶ For i > j > r with $d_{j-1} = 0$:
 - $\triangleright p_j = 0$ (definition of r(p))
 - carry is forwarded



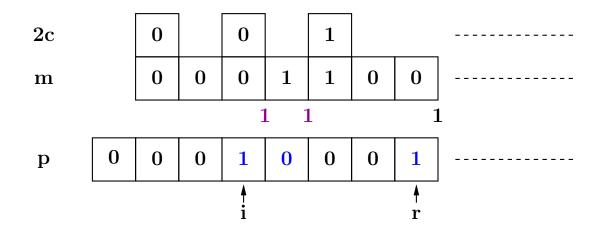
$$\mathbf{p}<\mathbf{2}^{\mathrm{n}}$$
 and $\mathbf{d_{i-1}}=\mathbf{1}$ (2)

- ▶ For i > j > r with $d_{j-1} = 0$:
 - $\triangleright p_j = 0$ (definition of r(p))
 - carry is forwarded



$$\mathbf{p}<\mathbf{2}^{\mathrm{n}}$$
 and $\mathbf{d_{i-1}}=\mathbf{1}$ (2)

- ▶ For i > j > r with $d_{j-1} = 0$:
 - $\triangleright p_j = 0$ (definition of r(p))
 - carry is forwarded



$$\mathrm{p}<2^{\mathrm{n}}$$
 and $\mathrm{d_{i-1}}=1$ (3)

- $\ell'' = \#\{j \in I_d | j < r\}$
- $I_{d'}(r,i) = \{j | r < j < i \text{ and } d_{j-1} = 1\}$
- ightharpoonup p' and (m',c'): p and (m,c) reduced on $I_{d'}(r,i)$
- x(p'):
 number of possibilities for m' and c' to generate p' but with a carry at position i-1.

$$\mathrm{p}<2^{\mathrm{n}}$$
 and $\mathrm{d_{i-1}}=1$ (4)

- ▶ For all $0 \le x \le 2^{\ell' \ell'' 1} 1$ there exists exactly one p' with x(p') = x.
- \triangleright carry at i-1: $(m_i, c_{i-1}) = (0, 0)$
- ▶ no carry at i-1: $(m_i, c_{i-1}) = (1,0)$ or (0,1)
- ightharpoonup possible (m',c') to create 1p'

$$x(p') + 2(2^{\ell'-\ell''-1} - x(p')) = 2^{\ell'-\ell''} - x(p')$$

 $ightharpoonup 2^r ps$ for each p'

$$\mathrm{p}<2^{\mathrm{n}}$$
 and $\mathrm{d_{i-1}}=1$ (4)

- ightharpoonup Fix i and r
- $imes y \ 2^{\ell''}$ possible (m,c)'s, for all $2^{\ell'-\ell''-1}+1\leq y\leq 2^{\ell'-\ell''}$
- $ightharpoonup 2^r 2^{\ell'-\ell''-1}$ such p's

$$\mathrm{p}<2^{\mathrm{n}}$$
 and $\mathrm{d_{i-1}}=1$ (5)

Fraction of entropy:

$$2^{r+\ell'-2-n-\ell} \left(3 \ 2^{\ell'-\ell''-1} + 1\right) (n+\ell-\ell'')$$

$$- 2^{r+\ell''-n-\ell} \sum_{y=2^{\ell'-\ell''-1}+1} y \log_2(y)$$

▶ For r = -1 we replace 2^r by 1.

$$2^{n} \le p < |q|$$
 (1)

- ▶ Need carry at position n-1
- ightharpoonup r(p), ℓ'' , $I_{d'}$, p', (m',c'), and x(p') defined as above
- ▶ $r(p) < \log_2(d^*) + 1$, otherwise p > |q|.
- ▶ Possible range: $-1 \le r < \log_2(d^*) + 1$
- For all $1 \le x \le 2^{\ell-\ell''}-1$ there exists exactly one p' with x(p')=x. (Exclude x(p')=0 since there is no possibility for a carry.)
- $ightharpoonup 2^r ps$ for each p'

$$2^{n} \le p < |q|$$
 (2)

- \rightarrow Fix r
- $ightharpoonup x \, 2^{\ell''}$ possible (m,c)'s, for each $1 \le x \le 2^{\ell-\ell''}-1$.
- $ightharpoonup 2^r \left(2^{\ell-\ell''}-1\right)$ such p's

$$2^{n} \le p < |q|$$
 (3)

Fraction of entropy:

$$2^{r} 2^{-n-1} \quad (2^{\ell-\ell''}-1) (n+\ell-\ell'') \ - \quad 2^{r} 2^{\ell''-n-\ell} \quad \sum_{x=1}^{2^{\ell-\ell''}-1} x \log_2(x)$$

▶ For r = -1 we replace 2^r by 1.

Final Entropy

Approximations

Problem

- ▶ Complexity of Algorithm $O\left(n^2\right)$ if we know value of the sums.
- Calculation of

$$\sum_{x=1}^{2^k-1} x \log_2(x) \text{ and } \sum_{x=2^{k-1}+1}^{2^k} x \log_2(x)$$

impractical for large k

Upper / Lower Bound

As we know the indefinite integral of $x \mapsto x \log_2(x)$ we can use:

$$\int_{2^{k-1}}^{2^k} x \log_2(x) dx < \sum_{x=2^{k-1}+1}^{2^k} x \log_2 x < \int_{2^{k-1}+1}^{2^{k+1}} x \log_2(x) dx$$

$$\int_{1}^{2^k} x \log_2(x) dx < \sum_{x=1}^{2^k} x \log_2 x < \int_{2}^{2^{k+1}} x \log_2(x) dx$$

Better Approximation (1)

Idea:

$$\int_{x}^{x+1} y \log_2(y) \approx \frac{1}{2} \left(x \log_2(x) + (x+1) \log_2(x+1) \right)$$

ightharpoonup Good approximation for large k.

Better Approximation (2)

Get

$$\sum_{y=2^{k-1}+1}^{2^k} y \log_2 y = 2^{2k-3} \left(3k + 1 - \frac{3}{2\ln(2)} \right) + 2^{k-2} (k+1) + O(1)$$

$$\sum_{y=1}^{2^{k}-1} y \log_2 y = 2^{2k-1} \left(k - \frac{1}{2\ln(2)} \right) - k2^{k-1} + O(1)$$

Part 4 Results

Results

n	d	ℓ	entropy	$\log_2(q -1)$
16	Ox $A54E$	7	16.2728	16.3689
24	$O \times A59B4E$	12	24.2733	24.3716

n	$\mid d \mid$	lower bound	upper bound	approx
16	Ox $A54E$	16.1005	16.4173	16.2728
24	$O \times A 59B4E$	24.1063	24.4131	24.2733

For k < 5, I used the real value of the sums in the approximation.

