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Abstract. We extend the notions of correlation-immune functions and resilient functions to functions over any
finite alphabet. A previous result due to Gopalakrishnan and Stinson is generalized as we give an orthogonal array
characterization, a Fourier transform and a matrix characterization for correlation-immune and resilient functions
over any finite alphabet endowed with the structure of an Abelian group. We then point out the existence of a
tradeoff between the degree of the algebraic normal form and the correlation-immunity order of any function
defined on a finite field and we construct some infinite families of t-resilient functions with optimal nonlinearity
which are particularly well-suited for combining linear feedback shift registers. We also point out the link between
correlation-immune functions and some cryptographic objects as perfect local randomizers and multipermutations.

Keywords: correlation-immune functions, resilient functions, orthogonal arrays, pseudo-random generators,
multipermutations

1. Introduction

Resilient functions were introduced independently by Ghat. [11] and Bennett, Brassard

and Robert[1]; they were originally applied respectively to the generation of random strings
in presence of faulty processors and to key distribution especially for quantum cryptography.
Several other applications afterwards emerged and the theory of resilient functions (or the
equivalent combinatorial structure of orthogonal arrays) is now almost omnipresent in
cryptography.

These functions are first of all used for designing running-keys for stream ciphers; in
the common case, the running-key generator is composed of several linear feedback shift
registers combined by a Boolean function. This combining function should then be a
correlation-immune function in order to resist Siegenthaler’s correlation attack [36]; a
resilient function is usually chosen so that the output digits are uniformly distributed. Its
algebraic normal form should additionally have a high degree so that the resulting pseudo-
random sequence has a high linear complexity. In a more general view, Maurer and Massey
[25] showed that an additive stream cipher can be provably-secure under the restriction that
the number of plaintext digits that the enemy can obtain is limited: the running-key generator
thus should be a perfectlocal randomizer, what is equivalent to the structure of an orthogonal
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array. Another application consists in designing “conventional” cryptographic primitives,
i.e. primitives based on a network with some boxes. Such a network contains both confusion
boxes for hiding any structure and diffusion boxes for merging several inputs. Schnorr and
Vaudenay [32] recommend that the diffusion boxes should be functions realizing perfect
diffusion in order to avoid some cryptanalysis, especially collision attacks. These functions
are called multipermutations and they can be deduced from orthogonal arrays of maximal
strength. These objects are also used in threshold schemes for secret sharing.

In this paper we extend the notions of correlation-immune functions and resilient func-
tions to functions over any finite alphabet. We generalize in Section 2 the characterizations
of g-ary resilient functions given by Gopalakrishnan and Stinson [18]: we give an orthog-
onal array characterization, a characterization by means of characters (similar to a Fourier
transform characterization) when the alphabet is endowed with the structure of an Abelian
group and a matrix characterization. We then study in Section 3 the properties of the al-
gebraic normal form of correlation-immune functions over a finite field. We here show
that there is a tradeoff between the nonlinearity order and the correlation-immunity order
of any g-ary function and we obtain an inequality involving both degree and correlation-
immunity order of the function which generalizes Siegenthaler’s inequality for Boolean
functions [35]. Following this result we construct a familytafesilient functions with op-
timal nonlinearity over some finite fields, which are well-suited for combining LFSRs. We
also give in Section 4 a new construction of resilient functions by composition of resilient
functions of smaller order; this construction can immediately be applied to the combination
of linear feedback shift registers. Section 5 then points out the link between correlation-
immune functions and several other cryptographic notions. We generalize the concept of
perfect local randomizers introduced by Maurer and Massey. We also apply the previous
results to perfect diffusion boxes used for designing cryptographic primitives. Thanks to
the equivalence between multipermutations and correlation-immune functions we give a
bound on the diffusion performed at the binary level by a multipermutation®yer

2. Three characterizations of correlation-immune functions over a finite alphabet

Let F denote a finite alphabet withelements{ > 2) andF be a finite set. Lef : 7" —
E be a function and le{ X1, X», ..., X,,} be a set of random input variables assuming
values fromF with independent uniform distributiong€. every input vector occurs with
probability -1.).

The functionf may satisfy the following properties:

e fisbalancedfthe random variablé” = f(X;, ..., X,,) is uniformly distributed inF.

e fis correlation-immune ovefr with respect to the subs&t C {1,2,...,n} if the
probability distribution of the output” is unaltered when the inputs;),cr are fixed
and{X,,i ¢ T} is a set of independent uniformly distributed random variables.

e fist-th order correlation-immune oveF if for every T' of cardinality at most, f is
correlation-immune with respect 0.

e fist-resilient overF if fis ¢-th order correlation-immune ovér and balanced.
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2.1. Correlation immune functions and orthogonal arrays

Correlation-immune functions are closely related to the combinatorial structures introduced
by Rao as orthogonal arrays [28].

Definition 1.  An orthogonal array4 of size M, with n constraints, of strengthand

index A over the alphabeF (or with ¢ levels) is anM x n array of elements aof which

has the property that in any subseta@blumns ofA, each of the;’ vectors ofF* appears
exactly\ times as a row. Such an array is denoted b#, n, q,t). Clearly M = \¢'.

