Parallel generation of ℓ -sequences

Cédric Lauradoux

Andrea Röck Princeton University Team SECRET, INRIA

Kryptowochenende 2008

Introduction

- LFSRs (Previous Results)
 - Synthesis of sub-sequences
 - Multiple steps LFSR
- FCSRs (Our Contribution)
 - Synthesis of sub-sequences
 - Multiple steps FCSR

Introduction

- LFSRs (Previous Results)
 - Synthesis of sub-sequences
 - Multiple steps LFSR
- FCSRs (Our Contribution)
 - Synthesis of sub-sequences
 - Multiple steps FCSR

Introduction

- LFSRs (Previous Results)
 - Synthesis of sub-sequences
 - Multiple steps LFSR
- FCSRs (Our Contribution)
 - Synthesis of sub-sequences
 - Multiple steps FCSR

Introduction

- LFSRs (Previous Results)
 - Synthesis of sub-sequences
 - Multiple steps LFSR
- FCSRs (Our Contribution)
 - Synthesis of sub-sequences
 - Multiple steps FCSR

Introduction

- LFSRs (Previous Results)
 - Synthesis of sub-sequences
 - Multiple steps LFSR
- FCSRs (Our Contribution)
 - Synthesis of sub-sequences
 - Multiple steps FCSR

Introduction

- LFSRs (Previous Results)
 - Synthesis of sub-sequences
 - Multiple steps LFSR
- FCSRs (Our Contribution)
 - Synthesis of sub-sequences
 - Multiple steps FCSR

Introduction

- LFSRs (Previous Results)
 - Synthesis of sub-sequences
 - Multiple steps LFSR
- FCSRs (Our Contribution)
 - Synthesis of sub-sequences
 - Multiple steps FCSR

Introduction

- LFSRs (Previous Results)
 - Synthesis of sub-sequences
 - Multiple steps LFSR
- FCSRs (Our Contribution)
 - Synthesis of sub-sequences
 - Multiple steps FCSR

Part 1 Introduction

Sub-sequences generator

Sub-sequences
generator
$$s_0$$
 s_1 s_2 s_3
Sub-sequences s_0 s_2
generator s_1 s_3

► Goal: parallelism

- better throughput
- reduced power consumption

▶ $S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.

► $S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.

► $S_d^i = (s_i, s_{i+d}, s_{i+2d}, \cdots)$: Decimated sequence, with $0 \le i \le d-1$.

•
$$S_d^0 = (s_0, s_d, \cdots)$$
, \cdots , $S_d^{d-1} = (s_{d-1}, s_{2d-1}, \cdots)$

► $S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.

► $S_d^i = (s_i, s_{i+d}, s_{i+2d}, \cdots)$: Decimated sequence, with $0 \le i \le d-1$.

•
$$S_d^0 = (s_0, s_d, \cdots)$$
, \cdots , $S_d^{d-1} = (s_{d-1}, s_{2d-1}, \cdots)$

▶ x_j : Memory cell.

- ► $S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.
- ► $S_d^i = (s_i, s_{i+d}, s_{i+2d}, \cdots)$: Decimated sequence, with $0 \le i \le d-1$.

•
$$S_d^0 = (s_0, s_d, \cdots)$$
, \cdots , $S_d^{d-1} = (s_{d-1}, s_{2d-1}, \cdots)$

- ► x_j : Memory cell.
- ▶ $(x_j)_t$: Content of the cell x_j .

- ► $S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.
- ► $S_d^i = (s_i, s_{i+d}, s_{i+2d}, \cdots)$: Decimated sequence, with $0 \le i \le d 1$.

•
$$S_d^0 = (s_0, s_d, \cdots)$$
, \cdots , $S_d^{d-1} = (s_{d-1}, s_{2d-1}, \cdots)$

- ► x_j : Memory cell.
- ► $(x_j)_t$: Content of the cell x_j .
- > X_t : Entire internal state of the automaton.

- ► $S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.
- ► $S_d^i = (s_i, s_{i+d}, s_{i+2d}, \cdots)$: Decimated sequence, with $0 \le i \le d-1$.

