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Céline Blondeau, Anne Canteaut, and Pascale Charpin

Abstract—We provide an extensive study of the differential prop-
erties of the functions � �� �� �� over � , for � � � � �.
We notably show that the differential spectra of these functions
are determined by the number of roots of the linear polynomials
�� � ��� � �� � ��� where � varies in � . We prove a strong
relationship between the differential spectra of � �� �� �� and
� �� �� �� for � � � � � � �. As a direct consequence, this
result enlightens a connection between the differential properties
of the cube function and of the inverse function. We also deter-
mine the complete differential spectra of � �� �� by means of
the value of some Kloosterman sums, and of � �� �� �� for � �
������� ����	 � �� � � �
.

Index Terms—APN function, block cipher, differential crypt-
analysis, differential uniformity, Kloosterman sum, linear polyno-
mial, monomial, permutation, power function, S-box.

I. INTRODUCTION

D IFFERENTIAL cryptanalysis is the first statistical attack
proposed for breaking iterated block ciphers. Its publica-

tion [4] then gave rise to numerous works which investigate the
security offered by different types of functions regarding differ-
ential attacks. This security is quantified by the so-called differ-
ential uniformity of the Substitution box used in the cipher [23].
Most notably, finding appropriate S-boxes which guarantee that
the cipher using them resist differential attacks is a major topic
for the last twenty years, see, e.g., [7], [9], [10], [12], [17].

Power functions, i.e., monomial functions, form a class of
suitable candidates since they usually have a lower implementa-
tion cost in hardware. Also, their particular algebraic structure
makes the determination of their differential properties easier.
However, there are only a few power functions for which we can
prove that they have a low differential uniformity. Up to equiva-
lence, there are two large families of such functions: a subclass
of the quadratic power functions (a.k.a. Gold functions) and a
subclass of the so-called Kasami functions. Both of these fam-
ilies contain some permutations which are APN over for
odd and differentially 4-uniform for even . The other known
power functions with a low differential uniformity correspond to
“sporadic” cases in the sense that the corresponding exponents
vary with [18] and they do not belong to a large class: they cor-
respond to the exponents defined by Welch [11], [15], by Niho
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[14], [19], by Dobbertin [16], by Bracken and Leander [8], and
to the inverse function [22]. It is worth noticing that some of
these functions seem to have different structures because they
do not share the same differential spectrum. For instance, for a
quadratic power function or a Kasami function, the differential
spectrum has only two values, i.e., the number of occurrences
of each differential belongs to for some [5]. The inverse
function has a very different behavior since its differential spec-
trum has three values, namely 0, 2 and 4 and, for each input dif-
ference, there is exactly one differential which is satisfied four
times.

However, when classifying all functions with a low differen-
tial uniformity, it can be noticed that the family of all power
functions over , with , contains sev-
eral functions with a low differential uniformity. Most notably,
it includes the cube function and the inverse function, and also

for odd, which is the inverse of a quadratic
function. At a first glance, this family of exponents may be of
very small relevance because the involved functions have dis-
tinct differential spectra. Then, they are expected to have distinct
structures. For this reason, one of the motivations of our study
was to determine whether some link could be established be-
tween the differential properties of the cube function and of the
inverse function. Our work then answers positively to this ques-
tion since it exhibits a general relationship between the differ-
ential spectra of and over . We
also determine the complete differential spectra of some other
exponents in this family.

The rest of the paper is organized as follows. Section II recalls
some definitions and some general properties of the differential
spectrum of monomial functions. Section III then focuses on
the differential spectra of the monomials . First, the
differential spectrum of any such function is shown to be deter-
mined by the number of roots of a family of linear polynomials.
Then, we exhibit a symmetry property for the exponents in this
family: it is proved that the differential spectra of
and over are closely related. In Section V,
we determine the whole differential spectrum of over

. It is expressed by means of some Kloosterman sums, and
explicitly computed using the work of Carlitz [13]. We then de-
rive the differential spectra of . Further, we study
the functions and . We fi-
nally end up with some conclusions. An extended version of
this paper can be found in [6].

II. PRELIMINARIES

A. Functions Over and Their Derivatives

Any function from into can be expressed uniquely
as a univariate polynomial in of univariate degree at
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most . The algebraic degree of is the maximal Ham-
ming weight of the 2-ary expansions of its exponents

where and denotes the Hamming weight. In this
paper, we will identify a polynomial of with the corre-
sponding function over .