In [9] it was observed that the characterization by Xiao and Massey [41}-ofi @rder
correlation-immune functiorf : {0,1}™ — {0, 1} is equivalent to the following property:
the array of which rows are the vectorsof! (1) is an orthogonal array of strengthLet
F, denote the finite field with elements. In [18] Gopalakrishnan and Stinson show directly
thatf : F; — Fg is t-th order correlation-immune ové, if and only if for all y in F¢,
f~1(y) consists of the rows of an orthogonal array of strertgtim fact characterizing the
t-th order correlation immune functions in terms of orthogonal arrays is merely translating
the probability definition into an enumeration definition. This characterization then requires
no particular algebraic structure neither for the input alphaberor for the output sek.

ProrosiTiON 1 Let f: F* — E where both7 and E are finite sets. The functiofis
at-th order correlation-immune function ovéif and only if Vy € E, f~!(y) consists of
the rows of an orthogonal array of strengtlover 7.

Additionally, f ist-resilient if

Vy,y' € E\|f 7 () =171

This general characterization points out the link between resilient functions and error-
correcting codes when the input alphat#éis an Abelian group: Delsarte [15] actually
proved that the array formed by the words of a code over a finite Abelian group is an
orthogonal array of maximal strengtih- — 1 whered", called thedual distance of the
code is given by the MacWilliams transform of its Hamming distance distribution.

ProrosiTION 2 [15] LetC be a code of length and sizeM over an Abelian groupr
with g elements. The array whose rows consist of the codewotts @i orthogonal array
with n constraints, of sizé/ and strengtht overF if and only ifl < ¢ < d*+ — 1. The dual
distanced* of the code is the smallest index> 0 such thatd’ > 0 where(4y, ..., A)
is the Mac Williams transform of the average Hamming distance distribytign. . ., 4,,)
of C:

S AXTY = AX,Y)=AX +(¢-1)Y, X -Y)
=0

whereA(X,Y) =>"" (A, X" 'YE
Moreover ifC is an additive codej is the minimum distance of its dual codé.
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Since at-resilient functionf : F» — F* corresponds to a partition o™ into ¢* or-
thogonal arrays of strengthand with the same size, Delsarte’s result implies that such a
function can be obtained from the cosets of a linear code whose dual code has minimum
distancet + 1. This result proved by Stinson [37] for codes over a finite field can then be
generalized to any linear code over a finite ring.

ProrosiTION 3 LetC be alinear code of length, dimensiork and minimum distancé
over a finite ring# and letG be a generator matrix fof. The associated function

f:Fr — Frk
x — zGT

is a(d — 1)-resilient function overr.

Any linear resilient functiory can then be identified to a syndrome function.
Massey and Stinson [38] recently extended this construction to any systematic codes over
a finite field. This results still holds for systematic codes defined on any finite Abelian

group.

PROPOSITION 4 LetC be a systematic code of lengtrand size;* over a finite Abelian
group F and let] be an information set fof. The functionf defined by

f . Fn _ ‘7:77.716
x +— eifandonlyifxreC+e

wheree is the vector ofF™ which vanishes id and whose restriction ont@l,...,n} \ I
equalse, is a(d+ — 1)-resilient function wher@ is the dual distance af.

Using this link between codes and resilient functions, Bierbrauer, Gopalakrishnan and
Stinson [3] derived some bounds on the highest possible resilience-order for a function
f : F3 — F4 from some bounds on the size of a code with given length and minimum
distance. Since these bounds — Plotkin bound, linear programming bound ... — are still
valid for codes over any finite Abelian group [13], we obtain general expressions for them.
Explicit tables for highest possible resilience-order of a functfon 7 — F* are for
instance given in [10, chapter 6] for any Abelian graGwith 2, 4 or 8 elements and for
1</ <n<20.

2.2. Characterization by means of characters

In [41] Xiao and Massey characterized Boolean correlation-immune functions through a
condition on their Fourier transform. The main interest of this characterization is that it is
considerably easier to use than the probabilistic definition. This property was generalized
by Gopalakrishnan and Stinson [18] when both input and output sets are finite fields. We
here give a similar characterization which is valid for any finite $e&1d £’ endowed with

the structure of an Abelian group.

A characterof a finite Abelian group(F, +) is an homomorphism frond into the
multiplicative groupC* of complex numbers. A well-known property is that the characters
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of F form an Abelian group?’, called the characters group, which is isomorphic wAth
Since the characters can be numbered by the elemetfs we denote by z,y > the
complex image of the elemente F under the charactey,.

For example ifF is the additive grougF,, +) of the Galois fieldF'; whereq = p°, p a
prime, then< z,y >= 67"Fa/F»(*¥) whered is a primitivep-th root of unity inC. If F is
the additive grougZ,, +), i.e. a cyclic group of ordeg, then< z,y >= 6*¥ wheref is a
primitive g-th root of unity inC and where the produety is performed in the rin@.,.

We will need the following classical lemma:

LEMMA 1 LetF andG be two Abelian groups with respective characters groBpand
G’. Then the characters group & = F x Gis F’ x G'.
Forh = (f,g9) € F x Gandh' = (f',¢') € F x G, we have

<hh >=<f,f ><g,9 >

As soon as we handle characters it is particularly convenient to use the Fourier transform.

Definition 2.  The group algebr&F of an Abelian groupF over the fieldC of complex
numbers consists of all formal sums:

a= ZaIZI, a; € C
zEF

where, as usual/” replaces: in order for the Abelian group law to become multiplicative.
All operations inCF are defined in the usual way.

A character may then be extended linearly to the alg€hfa

<a,y>=< Z ay 2%,y >= Z Gy < T,y >
TeF zeF

We will denote bya, the complex numbet a,y >, called a Fourier coefficient af. The
Fourier transform is then the linear mapping
CF — CF
a +— Zye]-‘ Gy ZY
Since the matrixS' of group characters of defined byS(x,y) =< z,y > is orthogonal,
there exists an inverse Fourier transform and then uniquely determined by its Fourier
coefficients(a, )y 7.

