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Part 1
Introduction



Sub-sequences generator

Single sequence
generator

Sub-sequences — sy s9
generator [— s; s3

» Goal: parallelism

e better throughput
e reduced power consumption
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Notations

» S = (sg, 51,892, - ): Binary sequence with period 7.
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Notations

» S = (sp, 51,82, ). Binary sequence with period T.

» S\ = (Si, Sitd, Sitad, -+ ). Decimated sequence,
with 0 <¢<d—1.

OSOZ(So,Sd,”'): - Sg_lz(sd_hSQd—la'”)

» 2, Memory cell.
» (z;):: Content of the cell z;.
» X,: Entire internal state of the automaton.

» next?(x;): Cell connected to the output of x;.

B\, 4 il::\;;:'si;tlyl W INRITA
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LFSRs

» Automaton with linear update function.
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LFSRs

» Automaton with linear update function.

> Let s(z) = > .7, six" be the power series of S = (s, 51, S2, . -

There exists two polynomials p(x), g(x):

» ¢(x): Connection polynomial of degree m.
» Q(x) = x™q(1/x): Characteristic polynomial.

» m—sequence: S has maximal period of 2™ — 1.
(iff q(x) is a primitive polynomial)

).
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» Automaton with linear update function.

> Let s(z) = > 0, s;x" be the power series of S = (s, s1, S2, .. .).
There exists two polynomials p(x), g(x):

» ¢(x): Connection polynomial of degree m.
» Q(x) = x™q(1/x): Characteristic polynomial.

» m—sequence: S has maximal period of 2 — 1.
(iff q(x) is a primitive polynomial)

» Linear complexity: Size of smallest LFSR which generates S.
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Fibonacci/Galois LFSRs

Fibonacci setup.

(M
L T
T7|26|25T4|T3

L21L1| Lo
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Fibonacci/Galois LFSRs

Fibonacci setup.

LT7L6

Y
T5|T4|T3

L2

L1

ror—*

(Galois setup.
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FCSRs
[Klapper Goresky 93]

» Instead of XOR, FCSRs use additions with carry.
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FCSRs
[Klapper Goresky 93]

» Instead of XOR, FCSRs use additions with carry.

e Non-linear update function.
e Additional memory to store the carry.

h

» S is the 2—adic expansion of the rational number: — < 0.

q

» Connection integer q: Determines the feedback positions.

» (—sequences: S has maximal period ©(q).
(iff q is a prime power and ord,(2) = ¢(q).)
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FCSRs
[Klapper Goresky 93]

» Instead of XOR, FCSRs use additions with carry.

e Non-linear update function.
e Additional memory to store the carry.

h
» S is the 2—adic expansion of the rational number: — < 0.

q

» Connection integer q: Determines the feedback positions.

» (—sequences: S has maximal period ©(q).
(iff q is a prime power and ord,(2) = ¢(q).)

» 2—adic complexity: size of the smallest FCSR which produces S.

B vuiversiy A TN R A 6/23



Fibonacci/Galois FCSRs
[Klapper Goresky 02]

mod 2

Fibonacci setup.
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Fibonacci/Galois FCSRs
[Klapper Goresky 02]
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Part 2
LFSRs (Previous Results)



Synthesis of Sub-sequences (1)

4 LFSR > S
H  LFSR [ s3
4+ LFSR 53

» Use Berlekamp-Massey algorithm to find the smallest LFSR for
each subsequence.
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Synthesis of Sub-sequences (1)

4 LFSR > S
H  LFSR [ s3
4 LFSR 53

» Use Berlekamp-Massey algorithm to find the smallest LFSR for
each subsequence.

» All sub-sequences are generated using d LFSRs defined by Q*(x)
but initialized with different values.
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Synthesis of Sub-sequences (2)

Theorem [Zierler 59]: Let S be produced by an LFSR whose
characteristic polynomial Q(x) is irreducible in Fy of degree m. Let
« be a root of Q(x) and let T be the period of S. For 0 <i < d, S
can be generated by an LFSR with the following properties:

e The minimum polynomial of a? in Fam is the characteristic
polynomial @Q*(x) of the new LFSR with:

e Period T = gcd(Td?T).

e Degree m™ is the multiplicative order of 2 in Zip~.