Boolean functions are also involved in this paper and are gen-
erally of the form

where is any function from into and where de-
notes the absolute trace on , i.e.,

In the whole paper, is the cardinality of any set .
The resistance of a cipher to differential attacks and to its

variants is quantified by some properties of the derivatives of
its S(ubstitution)-box, in the sense of the following definition.

Definition 1: Let be a function from into . For any
, the derivative of with respect to is the function

from into defined by

The resistance to differential cryptanalysis is related to the
following quantities, introduced by Nyberg and Knudsen [22],
[23].

Definition 2: Let be a function from into . For any
and in , we denote

Then, the differential uniformity of is

Those functions for which are said to be almost per-
fect nonlinear (APN).

B. Differential Spectrum of Power Functions

In this paper, we focus on the case where the S-box is a power
function, i.e., a monomial function on . In other words,

over , which will be denoted by when
necessary. In the case of such a power function, the differential
properties can be analyzed more easily since, for any nonzero

, the equation can be written

implying that

Then, when is a monomial function, the differential
characteristics of are determined by the values ,

. From now on, this quantity is denoted by . Since

the differential spectrum of can be defined as follows.

Definition 3: Let be a power function on .
We denote by the number of output differences that occur

times

(1)

The differential spectrum of is the set of

Obviously, the differential spectrum satisfies

(2)

where for odd.
It is well-known that some basic transformations preserve .

In particular, if is a permutation, its inverse has the same dif-
ferential spectrum as .

C. General Properties on the Differential Spectrum

Studying for special values of may give us at least a
lower bound on . So we first focus on .

Lemma 1: Let be such that . Then
satisfies . In particular if

and only if .
Proof: Note that if and only if is a permutation.

Obviously, is a solution of if and only if

since is a permutation over . As
there are exactly such , the proof is completed.

There is an immediate consequence of Lemma 1 for specific
values of .

Proposition 1: Let such that divides . Then
. In particular, if with

then .
Proof: Since , from

Lemma 1. But the polynomial has degree
for any , so that . We conclude that .
Now, let with . Then

so that . As previously we conclude that
.

The previous remarks combined with our simulation results
point out that and play a very particular role in the
differential spectra of power functions. This leads us to investi-
gate the properties of the differential spectrum restricted to the
values with .
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Definition 4: Let be a power function on . We say that
has the same restricted differential spectrum as an APN func-

tion when

For the sake of simplicity, we will say that is locally-APN.
This definition obviously generalizes the APN property. For

instance, the inverse function over is locally-APN for any
, while it is APN for odd only. Another infinite class of

locally-APN functions is exhibited in Section V-B.

III. THE DIFFERENTIAL SPECTRUM OF

From now on, we investigate the differential spectra of the
following specific monomial functions

(3)

Note that such a function has algebraic degree .

A. Link With Linear Polynomials

Theorem 1: Let defined by (3). Then

(4)

Consequently, for any , is the number of roots
in of the linear polynomial

and we have

for some with .
Proof: To prove (4) we simply check

Thus, is directly deduced and it corresponds to the number
of roots of . Let . Then

is a solution of if and only if it is
a solution of

or equivalently if it is a root of the linear polynomial

The values and are counted in (as solutions
of ), while for any . So,
we get that, if , the number of roots of in is equal
to . Because the set of all roots of a linear polynomial
is a linear space, we deduce that

Moreover, by raising to the th power, we get that any
root of is also a root of

with . This then implies that with
. Finally, for , , implying that

, which naturally corresponds to Lemma 1.

Remark 1: As a first easy corollary, we recover the following
well-known form of the differential spectrum of the inverse
function, over . Actually, the pre-
vious theorem applied to leads to and

when is odd and when is even. For all
, . Therefore, we have:

• if is odd, and ;
• if is even, and ,

.
The following corollary is a direct consequence of Theorem

1.

Corollary 1: Let over with
. Then, its differential uniformity is of the form either
or for some . Moreover, if for

some , then this value appears only once in the differential
spectrum, i.e., , and it corresponds to the value of ,
implying .

B. Equivalent Formulations

In Theorem 1, we exhibited some tools for the computation
of the differential spectra of functions . The problem
boils down to the determination of the roots of a linear polyno-
mial whose coefficients depend on . There are equiv-
alent formulations that we are going to develop now. The first
one is obtained by introducing another class of linear polyno-
mials over . For any subspace of , we define its dual
as follows:

Also, we denote by the image set of any function .

Lemma 2: Let and . Let us consider
the linear applications

Then the dual of is the set of all satisfying
, where

Note that is called the adjoint application of .
Proof: By definition, consists of all such that

for all . We have

Hence, belongs to the dual of the image of if and only
if , i.e., is a root of , completing
the proof.
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The following theorem gives an equivalent formulation of the
quantity which is presented in Theorem 1.