•
$$S_d^0 = (s_0, s_d, \cdots)$$
, \cdots , $S_d^{d-1} = (s_{d-1}, s_{2d-1}, \cdots)$

- ► x_j : Memory cell.
- ► $(x_j)_t$: Content of the cell x_j .
- > X_t : Entire internal state of the automaton.
- ▶ $next^d(x_j)$: Cell connected to the output of x_j .

Automaton with linear update function.

- Automaton with linear update function.
- ► Let $s(x) = \sum_{i=0}^{\infty} s_i x^i$ be the power series of $S = (s_0, s_1, s_2, ...)$. There exists two polynomials p(x), q(x):

$$s(x) = \frac{p(x)}{q(x)}.$$

- Automaton with linear update function.
- ► Let $s(x) = \sum_{i=0}^{\infty} s_i x^i$ be the power series of $S = (s_0, s_1, s_2, ...)$. There exists two polynomials p(x), q(x):

$$s(x) = \frac{p(x)}{q(x)}.$$

▶ q(x): Connection polynomial of degree m.

- Automaton with linear update function.
- ► Let $s(x) = \sum_{i=0}^{\infty} s_i x^i$ be the power series of $S = (s_0, s_1, s_2, ...)$. There exists two polynomials p(x), q(x):

$$s(x) = \frac{p(x)}{q(x)}.$$

q(x): Connection polynomial of degree *m*.
Q(x) = x^mq(1/x): Characteristic polynomial.

- Automaton with linear update function.
- ► Let $s(x) = \sum_{i=0}^{\infty} s_i x^i$ be the power series of $S = (s_0, s_1, s_2, ...)$. There exists two polynomials p(x), q(x):

$$s(x) = \frac{p(x)}{q(x)}.$$

- ▶ q(x): Connection polynomial of degree m.
- ► $Q(x) = x^m q(1/x)$: Characteristic polynomial.
- ▶ *m*-sequence: *S* has maximal period of $2^m 1$. (*iff* q(x) is a primitive polynomial)

- Automaton with linear update function.
- \blacktriangleright Let $s(x) = \sum_{i=0}^{\infty} s_i x^i$ be the power series of $S = (s_0, s_1, s_2, \ldots)$. There exists two polynomials p(x), q(x):

$$s(x) = \frac{p(x)}{q(x)}.$$

- $\triangleright q(x)$: Connection polynomial of degree m.
- $\triangleright Q(x) = x^m q(1/x)$: Characteristic polynomial.
- \blacktriangleright *m*-sequence: S has maximal period of $2^m 1$. (*iff* q(x) is a primitive polynomial)
- \blacktriangleright Linear complexity: Size of smallest LFSR which generates S.

Fibonacci/Galois LFSRs

Fibonacci setup.

Fibonacci/Galois LFSRs

Fibonacci setup.

Instead of XOR, FCSRs use additions with carry.

- ► Instead of XOR, FCSRs use additions with carry.
 - Non-linear update function.

► Instead of XOR, FCSRs use additions with carry.

- Non-linear update function.
- Additional memory to store the carry.

Instead of XOR, FCSRs use additions with carry.

- Non-linear update function.
- Additional memory to store the carry.

► S is the 2-adic expansion of the rational number: $\frac{h}{q} \leq 0$.

Instead of XOR, FCSRs use additions with carry.

- Non-linear update function.
- Additional memory to store the carry.

► S is the 2-adic expansion of the rational number: $\frac{h}{q} \leq 0$.

Connection integer q: Determines the feedback positions.

Instead of XOR, FCSRs use additions with carry.

- Non-linear update function.
- Additional memory to store the carry.

► S is the 2-adic expansion of the rational number: $\frac{h}{q} \leq 0$.

- Connection integer q: Determines the feedback positions.
- ▶ ℓ -sequences: S has maximal period $\varphi(q)$. (*iff* q is a prime power and $ord_q(2) = \varphi(q)$.)

Instead of XOR, FCSRs use additions with carry.

- Non-linear update function.
- Additional memory to store the carry.

► S is the 2-adic expansion of the rational number: $\frac{h}{q} \leq 0$.

Connection integer q: Determines the feedback positions.