We now show how the Fourier transform characterization of Gopalakrishnan and Stinson
can be stated for general Abelian groups. This result can be straightforwards deduced from
a theorem proved by Delsarte [14, Theorem 4.4], which defines the combinatorial structure
of orthogonal array in terms of characters.

Let 7 be an Abelian group. The-th Cartesian poweF™ is then an Abelian group in its
turn. The Hamming weight of an elemenof 7" is the numbetw (x) of components af
in 7 which are distinct from zero. We give here a slightly modified version of Theorem 4.4
of Delsarte, which originally referred to the propertytedesign.
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THEOREM 1 LetF be a finite Abelian group with elements. A set of \¢* vectors of
F™ consists of the rows of an orthogonal array witlconstraints, strength and index\
over F if and only if

Vye F', 1<wu(y) <t, Y <azy>=0
zeM

We now deduce a general characterization of correlation-immune functions in terms of
Fourier transform.

THEOREM 2 LetF andE be two finite Abelian groups. The functign " — E ist-th
order correlation-immune ovef if and only if:

Yoe E, Vue F*,1 <wg(u Z<azu><f()v>=0
zeFn

Moreoverf is t-resilient if and only if it additionally satisfies:

Yv e E,v+#0, Z < f(z),v>=0

zeFn

Proof: We write ,,, for 3

[ y) =0.

The above condition can then be written as:

vef-1(y) < T, u > with the conventiom, , = 0 when

Yoe E, Vue F" 1 <wg(u) <t Zdyv“ <y,v>=0
yeE

Since the matrix of group characters of the Abelian gréuis invertible this condition is
equivalent to

Vue F' 1 <wg(u) <t, ay,=0

According to Theorem 1, this comes down to say that foy ail 7, the elements of ~* (y)
are the rows of an orthogonal array of strengtver F.
The second condition can be written as:

Vv e E,v#0, Z|f Yl <y,v>=0
yeE

The exhibited Fourier coefficients of, . 5 |f~1(y)|Z¥ show that the functiory —
|f~1(y)| is constant orZ, i.e. f is balanced. [ |

ExXAMPLE: LetF be the cyclic grougZ,, +) and A, ;, be the array whose rows are the
4-tuples(z1, z2, 1 + axe, 1 + bxo) Wherea,b € Z3. Since this array has 4 constraints
and its size is?, Singleton bound implies that its strengtls at most 2. According to
Theorem 14, ; is an orthogonal array of strength 2 o&y if and only if
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Vy € Zi, 1 <wp(y) <2, Z 0*v =0
:EE.Aa,h

This condition is equivalent to say that the dual4y;, in the characters group contains no
element of Hamming weight less than or equal toe,

Yy € Zé? 1<wg(y) <2 Jze Ay, 0*Y#1

whered is a primitive g-th root of unity. Writing this condition for alj of weight 2, we

obtain that4, ; is an orthogonal array of strength 2 if and only jb and(a — b) are not zero

divisors. It follows that the strength of such an orthogonal array is at most 1 pvkeaven.

A more general condition on the inexistence of such orthogonal arrays can be found in [20].
UJ

2.3. Matrix characterization

Gopalakrishnan and Stinson [18] gave a third characterization of correlation-immune and
resilient functions which is expressed in terms of matrices. It actually results from the linear
combination lemma, originally proved for binary random variables in [41] and generalized
in [18] to random variables over a finite field. Following a short and general proof due to
Brynielsson [6] we show that this lemma still holds when the alphabet is endowed with the
structure of the rin,, or of the fieldF,. Notice that the size d, is unrestricted whereas

|F,| is a prime power.

LEMMA 2 (Linear Combination Lemma) Let F be a set withy elements endowed with
the structure of either the finite fiel, or the ringZ,. The discrete random variablg

is independent of the random variablesX;, Xo, ..., X,, defined onF if and only if Y is
independent of the sumX = c¢; X1 +coXo+. .. +¢, X, foreverychoiceofy, cs, ..., c,
not all zeroes, irfF.

Proof: The above condition is obviously necessary since we have:
Vye E, Pr(c- X =z|Y =y) = Z Pr(X =z|Y =vy)

cxr=z

Z Pr(X =)

= Pr(c-X =2)
This condition is also sufficient: let, = Pr(X = z|Y = y) andb, = Pr(X = z). We
considerinthe group algeb€a7 " theelementa = 5 _ .. a,Z%andb = > _ .., b, Z".

We will now show that, for every € F", the Fourier coefficients, andb, are equal. Indeed
we just write fore # 0:

G, = Z Pr(X=zlY =y)<z,c>
zEF™
= Ey:y (< X,c >)
= BEy_, (0°%) if F = Z,

= By—, (07N if F = F,
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Since each sum- X is independent oY provided that # 0, we have:

ac=E(<X,c>)= > Pr(X =) <z,c>=b,
reF™

Besides, for = 0, we have:

&szawzlzz:bw:i)o |

zEFn TEFN

As in [18] this generalized linear combination lemma leads to a characterizatieth of
order correlation-immune functions afdesilient functions in terms of matrices.

THEOREM 3 Let F be a finite alphabet witly elements endowed with the structure of
either the finite field", or the ringZ,. LetE be a finite set ang a function from#" onto

E.