Theorem 2: Notation is as in Lemma 2. Then

Consequently, this dimension can be determined by solving
or equivalently by solving

Proof: Let be the dimension of the image set of . It
is well-known that . On the other hand,
Lemma 2 shows that is in the dual of the image of if and
only if . We deduce that

completing the proof.

Now, we discuss a different point of view, using an equivalent
linear system.

Theorem 3: For any , we define the following
equation:

Let be the number of solutions of in . Let
be the number of solutions in of the system

Then .
Proof: We simply write

which is equal to

We are looking at the number of solutions of which are not
in . So, it is equivalent to compute the number of nonzero
solutions of

such that the equation has solutions. This last
condition holds if and only if , providing two distinct
solutions such that , completing
the proof.

Remark 2: In Theorem 3, takes any value while is de-
fined for in Theorem 1. For all , we have clearly

. If , and the number of roots
of in is equal to

Therefore, we have .

IV. PROPERTY OF SYMMETRY

Recall that . Now, we are going to examine
some symmetries between the differential spectra of and
where and . In the list of properties below,
notation is conserved as soon it is defined. Recall that

is the adjoint polynomial of .
Thus, both polynomials have a kernel with the same dimension
(see Lemma 2 and Theorem 2). It is worth noticing that this
dimension is at least 1 since . In this
section we want to prove the following theorem.

Theorem 4: For any with , we define

Then, for any with and for any , we have
.

We begin by proving two lemmas.

Lemma 3: Let with . Let be the
permutation of defined by

Then, for any in , satisfies

Proof: First, we clearly have that is a permutation of
. Indeed, and one can

define the inverse of as follows:

Actually, and it can be checked that

Then, by using that and , we
deduce that

Lemma 4: Let with . Let
and let such that . Then

, where .
Proof: Recall that . We

know that for any there is such that
. This is because

(see Theorem 2) and is included in the kernel of .
Moreover, if and only if .
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We treat the case separately, a case where
for only. In this case, Lemma 3 leads to too
where , since . And we have for

and for

Thus, we conclude: for , if is such that
then and

where the last equality comes from Theorem 2.
Now, we suppose that . With , the equation

is equivalent to

which is

We can set

since

is equivalent to

� �

We have proved that is equivalent to

Therefore, . But
, by Theorem 2, completing

the proof.

Proof of Theorem 4: Recall that

Then, we want to show that, for any , . For any
and for any , we define

From Theorem 2, we know that
. Then

For any there are nonzero in and
then pairs , for a fixed , in so that

(5)

We use Lemma 3. Recall that is the permutation of
defined by

Then, we have

Indeed, any is as follows specified from . We
have from Lemma 3. Moreover, according
to Lemma 4, , where is cal-
culated from and , for any such that .

In other terms, to any pair corresponds a unique
pair . We finally get that and it directly
follows from (5) that , completing the proof.

Now we are going to explain Theorem 4, in terms of the dif-
ferential spectra of and , with .
Actually, we can deduce from the previous theorem that both
functions and have the same restricted differential spec-
trum, i.e., the multisets are the same for
both functions.

Corollary 2: We denote by , , the quantities
corresponding to . Then, for any

with , we have

and we have equality between both following multisets:

(6)

implying that is locally-APN if and only if is lo-
cally-APN (in the sense of Definition 4). Moreover, and
have the same differential spectrum if and only if

which can hold for odd only.
Proof: Since , we clearly have

Thus, applying Theorem 1, we get
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and

Moreover, we have

implying that is equal to
. We deduce from Theorem 4

that

Equality (6) is then a direct consequence of Theorem 1, since

Now, we note that if and only if .
Thus, and have the same differential spectrum if and only
if . Since

this holds if and only if . It cannot
hold when is even, because in this case either or is even
too.

Using Definition 4, the last statement is obviously derived.

The previous result implies that, if is APN over , then
is locally-APN. Moreover, the differential spectrum of

can be completely determined as shown by the following corol-
lary.

Corollary 3: Let and be two integers such that
is APN over . Let . Then:

• if is odd, both and are APN permutations;
• if is even, is not a permutation and is a differen-

tially 4-uniform permutation (locally-APN) with the fol-
lowing differential spectrum: , and

.
Proof: From Theorem 1, we deduce that, if is APN, then

for all ; moreover,
and since and .