- ▶ ℓ -sequences: S has maximal period $\varphi(q)$. (*iff* q is a prime power and $ord_q(2) = \varphi(q)$.)
- > 2-adic complexity: size of the smallest FCSR which produces S.

Fibonacci/Galois FCSRs [Klapper Goresky 02]

Fibonacci setup.

Fibonacci/Galois FCSRs [Klapper Goresky 02]

Fibonacci setup.

Galois setup.

Part 2 LFSRs (Previous Results)

Synthesis of Sub-sequences (1)

Use Berlekamp-Massey algorithm to find the smallest LFSR for each subsequence.

- Use Berlekamp-Massey algorithm to find the smallest LFSR for each subsequence.
- ▶ All sub-sequences are generated using d LFSRs defined by $Q^{\star}(x)$ but initialized with different values.

Theorem [Zierler 59]: Let S be produced by an LFSR whose characteristic polynomial Q(x) is irreducible in \mathbf{F}_2 of degree m. Let α be a root of Q(x) and let T be the period of S. For $0 \le i < d$, S_d^i can be generated by an LFSR with the following properties:

• The minimum polynomial of α^d in \mathbf{F}_{2^m} is the characteristic polynomial $Q^{\star}(x)$ of the new LFSR with:

• Period
$$T^{\star} = \frac{T}{gcd(d,T)}$$
.

• Degree m^{\star} is the multiplicative order of 2 in $\mathbf{Z}_{T^{\star}}$.

Multiple steps LFSR [Lempel Eastman 71]

Clock d times the register in one cycle.

Multiple steps LFSR [Lempel Eastman 71]

Clock d times the register in one cycle.

Equivalent to partition the register into d sub-registers

 $x_i x_{i+d} \cdots x_{i+kd}$

such that $0 \leq i < d$ and i + kd < m.

Multiple steps LFSR [Lempel Eastman 71]

Clock d times the register in one cycle.

Equivalent to partition the register into d sub-registers

 $x_i x_{i+d} \cdots x_{i+kd}$

such that $0 \le i < d$ and i + kd < m.

Duplication of the feedback:

The sub-registers are linearly interconnected.

Fibonacci LFSR

$$next^{1}(x_{0}) = x_{3}$$

$$next^{1}(x_{i}) = x_{i-1} \text{ if } i \neq 0$$

$$(x_{3})_{t+1} = (x_{3})_{t} \oplus (x_{0})_{t}$$

$$(x_{i})_{t+1} = (x_{i-1})_{t} \text{ if } i \neq 3$$

$$next^{2}(x_{0}) = x_{2}$$

$$next^{2}(x_{1}) = x_{3}$$

$$next^{2}(x_{i}) = x_{i-2} \text{ if } i > 1$$

$$(x_{i})_{t+2} = (x_{i-2})_{t} \text{ if } i < 2$$

$$(x_{2})_{t+2} = (x_{3})_{t} \oplus (x_{0})_{t}$$

$$(x_{3})_{t+2} = \underbrace{(x_{3})_{t} \oplus (x_{0})_{t}}_{(x_{3})_{t+1}} \oplus (x_{1})_{t}$$

$$(x_{3})_{t+2} = \underbrace{(x_{3})_{t} \oplus (x_{0})_{t}}_{(x_{3})_{t+1}} \oplus (x_{1})_{t}$$

$$1-\text{decimation}$$

$$f(X_{t})$$

$$f(X_{t})$$

$$f(X_{t+1})$$

$$f(X_{t+1})$$

Comparison

Method	Memory cells	Logic Gates
LFSR synthesis	$d imes m^{\star}$	$d \times wt(Q^{\star})$
Multiple steps LFSR	m	$d \times wt(Q)$

Part 3 FCSRs (Our Contribution)

We use an algorithm based on Euclid's algorithm [Arnault Berger Necer 04] to find the smallest FCSR for each sub-sequence.

- We use an algorithm based on Euclid's algorithm [Arnault Berger Necer 04] to find the smallest FCSR for each sub-sequence.
- ▶ The sub-sequences do **not** have the same *q*.

► A given S_d^i has period T^* and minimal connection integer q^* .