Let N(u) = (m:,j)i,jex be theg x ¢ real matrix defined by

Ni;=q"Pr(uiXh+... +u, X, =tand f(X) = j)

e f is t-th order correlation-immune ovefF if and only if for alluw € F™ such that
1 < wg(u) < t, the rows of matrixV(u) are all identical.

e fist-resilient overF if and only if for allu € F" such thatl < wg(u) < t, all the
elements of matri®V (u) equal%.

Proof: Letwu be any element of™ such thatl < wg(u) < ¢ and letT be its support.
By definition f is ¢-th order correlation-immune oveF if and only if its outputf(X) is
independent of X;);cr. According to the linear combination lemma, this is equivalent to

Vu, 1 <wg(u) <t, 0, =¢"Pr(u1 X1 +... +u, X, =1)Pr(f(X) =)

Since all input variables are uniformly distributd®l; (u1 X1 + ... +u, X, =1i) = % for
anyu # 0. A necessary and sufficient condition fHto bet-th order correlation-immune
is then:

Vi, mi;=q"""Pr(f(X)=j)

Furthermore f is balanced if and only iPr(f(X) = j) = ﬁ The functionf is then
t-resilient if and only if

n—1

Vi, g, i = TE] u
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Figure 1. Combining LFSRs

3. Nonlinearity order of correlation-immune functions over any finite field

Resilient functions are particularly appropriate for combining the outputs of linear feedback
shift registers since such a combination leads to a pseudo-random generator which resists
correlation attacks [36]. But a high correlation-immunity order is not sufficient for ensuring
the security of the resulting generator: the nonlinearity order of the combining function is

a fundamental parameter too, since it determines the linear complexity of the generator. In
this section we only consider functions frofif' to ¢ whereF is the finite fieldF,. F

is here identified with the finite fiell ..

3.1. Nonlinearity order of g-ary correlation-immune function

The linear complexity of g-any linear recurring sequensgdenoted by.(s), is the length
of the smallest linear feedback shift register drivinglt is a fundamental parameter for
pseudo-random generators since Massey [23] proved that Berlekamp algorithm for decoding
BCH codes [2] enables to recover the minimal feedback polynomial of a sequence from
the knowledge of it L(s) first digits. But, even if the feedback polynomial is primitive,
the linear complexity, which is equal to the length of the LFSR, may not be as large as we
wish. A well-known method for increasing it consists in using several LFSRs with different
feedback polynomials. Their output sequences are then taken as arguments of a combining
function f : Fi} — F, whose output then forms the running-key, as depicted in Figure 1.
The linear complexity of the resulting sequence is then determined by the algebraic normal
form of the combining function.

Definition 3. [22, Theorem 1.71] For any functiofi: F; — F ;. there exists a unique
polynomial functiond in the algebrd ¢[z1, ..., z,]/(z] — @1,...,2¢ — x,,) such that,

’ n

forall z in Fy, f(x) = 6(z). This polynomial is called thealgebraic normal fornof f.

The influence of the algebraic normal form of the combining function on the linear
complexity of the resulting sequence was investigated in [5, 19, 17, 21, 31, 33].

ProproOSITION 5 Letaandb be two sequencesHy, (with characteristip) whose minimal
characteristic polynomials are respectivelyand g.
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. L(a+b) < L(a) + L(b)

where equality holds if and only éfcd( fo, go) = 1.

. L(ab) < L(a)L(b)

where equality holds if and only if at least one of the polynomjgland g, has only
simple roots and all the zero produetg are distinct for alle and 5 such thatfy (o) = 0

andgo(8) = 0in a common splitting field. This condition is notably satisfief} itnd
go have co-prime orders.

A general lower bound oii(ab) can also be deduced from the multiplicities of the
roots of fy and gy and from the number of distinct produets [19].

e Letsbeanintege) <s; < p,ands =>"7_, s;p" with0 < s, < p be its decomposi-
tion in the radixp.

L(a®) < 11 (L(a) ;—1 + SL)

where equality holds ifj is a primitive polynomial oF ;[ X].

A combining function over afinite fiell, with characteristip must therefore have a high
resilience-order and its algebraic normal form must contain a monomial whose degree
in each one of its variables maximizes(s) = >_7_, s; wheres is written as) _;_, s;p’
in the radixp. For a Boolean function this actually means that both total degree of its
algebraic normal form and resilience-order must be as high as possible. Unfortunately,
there exits a tradeoff between these parameters: Siegenthaler proved in [35] that for any
Boolean functionf from F3 to F», the degreel of the algebraic normal form and the
correlation-immunity ordet always satisfyl + ¢t < n. We here exhibit a similar relation
for any function fromFy to F ... Actually those relations foy > 2 are derived from
stronger properties.

THEOREM 4 Let f be afunction fron¥y ontoF .. If f ist-th order correlation-immune
(resp. t-resilient) overF,, then any monomial of its algebraic normal form contains at
most(n — t) variables (resp(n — t — 1) variables provided,* # 2 or n # ¢ + t) having
simultaneously degreg— 1.