If is odd, is then the only possible value,
implying that . It follows that ,
and for all . In other words, both

and are APN permutations.
If is even, it is well-known that is not a permutation (see,

e.g., [2]). More precisely, we have here since
and cannot be both coprime with . Then, we deduce

that and . The differential spectrum of
directly follows from Corollary 2.

Example 1: Notation is as in Corollary 3. For , we
have . It is well-known that is an APN function
over for any . Since , is equivalent to
the inverse function and it is also well-known that the inverse
function is APN for odd . For even , and the
differential spectrum is computed in Remark 1.

Corollary 4: Let and be two integers such that
is differentially 4-uniform. Then, is even and is

a permutation with the following differential spectrum: ,
and . Moreover, for ,

is APN.
Proof: From Corollary 1, we deduce that im-

plies and . In particular, is even.
Since and cannot be both equal to 2, we
also deduce that that is a permutation. Its differential spec-
trum is then derived from (2). Moreover, we have and

, implying that is APN.

V. SPECIFIC CLASSES

In this section, we apply the results of Section III to the study
of the differential spectrum of , for special
values of .

A. Function

We first focus on over , i.e., . In
this case, we determine the complete differential spectrum of
the function. Actually, we show that this differential spectrum
is related to some Kloosterman sum, which has an explicit ex-
pression found by Carlitz [13].

Definition 5: Let be the Kloosterman sum

extended to 0 assuming that for .

Theorem 5: Let over with . Then, its
differential spectrum is given by:

• If is odd

• If is even

where is the Kloosterman sum defined as in Definition 5.
In particular, is differentially 6-uniform for all .
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Remark 3: An explicit formula for is due to Carlitz [13,
Formula (6.8)] for

To prove this theorem, we need some preliminary results. We
first recall some basic results on cubic equations.

Lemma 5: [3] The cubic equation , where
and has a unique solution in if and only if

. In particular, if it has three distinct roots
in , then .

Proposition 2: [20, Appendix] Let and

Then, we have for odd

and for even

Now we are going to solve the equations (see The-
orem 1) by solving a system of equations, including a cubic
equation, thanks to the equivalence presented in Theorem 3.

Theorem 6: Let and

The number of such that has no roots in
is given by

where is the Kloosterman sum defined as in Definition 5.
Proof: Let with . According to The-

orem 3 we know that the number (denoted by ) of roots in
of is twice the number of roots in of the fol-

lowing system where

(7)

Since , for . Then, for any , the
following situations may occur:

• has no root in . In this case, .
• has a unique root . From Lemma 5, this occurs

if and only if . In this case, if
and if .

• has three roots . Since these roots are
roots of a linear polynomial of degree 4 then ,
implying . Then, at least one

is such that . It follows that, in this case,
is either 6 or 2.

Let us define as the cardinality of

From the previous discussion, we have

where the last equality comes from Proposition 2. Let us now
compute the value of .

by using that . But, we have

implying that

Therefore

Now, we clearly have that if and only if .
Moreover, two distinct elements and in with

and satisfy
(otherwise, with has at least 2 roots

in ). Therefore, we deduce that

If is odd, we deduce that

If is even, we deduce that
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On the other hand, by definition of the Kloosterman sum ,
we have

Thus

We then deduce that, for any

It follows that

It can be checked that this formula also holds for (resp.
) since (resp. ).

Proof of Theorem 5: In accordance with (2), we obtain the
differential spectrum of as soon as we are able to solve the
following system:

(8)

Now, we apply Theorem 1 and we recall first that
for any . Moreover, we know that
as defined in Theorem 6.

Since , equals 1 for odd and 2 otherwise.
Then, if is even then else . Thus,
for even and otherwise. From the second equation of
(8), we get

and using the first equation of (8)

leading to

Finally, we deduce from Theorem 6 that, for odd

and for even

Finally, it can be proved that for any , implying
that is differentially 6-uniform. Actually, it has been proved
in [21, Th. 3.4] that

implying that when . It is worth noticing that
is APN when since its inverse is the quadratic APN

permutation . When , is locally-APN, and not
APN, since it corresponds to the inverse function over .

By combining the previous theorem and Corollary 2, we de-
duce the differential spectrum of over

.

Corollary 5: Let over with .
Then, we have:

• If , is differentially 6-uniform and for
any , . Moreover, its differential
spectrum is given by:

for odd

for even

• If 3 divides , is differentially 8-uniform and for
any , . Moreover, its differential
spectrum is given by

for odd

for even

Proof: Let denote the differential spec-
trum of over . We apply Corollary 2 (with ). Then,
if , and . Otherwise,

and . Moreover, in both cases,
for even and for odd. It follows that:

• For , odd, we have
and . Then, for all .