B nivorsiy R TNRIA 9/23




Multiple steps LFSR

[Lempel Eastman 71]

» Clock d times the register in one cycle.
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Multiple steps LFSR

[Lempel Eastman 71]
» Clock d times the register in one cycle.
» Equivalent to partition the register into d sub-registers
LiLitd " Lit+kd
such that 0 < < d and 7 + kd < m.

» Duplication of the feedback:

The sub-registers are linearly interconnected.
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Fibonacci LFSR

neaztl(ajo) = x3
next! (z;) = x; 1 ifi # 0

(3)¢41 = (23)¢ D (z0)¢
()41 = (x;_1)¢ if i # 3

neazt2(azo) = T9
neazt2(azl) = x3
neazt2(aji) =z, _oifi>1

(2§)t42 = (z5—2)¢ if 1 < 2
(2)t+2 = (23)t ® (zg)¢
(z3)¢t4+2 = (23)t ® (x0)¢ & (1)¢

(©3)t4-1

1-decimation

ARV

L‘F

*3

L2

ol |

() — S

~~7

2-decimation

— f(X¢)
— f(Xte1)

o 5'2
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L
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Method Memory cells | Logic Gates
LFSR synthesis d x m* d x wt(Q*)
Multiple steps LFSR m d x wt(Q)
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Part 3
FCSRs (Our Contribution)



» We

Synthesis of Sub-sequences (1)

use an

FCSR

=

FCSR_

I

FCSR

algorithm

based

on

Euclid’s

algorithm

[Arnault Berger Necer 04] to find the smallest FCSR for each

sub-sequence.
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» We

Synthesis of Sub-sequences (1)

use an

FCSR

=

FCSR_

I

FCSR

algorithm

based

on

Euclid’s

algorithm

[Arnault Berger Necer 04] to find the smallest FCSR for each

sub-sequence.

» [ he sub-sequences do not have the same q.

Princeton
et University

I INRIA
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Synthesis of Sub-sequences (2)

» A given S% has period T* and minimal connection integer ¢*.

B nivorsy B TN RIA 14/23




Synthesis of Sub-sequences (2)

» A given S% has period T* and minimal connection integer ¢*.

» Period: (True for all periodic sequences)

* T
ol ged(T,d)"

3:.3.;;:3 WINRIA 14/23




Synthesis of Sub-sequences (2)

» A given S% has period T* and minimal connection integer ¢*.
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* T
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Synthesis of Sub-sequences (2)

» A given S% has period T* and minimal connection integer ¢*.

» Period: (True for all periodic sequences)

* T
ol ged(T,d)"

o If gcd(T,d) =1 then T*=T.

» If ged(T,d) > 1: T* might depend on !
Eg for S=—-1/19and d =3: T/gcd(T,d) = 6.

e SY: The period T* = 2.
e S3: The period T* = 6.
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Synthesis of Sub-sequences (3)
» 2-adic complexity [Goresky Klapper 97]:

*
e General case: ¢*|27" — 1.
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Synthesis of Sub-sequences (3)
» 2-adic complexity [Goresky Klapper 97]:

o General case: ¢*|27 — 1.
o gcd(T,d) = 1: ¢*|27/2 4+ 1.

» Conjecture [Goresky Klapper 97]: Let S be an /—sequence
with connection integer ¢ = p® and period 1. Suppose p is prime
and g ¢ {5,9,11,13}. For any dy,ds relatively prime to T and
incongruent modulo 71" and any ¢, 3:

21 and SéQ are cyclically distinct.
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» 2-adic complexity [Goresky Klapper 97]:

o General case: ¢*|27 — 1.
o gcd(T,d) =1: ¢*|27/2 4+ 1.

» Conjecture [Goresky Klapper 97]: Let S be an /—sequence
with connection integer ¢ = p® and period 1. Suppose p is prime
and g ¢ {5,9,11,13}. For any dy,d> relatively prime to 1" and

incongruent modulo 71" and any ¢, 3:

ﬁll and 552 are cyclically distinct.