Proof:
Let L, be the Lagrange univariate idempotents in the alg&hrér] /(27 — x):

La@= [ @-p
B EF,
B#

By construction we have:
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VB # a, Lo(B) =0andLa(a) = J[ v=-1

YEF}
The algebraic normal form of is then
9(131, e 7$n) = Z (71)77,]0(0[) (H Lai ($1)>
acFy i=1

Let(n—j) variables be fixed amongst, . . . , z,,, for example and without loss of generality
we choose the firgtn — j) ones. Since each,,, is a monic polynomial of degreg — 1),

the coefficient ofc? " - .. x,’ff_é. in @ is the polynomiap; (z,—;+1, - - -, z,,) defined by
j
Dj (xn_j-i,-l, Tt axn) = Z (_l)n <H Lﬁi (ajn—j-i-i)) Z f(a, 6)
BEF} i=1 1S

If fist-th order correlation-immune, we have for alk ¢ and for allg in Ffl

o By, flas) =opl = L0 g
where is a positive integer. We then deduce that i ¢, we have
VBEF), Y fla,B) =X Y w
aEFD vEF 4
This implies that
Vi<t, pj(Tn_jt1, -, Tn) =0modgq

Since this is true for any other choicesf- j variables amongsty, . . ., z,, with j < ¢, it
ensures that any monomial @tontains no product df. — ¢ + 1) or more variables having
simultaneously degreg— 1, as asserted.

Furthermore iff is balanced) = ¢”~*~*. In this case we obtain for all Ffl

Z f(a,ﬁ) — qn—é—t Z v

a€F; ! veF ¢
= Omodgifn—¢—-t>0
= ZUEOmodqifn:€+tandqz7é2 [ |
vEFqg

Remark. The previous proof also implies a stronger condition on the algebraic normal
form of somet-th order correlation-immune functions, even if they are not balanced: if
[ Fy — F . is at-th order correlation-immune function ovEy, such that:

|f 1 (v)|
qt
then the assertion of the theorem for balanced functions holds.

Vo € F g, =0 mod ¢
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As a weak corollary of this theorem, we obtain the following generalization of Siegen-
thaler’s inequality.

CoRrOLLARY 1 Letf : Fy — F, be at-th order correlation-immune function ovet,.
Then the total degreé of its algebraic normal form satisfies

d+t<(¢g—1)n
If fis additionally balanced and # ¢ + t or ¢* # 2, then

d+t<(g—1)n—-1

ExAMPLE: Let f be the function oveF 4 defined by

f:FigxFig — Fug
(z,y) — (@@ +y"+D"

This function is 1-resilient oveF 4 since each one of the involved exponentiations is a
permutation off' ;4. Its algebraic normal form is given by:
f(x,y) — 3314y14 + a:14y11 + a:14y10 + 3313?]11 + x12y11 + a:7y14 + x13y7 + a:6y14 +
$13y3 + $14 + I7y7 + y14 + 51713 + x7y6 + 1,12 + $5y7 + yll + y10 + I7 + y7 + xG +
Yt+ad+at+yf oy +1

In accordance with the previous theorem, this algebraic normal form contains no variable
of degree 15. Moreover its total degree reaches the bound given in Corollary 1. O

The correlation-immunity order of @ary functionf actually satisfies a more restrictive
condition which takes into account the degree of the algebraic normal form of all functions
p2o fop; obtained by applying a permutation on all inputs and outpufs ¢ff f is¢-th order
correlation-immune, such a functipgpo f op, is actually still.-th order correlation-immune
(see further Corollary 4). Permutations By provide for instance such permutations
andps.

ProprosITION 6 Let f be a function fron¥7 ontoF .. Its correlation-immunity ordet
satisfies

d+t<(¢g—1)n
whered is the maximum degree of the algebraic normal formg-0f f o p; with p; =
(m1,...,m) andpy = (¢1,. .., ¢¢) when ther; and¢; run over the set of all permutations

of F,. Moreover iff is balanced and # ¢ + t or ¢* # 2, we have

d+t<(g—1)n-1
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3.2. Algebraic Normal Form af-ary functions which are correlation-immune ovéyx

We now give a similar bound for the optimal nonlinearity of any functfofiom (F ;)"
to F, which is correlation-immune ovéf ;x.

THEOREM 5 Let f be a function fron{F,)*" ontoF, wherek > 1. Its algebraic normal
form is then a polynomial with kn variables in the algebrad = F[z; j,1 <i <n, 0 <
J< k=1l —wij).
If f ist¢-th order correlation-immune (resg-resilient) overF x, then any monomial df
contains at mostkn — t) variables (resp.(kn — ¢t — 1) variables) having simultaneously
degreeg — 1.
Proof. Letusfirst considef as a function fron{F ;» )" ontoF ,«. Its normal form is then
a polynomialy € F x[z1, ... ,xn]/(xgk — ;). Leta be a primitive element il . Then
F =F,+aF;+... +of"'F,andto any; € F« can be associated a polynomial of
the algebrd [z j, 0 < j <k —1]/(z]; — zi ;).
The functionf can therefore be written as a polynomfah the algebrd « [x; ;] modulo
the ideal generated by ; — z; ;5,1 <i <n, 0 <j <k — 1. Sincef takes its values in
F,, we haved?(z) = 0(x) for all z € F}™. Thusf = #¢ and all coefficients of lie in F .
We now writez for all s < ¢* as a polynomial inv; o, ..., 2; k1. Lets = so + s1q +
... + s1_1¢"~! be theg-ary decomposition of. We then have:

k
x; = (rio+axi1+... +

|
_

- xi,kq)sjqj

> .
I
= o

= (.131',0 + O(qj T + ...+ Oé(kil

J .
) xi,k—l)sj

<.
Il
o

This polynomial therefore contains a monomial having de@geel) in r variables only

if the decomposition of in the radixq containsr termss; equal tog — 1. Thusav?k_1 is
the only one which may contain a productiofariables of degree — 1 and all the other
x$ for s < ¢* — 1 contain at best a product &f— 1 variables of degree — 1. According
to Theorem 4 contains no product of more than- t variables of degreg¢® — 1 sincef
is t-th order correlation-immune ovét .. The algebraic normal forré then contains no
monomial of degree — 1 in more thark(n —t) + (k — 1)t variablesj.e. kn — ¢ variables.
If fis additionally balanced, we have for alk F,,|f~1(v)| = ¢"*~*. Sincek > 1 and

t<mn, 'f:# = 0 mod g¢. In view of the remark following Theorem 4, we then obtain
the expected result. ]

