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Part 1

Introduction



Sub-sequences generator

s0 s2 s3s1

s0 s2
s1 s3

generator
Single sequence

Sub-sequences
generator

I Goal: parallelism

• better throughput

• reduced power consumption
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Notations

I S = (s0, s1, s2, · · · ): Binary sequence with period T .

I Si
d = (si, si+d, si+2d, · · · ): Decimated sequence,

with 0 ≤ i ≤ d− 1.

• S0
d = (s0, sd, · · · ), · · · , Sd−1

d = (sd−1, s2d−1, · · · )

I xj: Memory cell.

I (xj)t: Content of the cell xj.

I Xt: Entire internal state of the automaton.

I nextd(xj): Cell connected to the output of xj.
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LFSRs

I Automaton with linear update function.

I Let s(x) =
∑∞

i=0 six
i be the power series of S = (s0, s1, s2, . . .).

There exists two polynomials p(x), q(x):

s(x) =
p(x)
q(x)

.

I q(x): Connection polynomial of degree m.

I Q(x) = xmq(1/x): Characteristic polynomial.

I m–sequence: S has maximal period of 2m − 1.

(iff q(x) is a primitive polynomial)

I Linear complexity: Size of smallest LFSR which generates S.
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Fibonacci/Galois LFSRs

x7 x5 x2x6 x4 x1 x0

Fibonacci setup.

x3

x7 x6 x5 x4 x3 x0x2 x1

Galois setup.
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FCSRs
[Klapper Goresky 93]

I Instead of XOR, FCSRs use additions with carry.

• Non-linear update function.

• Additional memory to store the carry.

I S is the 2–adic expansion of the rational number:
h

q
≤ 0.

I Connection integer q: Determines the feedback positions.

I `–sequences: S has maximal period ϕ(q).

(iff q is a prime power and ordq(2) = ϕ(q).)

I 2–adic complexity: size of the smallest FCSR which produces S.

6/23



Fibonacci/Galois FCSRs
[Klapper Goresky 02]

x0x3x4x6P
m

mod2
x2 x1x5x7

/2

Fibonacci setup.
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Fibonacci/Galois FCSRs
[Klapper Goresky 02]

x0x3x4x6P
m

mod2
x2 x1x5x7

/2

Fibonacci setup.

Galois setup.

x7 x6 x5 x4 x3 x1 x0x2
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Part 2

LFSRs (Previous Results)



Synthesis of Sub-sequences (1)

LFSR

LFSR

LFSR

S2
3

S1
3

S0
3

I Use Berlekamp-Massey algorithm to find the smallest LFSR for

each subsequence.
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Synthesis of Sub-sequences (1)

LFSR

LFSR

LFSR

S2
3

S1
3

S0
3

I Use Berlekamp-Massey algorithm to find the smallest LFSR for

each subsequence.

I All sub-sequences are generated using d LFSRs defined by Q?(x)
but initialized with different values.

8/23



Synthesis of Sub-sequences (2)

Theorem [Zierler 59]: Let S be produced by an LFSR whose

characteristic polynomial Q(x) is irreducible in F2 of degree m. Let

α be a root of Q(x) and let T be the period of S. For 0 ≤ i < d, Si
d

can be generated by an LFSR with the following properties:

• The minimum polynomial of αd in F2m is the characteristic

polynomial Q?(x) of the new LFSR with:

• Period T ? = T
gcd(d,T ).

• Degree m? is the multiplicative order of 2 in ZT ?.
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Multiple steps LFSR
[Lempel Eastman 71]

I Clock d times the register in one cycle.
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Multiple steps LFSR
[Lempel Eastman 71]

I Clock d times the register in one cycle.

I Equivalent to partition the register into d sub-registers

xixi+d · · ·xi+kd

such that 0 ≤ i < d and i+ kd < m.

I Duplication of the feedback:

The sub-registers are linearly interconnected.
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Fibonacci LFSR

S

S0
2

S1
2x1

x3 x1x2 x0

x0x2

x3

next1(x0) = x3
next1(xi) = xi−1 if i 6= 0

(x3)t+1 = (x3)t ⊕ (x0)t
(xi)t+1 = (xi−1)t if i 6= 3

next2(x0) = x2
next2(x1) = x3
next2(xi) = xi−2 if i > 1

2-decimation

1-decimation

f(Xt)
f(Xt+1)

(x3)t+2 = (x3)t ⊕ (x0)t| {z }
(x3)t+1

⊕ (x1)t

(x2)t+2 = (x3)t ⊕ (x0)t

(xi)t+2 = (xi−2)t if i < 2
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Comparison

Method Memory cells Logic Gates

LFSR synthesis d×m? d× wt(Q?)
Multiple steps LFSR m d× wt(Q)
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Part 3

FCSRs (Our Contribution)



Synthesis of Sub-sequences (1)

FCSR

S2
3

S1
3

S0
3

FCSR

FCSR

I We use an algorithm based on Euclid’s algorithm

[Arnault Berger Necer 04] to find the smallest FCSR for each

sub-sequence.
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Synthesis of Sub-sequences (1)

FCSR

S2
3

S1
3

S0
3

FCSR

FCSR

I We use an algorithm based on Euclid’s algorithm

[Arnault Berger Necer 04] to find the smallest FCSR for each

sub-sequence.