• For , even, we have
and . Then, ,

and .
• For , odd, we have

and . Then, ,
, and .
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• For , even, we have
and . Then, ,

, , and .
The result finally follows from Theorem 5.

B. Exponents

We are going to determine the differential uniformity of
for . We first consider the case where is even. Note
that in this case, is not a permutation since

.

Theorem 7: Let be an even integer, and
for . Then is locally-APN. More precisely

Moreover, the differential spectrum of is:
• If , then

• If

Proof: From Theorem 1, we obtain directly .
Also, if is even and otherwise.

Now, for all , we have to determine the number of roots
in of or, equivalently, the
number of roots of

If is a root of then . So,
implies

Thus, we get a linear polynomial of degree 4 which has at least
the roots 0 and 1. Hence, this polynomial has roots where
is either 4 or 2, including and . Therefore, for any

, since . We deduce that is
locally-APN.

We also proved that unless when
is even and otherwise. Moreover

. According to (2), we have for even

and

So, we get and conclude with
. We proceed similarly for odd , with the following

equalities derived from (2)

and we directly deduce a property on the corresponding class of
linear polynomials.

Corollary 6: Let and consider the polynomials over

Then, for any , these polynomials have either 2 or
4 roots in .

According to Corollary 2, the differential spectrum of
determines the differential spectrum of

Theorem 8: Let be an even integer and
for . Then, is locally-APN. It is differen-

tially -uniform and its differential spectrum is

Moreover, is a permutation if and only if .
Proof: First, since , we have if

is even (i.e., ) and if is odd
(i.e., ). Here .

Let (resp. ) denote the differential
spectrum of (resp. ) over .

• For , we have and
. Thus, , ,

and .
• For , we have and

. Thus, , ,
and .

The differential spectrum of is then directly deduced by
combining the previous formulas with the values of com-
puted in Theorem 7.

In the case where is odd, the differential uniformity of ,
with , can also be determined.
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Theorem 9: Let be an odd integer, . Let
with . Then, is a permutation and for

all we have . Moreover:
• If , then , and the differential

spectrum satisfies for all and
.

• If , then and the differential
spectrum satisfies for all .
Proof: From Theorem 1, we have ; moreover, if

3 divides then else . Now, for all ,
we have to determine the number of roots in of

or, equivalently, the number of roots of

Set and . If is a root of
then . So, implies

Since has degree 8, it has either 8 or 4 or 2 solutions. In other
terms, .

VI. CONCLUSION

In this work, we point out that the family of all power
functions

(9)

has interesting differential properties. In particular, we give sev-
eral results about the functions with a low differential uniformity
within family (9). We exhibit some infinite classes of functions

such that , including the functions over
(see Theorem 5). Moreover, our simulations show that, from

, all power functions with , which
are not quadratic, Kasami or Bracken-Leander exponents (and
their inverses), belong to family (9).

The functions such that can be differentially 4-uni-
form for even only (see Corollary 4). We have shown that, for
exponents of the form , the APN property imposes many
conditions of the value of . In particular, it is easy to prove,
using Theorem 1 that such exponent must satisfy
for even and for odd . An-
other condition can be derived from the recent result by Aubry
and Rodier [1] who proved the following theorem.

Theorem 10: [1, Theorem 9] Let over
with . If then .

Thanks to Corollary 2, we can extend this result as follows.

Corollary 7: Let over with
. If , then

Proof: Let so that . In
this proof, we denote by (resp. ) the quantities
corresponding to (resp. ).

From Theorem 10, we know that implies

We consider now the function . Note that, from Theorem 1,
implies and . More-

over, we obtain directly from Corollary 2 :
• , for any .
• and .

Thus, and, applying Theorem 10 again, we get

We now concentrate on APN functions belonging to the
family (9). Some are well-known as the inverse permutation for

odd ( ) and the quadratic function ( ).
There is also the function for with odd,
because this function is the inverse of the quadratic function

. Recall that is an APN function over
if and only if and we have obviously

(for odd ). We conjecture that these
three functions are the only APN functions within family (9).

Conjecture 1: Let , . If is
APN then either or is odd and .

If the previous conjecture holds then there are some conse-
quences for the functions of (9) which are differentially 4-uni-
form. From Corollary 4, we can say that such a function is a
function over with even. Moreover , , is
APN. If the conjecture holds then ( ) is the only
one possibility. So, in this case we could conclude that the in-
verse function is the only one differentially 4-uniform function
of family (9).
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