Remark. As for Theorem 4 a sufficient condition for having the property asserted for
balanced functions is:
[f~ ()|
k

VUGF(P T:Omodq
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COROLLARY 2 Letf : Fk" — F  be at-th order correlation-immune function ove, ..
The total degred of its algebraic normal form then satisfies

d+t<(q¢—1)kn
If fis additionally balanced and > 1, then

d+t<(g—1)kn—1

EXAMPLE:

Let ¢: FgxFg — Fg

(1)  — (@ 4y

Let a be aroot ofX3 + X + 1. To each element in Fg we associate the polynomial
ro+ax;+a’zy and we now consideras a function fronF$ toF3. Each of its components
fo, f1, f2 defined byp = fo + af1 + o f» is a Boolean function with 6 Boolean variables
and it is obviously 1-resilient ovdfs. According to the previous theorem it contains no
product of more than 4 variables. Computing their algebraic normal form shows that all of
them have optimal nonlinearity.

fo(zos x5 225901 Y13 Y2) = To + Yo + T1Y2 + Toy1 + ToT1y1 + T1Yoy1 + T2Yoy1 +
ToT1Y2 + ToT2Y2 + ToT2YoY1 + ToT1YoY2

f1(xo; x1: w25 Y05 Y15 Y2) = T2+ Y2 + Toy1 + T1yo + Toy2 + T2yo + ToTay1 + T1Yoy2 +
T2y1Y2 +T1T2Y2 +ToToy2 + ToYoY2 + T1Y1Y2 +T1T2Y1 +ToYoy2 + ToT2Yo +ToT2y1Y2 +
T1T2YoY2

Jo(Zo; 15 w25 Y05 Y15 Y2) = L1+ Y1+ T2+ Y2 + Loy + 1Y + Toy1 +T1Yo + ToT1yo +
ToYoY1 + T2Yoy1 + ToT1Y2 + ToT2Yo + ToYoy2 + ToT2y1 + T1YoY2 + Tox1Y1 + T1Yoy1 +
T1ZT2Y1 + T1Y1Y2 + ToT2Y2 + T2YoY2 + T1T2YoY1 + ToT1Y1Y2 + ToX2yY1Y2 + T1T2YoY2

O

3.3. Construction of-resilient functions with optimal nonlinearity order over any finite
field

Definition 4. A t-th order correlation-immune (resp-resilient) functionf from Fy
into F, hasoptimal nonlinearity ordeif its algebraic normal form contains a monomial
with n — ¢ variables (respn — ¢t — 1) having degreg — 1, the others having degree- 2.

We now construct-resilient functionsf : F — F, with optimal nonlinearity order.
We especially give a whole family d@fresilient functionsf : F5.. — Fa= with optimal
nonlinearity order for all values of andt whenm is odd. Such functions are then well-
suited by combining LFSRs.

We first construc{n — 1)-resilient functions withn variables oveiF,, i.e. (¢*,n,q,t)
orthogonal arrays of index unity.

LEMMA 3 Let (A) be the algebrd',[z]/(2? — z) with ¢ > 2. We have inA that
degree(z1(4=2)) < g—2forall 2 < i < ¢ — 1, and for eveny, degree(z? =" ) < ¢ — 2 for
al3<j<q—2.
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Proof: Indeed, we have

Zz(q—2) _ Zq+q(z—1)—21 _ Zqzz—1—21 — Zq—z—l

Sincei > 2, the degree of this monomial is at mast 3.
We now consider the monomial “=> wherej = 2a + b with b € {0,1}. If b =0, we
can apply the previous result singe< o < ¢ — 2. If b = 1, we havel < a < ‘1%2 We

now write

274_;2 = Za(q_2)+% = Zq—a—l+q;—2 =z 2z @

This implies that the degree of =~ equals?=2-24: thusdegree(z/ 2" ) < ¢ — 2.
|

ProrosiTiON 7 Forall ¢ = p™ withp # 3 andq > 4 there exists an-resilient function
I F§ — F, with optimal nonlinearity order.

Proof: For odd characteristig > 3, we definef (z,y) = (2972 +y22 4 1)7~2, and for
eveng > 4, f(x,y) = (2772 + yqz;2 +1)?7%, Sinceged(q — 2,q — 1) = 1 and for even
q>4,gcd(i—-1,q—1) =1, ged(q — 5,9 — 1) = 1, all these exponentiations permute
the finite fieldF,. The functionf is then 1-resilient in both cases. In view of Lemma 3
we point out that, in the first case, the coefficient6f 2y?=2 is (¢ — 2)(¢ — 3) which
is not a multiple ofp > 3. In the second case we see that the coefficientiofy?—2 is
3(qg5) =1 mod 2

|

ProprosiTION 8 For all ¢ = p™ withp # 3 andg # 1 mod 3 there exists arfn — 1)-
resilient functionf : F; — F, with optimal nonlinearity order for any. if ¢ is even and
for any oddn if ¢ is odd.