» Based on Conjecture: LetgandpbeprimeandT =qg—1 = 2p:
If 1 <d< T and d # p then ¢* > q.
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Multiple steps FCSR

» Clock d times the register in one cycle.
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Multiple steps FCSR

» Clock d times the register in one cycle.

» Equivalent to partition the register into d sub-registers

Lili+d" " Lit+kd

such that 0 < < d and 7 + kd < m.
» Interconnection of the sub-registers.

» Propagation of the carry computation.

Blueis WINRIA 16/23



Fibonacci FCSR (1)
» Let the feedback function be defined by

m—1
g( X, cp) = xj taj + ¢y
J=0
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Fibonacci FCSR (1)
» Let the feedback function be defined by

m—1
g( X, cp) = xj taj + ¢y
7=0

» We can use the following equations:

9( Xtrd—mairCtrd—mei) mod 2 ifm—d<i<m
(Ti)t+a = e
(ita)t ifi<m—d
Ct+d — g(XH—d—laCter—l)/Q

B nivorsy B TN RIA 17/23




Fibonacci FCSR (2)

1-decimation

-

m [+

—>

rr|lrglrs|ra|eslxole|zo—S

\ 4

2-decimation ~

> C

A 4

sglralxalror— Sg

]

x5|s3lr1—~ Sy

\ 4
8
\]

]
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Galois FCSR (1)

» Example ¢ = —19:

» Description at the bit-level:

{(330)754—1 = (20)¢ D (x1): D (co)t
(co)t+1 = [(%0)t ® (w1)e] [(w0)e B (co)t] ® (wo):

Blueis WINRIA 19/23



Galois FCSR (2)
» d = 2, description for the automaton at ¢t + 1 and ¢ + 2
il {(m)m = (0)¢ ® (1) @ (co)s
(co)i+1 = [(z0)t ® (z1)e] [(0)e @ (co)t)  (wo)s

t 42 {(370)754—2 — (xO)t—l—l S, ($2)t D (CO)t_|_1
(CO) +2 — [(CIZO)H—l D (5132)75] [(a:o)t+1 P, (CO)t—l—l] an (xO)t—l—Z
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Galois FCSR (2)
» d = 2, description for the automaton at ¢t + 1 and ¢ + 2
P (20)t+1 = (0):t B (1)t & (o)t
(co)i+1 = [(z0)t ® (z1)¢) [(%0): ® (co)t] © (o)t

t 42 {(ZUO)H—Q — (xO)t—l—l S, ($2)t D (CO)t_|_1
(co)tra = [(0)tr1 D (x2)e] [(0)tr1 D (co)ia1] B (x0)rao

2-bit ripple carry adder

(o) t+2 ()41
A A

(co)t+1 <

f f 1

(fﬂztt(wo)tﬂ ()t (z1)¢

(co)t+2 <

B nveriy B TNRI A 20/23




Galois FCSR (3)

1-decimation

ng Xo|T *%I-'xo >

C(
2—decimationLL A=E [(wo)t’ (xl)t’ (CO)t] mod 2
10 B =®8[(xg)t, (£1)¢ (co)tl =9
PE|TPET, (@0)t2 = BLA, B, (2)¢] mod 2
— B (co)t+2 = B[A, B, (z9)t] -9
ol (1)¢42 = (3)¢
(x2)¢t+2 = (zo)¢
(£3)¢42 = A

B nivorsy B TN RIA 21/23




Comparison

» Synthesis of Sub-sequences:

e Period: If ged(T,d) > 1 it might depend on .
e 2-adic complexity: ¢* can be much bigger than gq.
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» Synthesis of Sub-sequences:

e Period: If ged(T,d) > 1 it might depend on .
e 2-adic complexity: ¢* can be much bigger than gq.

» Multiple steps FCSR:

e Same memory size.
e Propagation of carry by well-known arithmetic circuits.

% tiversty R INRIA 22/23



Part 4

Conclusion



Conclusion

» The decimation of an /—sequence can be used to increase the
throughput or to reduce the power consumption.
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