- ► A given S_d^i has period T^* and minimal connection integer q^* .
- Period: (True for all periodic sequences)

•
$$T^{\star} \left| \frac{T}{\gcd(T,d)} \right|$$

- ► A given S_d^i has period T^* and minimal connection integer q^* .
- Period: (True for all periodic sequences)

•
$$T^{\star} \left| \frac{T}{\gcd(T,d)} \right|$$

• If gcd(T, d) = 1 then $T^* = T$.

- ► A given S_d^i has period T^* and minimal connection integer q^* .
- Period: (True for all periodic sequences)

•
$$T^{\star} \left| \frac{T}{\gcd(T,d)} \right|$$

- If gcd(T, d) = 1 then $T^* = T$.
- ▶ If gcd(T, d) > 1: T^* might depend on *i*! *E.g.* for S = -1/19 and d = 3: T/gcd(T, d) = 6.

•
$$S_3^0$$
: The period $T^{\star} = 2$.

•
$$S_3^1$$
: The period $T^{\star} = 6$.

2-adic complexity [Goresky Klapper 97]:

• General case: $q^{\star}|2^{T^{\star}}-1$.

- 2-adic complexity [Goresky Klapper 97]:
 - General case: $q^{\star}|2^{T^{\star}}-1$.
 - gcd(T, d) = 1: $q^* | 2^{T/2} + 1$.

2-adic complexity [Goresky Klapper 97]:

- General case: $q^{\star}|2^{T^{\star}}-1$.
- gcd(T, d) = 1: $q^* | 2^{T/2} + 1$.
- ► Conjecture [Goresky Klapper 97]: Let S be an ℓ-sequence with connection integer q = p^e and period T. Suppose p is prime and q ∉ {5,9,11,13}. For any d₁, d₂ relatively prime to T and incongruent modulo T and any i, j:

 $S_{d_1}^i$ and $S_{d_2}^j$ are cyclically distinct.

2-adic complexity [Goresky Klapper 97]:

- General case: $q^{\star}|2^{T^{\star}}-1$.
- gcd(T, d) = 1: $q^* | 2^{T/2} + 1$.
- ► Conjecture [Goresky Klapper 97]: Let S be an ℓ-sequence with connection integer q = p^e and period T. Suppose p is prime and q ∉ {5,9,11,13}. For any d₁, d₂ relatively prime to T and incongruent modulo T and any i, j:

 $S_{d_1}^i$ and $S_{d_2}^j$ are cyclically distinct.

▶ Based on Conjecture: Let q and p be prime and T = q - 1 = 2p: If $1 \le d < T$ and $d \ne p$ then $q^* > q$.

Clock d times the register in one cycle.

Clock d times the register in one cycle.

Equivalent to partition the register into d sub-registers

 $x_i x_{i+d} \cdots x_{i+kd}$

such that $0 \leq i < d$ and i + kd < m.

Clock d times the register in one cycle.

Equivalent to partition the register into d sub-registers

 $x_i x_{i+d} \cdots x_{i+kd}$

such that $0 \le i < d$ and i + kd < m.

Interconnection of the sub-registers.

Clock d times the register in one cycle.

Equivalent to partition the register into d sub-registers

 $x_i x_{i+d} \cdots x_{i+kd}$

such that $0 \le i < d$ and i + kd < m.

Interconnection of the sub-registers.

Propagation of the carry computation.

Fibonacci FCSR (1)

Let the feedback function be defined by

$$g(X_t, c_t) = \sum_{j=0}^{m-1} (x_j)_t a_j + c_t$$

Fibonacci FCSR (1)

► Let the feedback function be defined by

$$g(X_t, c_t) = \sum_{j=0}^{m-1} (x_j)_t a_j + c_t$$

► We can use the following equations:

$$(x_i)_{t+d} = \begin{cases} g(X_{t+d-m+i}, c_{t+d-m+i}) \mod 2 & \text{if } m - d \le i < m \\ (x_{i+d})_t & \text{if } i < m - d \end{cases}$$
$$c_{t+d} = g(X_{t+d-1}, c_{t+d-1})/2$$

Fibonacci FCSR (2)

Galois FCSR (1)