Proof: We prove this assertion by induction an

e geven: the assertion far = 2 is proved by the previous proposition. Suppose now that
there exists &n — 1)-resilient functiong with n variables ovelF',. We then consider
the function with(n + 1) variables defined by

41
f@e,ang) = (g, mn) +220)°

Thisfunctionise-resilientsinceged(3, g—1) = 1 byassumptionanged(¢—2,¢—1) =
1. The coefficient corresponding to the tem ...z,1)? 2 equals 1 inF,; this
function then has optimal nonlinearity order.

This still holds forq = 2: f(z1,...,2,) = 1 + ... + x, IS @an(n — 1)-resilient
function with optimal nonlinearity order ovéfs.

e ¢ odd: forn = 3 we consider

f(@1,0,23) = (2172 + 2§72 +237%)°
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Sinceg # 1 mod 3, this function is 2-resilientand the coefficient of the témro:3) 72
equals 6; it does therefore not vanish becauiseodd and strictly greater than 3.

Suppose now that there exist§2 — 2)-resilient functiong with (2 — 1) variables
overF,. We then consider the function witlr + 1) variables defined by
f@1,. o morin) = (g(@1, .. @2r1) + 28 2+ 28 2)°

This function is ther2r-resilient and the coefficient of the terw; ... zo, )72
equals 6.

Itis now easy to construetresilient functions with: variables and with optimal nonlin-
earity order thanks to the following lemma:

LEMMA 4 Letg# 2ort #n—1. Letfi, f2 : Fj — F, be twot-resilient functions with
optimal nonlinearity order such thaegree( f1 — f2) = degree(f1). Theng : F{;“ —F,
defined by

g(r1, .., Tpy1) = :I:fl:_llfl(xh cey )+ (11— a?gl:_ll)fg(xh cey Tp)
is at-resilient function with optimal nonlinearity order.

We then deduce the following theorem:

THEOREM 6 Letq = p™ withp # 3 andg # 1 mod 3. For all n > 1, there exists a
t-resilient functionf : ¥ — F, with optimal nonlinearity order for alt < n if ¢ is even,
and for all event < n if ¢ is odd.

Proof: By Proposition 8, ift satisfies the above assumptions, there exigtsesilient
functiong : Fg“ — F, with optimal nonlinearity order. Applying Lemma 4 with = ¢
and fo = ag, wherea € F, \ {0,1} leads to a-resilient function witht + 2 variables
and optimal nonlinearity order . If we iterate this constructior ¢t — 1 times, we obtain

a t-resilient function withn variables and optimal nonlinearity order. Siegenthaler [35]
proved this result in the Boolean case. [ |

ExaAMPLE: We here construct a 2-resilient function with 4 variables dvgr
Proposition 8 enables us to construct functignandg, which are respectively 1-resilient
with 2 variables and 2-resilient with 3 variables. Both normal forms have optimal nonlin-
earity order:
g1(z1,w2) = (af + 23)° = 282§ + 2723 + 2§ + 23
ga(w1, T2, 73) = (g1 (21, 72) + 23)% = 282828 + 232328 + 2ixd2s + 2527 + xialzs +
x%:z:gx% + III%I’g + x‘llxg + x?z% + x‘i’x%zg + x‘fz% + x%x%z% + x%xg + x%x% + :z:g +
x%xg + CC%ZL’Q.’L‘g + ;L'lzch% + x§ + $%$3 + x%

We now apply Lemma 4 witlf; = g2 and f = ags wherea € Fg \ {0,1}. We then
obtain a 2-resilient functiorf with 4-variables and optimal nonlinearity ordée= 25. Its
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algebraic normal form is:

Fw1, w2, 25,24) = (o + Dafalafol + (o + Dajadafa]

+(a + Datadeiel + (o + Dadeial + (a + V)afedzs]
+(a+ DafaSeiel + aalaal + (o + Dalzszsa]

+(a+ DafaSel + (o + DaSada] + (o + 1)ajairsa]
+(a + Dajzse] + (o + Dajrsade] + (o + 1)ajafe]
taxdrirs + (a4 Dajrial + axiadrs + (a4 1)aSz]
taxied + ariries + (o + Vafesal + arieses

+(a+ Dadzozszr] + (o + Daizeziae] + (a + 1)zja]
taxirirs + artal + (o + Dadzse] + axled + axladas
+(a + D22l + axiery + ariria? + aaiael + arjed

+axg + ax‘ll:ng + ax%xgwg + axlxgzcg + a;v% + Oé.’ﬂ%[ﬂg + ax%
Since it contains a monomial with= ¢ + 1 variables of degree — 2 and one of degree
g — 1, it has optimal nonlinearity order according to Theorem 4. O

4. Construction of new correlation-immune functions by composition

Correlation-immune and resilient functions are essential for generating pseudo-random se-
guences. But constructing some functions having both a great number of input variables and
a high correlation-immunity order is still a problem. The construction using error-correcting
codes is quite general but it usually leads to linear functions. Using the characterizations
given in Section 2, we now propose a new method for constructing correlation-immune and
resilient functions by composition of correlation-immune functions of smaller orEés.

here a finite alphabet of sizeendowed with the structure of some Abelian group.

4.1. Construction by composition

Definition 5. Let (g;)1<i<x be a family ofk functions:
gi: F" — Fl= A, whered <n

We define the functiog from 7% into A* by g(z1, ..., 2x) = (g1(z1), - - ., ge(Tk))-
Let i be a function:

h: A¥ — F*, wherel < kd
The composed functiofi = h o g is defined by:

f: Fnk — Ft
(.171,...,1%) — h(gl(xl),,gk(xk))
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ProrosiTioN 9 If everyg; is balanced and if. is r-th order correlation-immune over
A, thenh o g is r-th order correlation-immune ovef™.