I The sub-sequences do not have the same q.
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Synthesis of Sub-sequences (2)

I A given Si
d has period T ? and minimal connection integer q?.
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∣∣∣ T
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Synthesis of Sub-sequences (2)

I A given Si
d has period T ? and minimal connection integer q?.

I Period: (True for all periodic sequences)

• T ?
∣∣∣ T
gcd(T,d) ,

• If gcd(T, d) = 1 then T ? = T .

I If gcd(T, d) > 1: T ? might depend on i!

E.g. for S = −1/19 and d = 3: T/gcd(T, d) = 6.

• S0
3: The period T ? = 2.

• S1
3: The period T ? = 6.
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Synthesis of Sub-sequences (3)

I 2-adic complexity [Goresky Klapper 97]:

• General case: q?|2T ? − 1.
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Synthesis of Sub-sequences (3)

I 2-adic complexity [Goresky Klapper 97]:

• General case: q?|2T ? − 1.

• gcd(T, d) = 1: q?|2T/2 + 1.

I Conjecture [Goresky Klapper 97]: Let S be an `–sequence

with connection integer q = pe and period T . Suppose p is prime

and q 6∈ {5, 9, 11, 13}. For any d1, d2 relatively prime to T and

incongruent modulo T and any i, j:

Si
d1

and Sj
d2

are cyclically distinct.

I Based on Conjecture: Let q and p be prime and T = q−1 = 2p:

If 1 ≤ d < T and d 6= p then q? > q.

15/23



Multiple steps FCSR

I Clock d times the register in one cycle.
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Multiple steps FCSR

I Clock d times the register in one cycle.

I Equivalent to partition the register into d sub-registers

xixi+d · · ·xi+kd

such that 0 ≤ i < d and i+ kd < m.

I Interconnection of the sub-registers.

I Propagation of the carry computation.
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Fibonacci FCSR (1)

I Let the feedback function be defined by

g(Xt, ct) =
m−1∑
j=0

(xj)taj + ct
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Fibonacci FCSR (1)

I Let the feedback function be defined by

g(Xt, ct) =
m−1∑
j=0

(xj)taj + ct

I We can use the following equations:

(xi)t+d =

{
g(Xt+d−m+i, ct+d−m+i) mod 2 if m− d ≤ i < m

(xi+d)t if i < m− d
ct+d = g(Xt+d−1, ct+d−1)/2

17/23



Fibonacci FCSR (2)

2-decimation

1-decimationP
m

P
P

S1
2

S0
2

S

c

x7 x5 s3 x1

x1x7 x5 x3

x4s6 x2

x0x2x4x6

x0
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Galois FCSR (1)

I Example q = −19:

x0x3 x2

c0

x1

I Description at the bit-level:{
(x0)t+1 = (x0)t ⊕ (x1)t ⊕ (c0)t

(c0)t+1 = [(x0)t ⊕ (x1)t] [(x0)t ⊕ (c0)t]⊕ (x0)t

19/23



Galois FCSR (2)
I d = 2, description for the automaton at t+ 1 and t+ 2

t+ 1

{
(x0)t+1 = (x0)t ⊕ (x1)t ⊕ (c0)t

(c0)t+1 = [(x0)t ⊕ (x1)t] [(x0)t ⊕ (c0)t]⊕ (x0)t

t+ 2

{
(x0)t+2 = (x0)t+1 ⊕ (x2)t ⊕ (c0)t+1

(c0)t+2 = [(x0)t+1 ⊕ (x2)t] [(x0)t+1 ⊕ (c0)t+1]⊕ (x0)t+2
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Galois FCSR (2)
I d = 2, description for the automaton at t+ 1 and t+ 2

t+ 1

{
(x0)t+1 = (x0)t ⊕ (x1)t ⊕ (c0)t

(c0)t+1 = [(x0)t ⊕ (x1)t] [(x0)t ⊕ (c0)t]⊕ (x0)t

t+ 2

{
(x0)t+2 = (x0)t+1 ⊕ (x2)t ⊕ (c0)t+1

(c0)t+2 = [(x0)t+1 ⊕ (x2)t] [(x0)t+1 ⊕ (c0)t+1]⊕ (x0)t+2

(c0)t+2

(x0)t+2

(x0)t+1(x2)t

(c0)t

(x0)t+1

(x1)t(x0)t

(c0)t+1

2-bit ripple carry adder

20/23



Galois FCSR (3)

x0x2

x3 x1

2-decimation
c0

1-decimation

x0x1x3 x2

c0

B
A

B = � [(x0)t, (x1)t, (c0)t]÷2

A = � [(x0)t, (x1)t, (c0)t] mod 2

(x0)t+2 = � [A, B, (x2)t] mod 2
(c0)t+2 = � [A, B, (x2)t]÷2
(x1)t+2 = (x3)t
(x2)t+2 = (x0)t
(x3)t+2 = A

21/23



Comparison

I Synthesis of Sub-sequences:

• Period: If gcd(T, d) > 1 it might depend on i.

• 2-adic complexity: q? can be much bigger than q.
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Comparison

I Synthesis of Sub-sequences:

• Period: If gcd(T, d) > 1 it might depend on i.

• 2-adic complexity: q? can be much bigger than q.

I Multiple steps FCSR:

• Same memory size.

• Propagation of carry by well-known arithmetic circuits.

22/23
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Conclusion



Conclusion

I The decimation of an `–sequence can be used to increase the

throughput or to reduce the power consumption.
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