\blacktriangleright Example q = -19:

Description at the bit-level:

$$\begin{cases} (x_0)_{t+1} = (x_0)_t \oplus (x_1)_t \oplus (c_0)_t \\ (c_0)_{t+1} = [(x_0)_t \oplus (x_1)_t] [(x_0)_t \oplus (c_0)_t] \oplus (x_0)_t \end{cases}$$

Galois FCSR (2)

 $b \ d = 2, \text{ description for the automaton at } t + 1 \text{ and } t + 2 \\ t + 1 \ \begin{cases} (x_0)_{t+1} = (x_0)_t \oplus (x_1)_t \oplus (c_0)_t \\ (c_0)_{t+1} = [(x_0)_t \oplus (x_1)_t] [(x_0)_t \oplus (c_0)_t] \oplus (x_0)_t \\ \\ t + 2 \ \begin{cases} (x_0)_{t+2} = (x_0)_{t+1} \oplus (x_2)_t \oplus (c_0)_{t+1} \\ (c_0)_{t+2} = [(x_0)_{t+1} \oplus (x_2)_t] [(x_0)_{t+1} \oplus (c_0)_{t+1}] \oplus (x_0)_{t+2} \end{cases}$

Galois FCSR (2)

d = 2, description for the automaton at t + 1 and t + 2 $t + 1 \begin{cases} (x_0)_{t+1} = (x_0)_t \oplus (x_1)_t \oplus (c_0)_t \\ (c_0)_{t+1} = [(x_0)_t \oplus (x_1)_t] [(x_0)_t \oplus (c_0)_t] \oplus (x_0)_t \\ \\ t + 2 \begin{cases} (x_0)_{t+2} = (x_0)_{t+1} \oplus (x_2)_t \oplus (c_0)_{t+1} \\ (c_0)_{t+2} = [(x_0)_{t+1} \oplus (x_2)_t] [(x_0)_{t+1} \oplus (c_0)_{t+1}] \oplus (x_0)_{t+2} \end{cases}$

2-bit ripple carry adder

Galois FCSR (3)

1-decimation

$$A = \boxplus [(x_0)_t, (x_1)_t, (c_0)_t] \mod 2$$

$$B = \boxplus [(x_0)_t, (x_1)_t, (c_0)_t] \div 2$$

$$(x_0)_{t+2} = \boxplus [A, B, (x_2)_t] \mod 2$$

$$(c_0)_{t+2} = \boxplus [A, B, (x_2)_t] \div 2$$

$$(x_1)_{t+2} = (x_3)_t$$

$$(x_2)_{t+2} = (x_0)_t$$

$$(x_3)_{t+2} = A$$

Comparison

Synthesis of Sub-sequences:

- Period: If gcd(T,d) > 1 it might depend on i.
- 2-adic complexity: q^* can be much bigger than q.

Comparison

Synthesis of Sub-sequences:

- Period: If gcd(T,d) > 1 it might depend on i.
- 2-adic complexity: q^* can be much bigger than q.

Multiple steps FCSR:

- Same memory size.
- Propagation of carry by well-known arithmetic circuits.

Part 4 Conclusion

► The decimation of an *l*-sequence can be used to increase the throughput or to reduce the power consumption.

- ► The decimation of an *l*-sequence can be used to increase the throughput or to reduce the power consumption.
- A separated FCSR for each sub-sequence is not satisfying.

- ► The decimation of an *l*-sequence can be used to increase the throughput or to reduce the power consumption.
- A separated FCSR for each sub-sequence is not satisfying. However, the multiple steps FCSR works fine.

- ► The decimation of an *l*-sequence can be used to increase the throughput or to reduce the power consumption.
- A separated FCSR for each sub-sequence is not satisfying. However, the multiple steps FCSR works fine.
- Sub-expressions simplification:
 - classical for LFSR.
 - new problem for FCSR.

Conclusion

- ► The decimation of an *l*-sequence can be used to increase the throughput or to reduce the power consumption.
- A separated FCSR for each sub-sequence is not satisfying. However, the multiple steps FCSR works fine.
- Sub-expressions simplification:
 - classical for LFSR.
 - new problem for FCSR.