Proof: Letv € F*and letR = {ii,...,i.} be ar-element subset of1,...,k} and
R ={j1,...,jx_r} be the complementary set.

Sinceh is r-th order correlation-immune ovet, h~!(v) is an orthogonal array with con-
straints, strength and index\, over the alphabetl. Given a vecton = (a;,,...,a;,) €
A", the number of elements= (z1,...,2;) € A¥in h=1(v) suchtha(z;,,..., 2, ) =a
is then equal ta\,.

We denote by the function(x;,,...,z;.) — (g, (xi,),...,9:.(x;)) and bygg the
function (-le, s 7xjk—r) = (gjl (‘Tﬁ)v s 7gjk—r(xjk—7‘))'

By assumption, every; is balanced; this entails that; ! (a;)| = | 7|~

ThenVb = (bj,,....bj, ). g5 (b) is a subset ofF"(*=") of size| F|("=D(*=") " In the
same waylg, ' (a)| = |F|=97" and{g," (a)}ac- is a partition of(F™)". Hence every
r-tuple of (F™)" appears as the projection dhof exactly \,|F|(»~4(*=7) elements in
(hog)~t(v). It means thath o g) 1 (v) is an orthogonal array with constraints, strength
r, index\, ¢~ »*=7) gver the alphabef™. [

ProrosiTION 10 If f = h o g is r-th order correlation-immune ovefF™ and if V1 <
1 < k, g; ist-th order correlation-immune oveF, thenf is t’-th order correlation-immune
overF wheret’ = (t + 1)(r +1) — 1.

Proof: LetB = F" andu € B*. We writeu = (uy,...,us),u; € B. The Hamming
weight ofu in B*, i.e. |{i/u; # 0}, is denoted by (u) while the Hamming weight of
uin F* i.e. the number of non-zero componentsch F is denoted by (u).

The functionf is r-th order correlation-immune ovéf if and only if Vv € F*, f~1(v) is
an orthogonal array of strengtiover 5. By Theorem 1 we have

VueBk,lgVVH(u)gr, Z <z,u>=0
zef~1(v),zeBk

Now if Wg(u) > r andwy (u) < (r+ 1)(¢t + 1), there is an index € {1,...,k} such
thatl < wgy(u;) < t. Then we get by Lemma 1:

Z <zr,u> = Z Z <z,u>

zef~1(v),zeFnk yeh™1(v) z€9™ 1 (y)

S OIS <o

yeh=1(v) =1 g7 (y)

Sincey; is t-th order correlation-immune, at least one of the factors
inegfl(yi) < xi,u; > is zero. Thus we obtain:

Yu € F™* 1 <wy(u) <t Z <z,u>=0 [ ]
z€f~1(v),zeFnk

As a consequence of these two propositions we obtain the following theorem.
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THEOREM 7 If everyg; is t-resilient overF and if i is r-th order correlation-immune
(resp. r-resilient) overF<, thenh o g is t'-th order correlation-immune (resp!-resilient)
overF,wheret’ = (t +1)(r +1) — 1.

EXAMPLE:
Letgi =go: F3 - F3
(x1,29,23) +— (1 + 22,21 + T3)
This function is 1-resilient oveF .
Leth : (F3)? — F, described by the transposed of its truth table

000011117 ,
T}T:001111oo .
' 01110001/ 73

11100100]| 74

The functionh is 1-resilient ove®2 and it is nonlinear as a function frofiF;)* onto F
SinCEh(I’l, x2,I3, $4) =21 + Tg + T2x3 + T224.
According to Theorem 7 the composed function is a Boolean function with 6 input variables
which is 3-resilient oveF';.

Its truth tableT’; is then a binary orthogonal array with 6 constraints, of size 32, index 4
and strength 3:

mooocoo
orroOO
corocoo
mroOOO
RO O Rk~
[ S
[ R=
RO R R
corroOO
HROROO
ororOO
HORROO
CoOrRORm
HHEOOKR R
oroORK
HOKHOKM
coococowr
OO
moooor
orRrRrROOR
coowrroO
e e O
ROORRO
OFHKFERFERFEO
coocoro
RFRHRORO
orooroO
—orORO
cooror
o O
ororROR
RO R RO~
8
%)

Since its algebraic normal form j§x1, xo, x3, 24, T5, %) = 1+ 2o+ 24+ 26+ 2125+
r1%6 + x3T5 + T326, this Boolean function has optimal degree. O

The previous construction enables us to construct correlation-immune and resilient func-
tions with a great number of variables and then to combine a great number of different
LFSRs. Thanks to Theorem 7 we obtain the correlation-immunity ordémathout writ-
ing its truth table which is usually very large. In the following example we construct a
5-resilient Boolean function of degree 4 for combining 12 LFSRs.

EXAMPLE:
g=¢92: FS — F3
x +— zHT

whereH is the parity-check matrix of the [6,3]-binary code
100110
H=(010101
001011

Since the dual codé* has minimum distance 3, the corresponding funcgeris a 2-
resilient function oveiF,.
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Leta be aroot ofX3 + X + 1. We represent each elementif by 3 bits following the
decompositioFs = o®F, + oF 5 + F,. We then definé as:

h: Fg X Fg — Fy
(xy) — @+
wherez|, denotes the low-weight bit af overF3.

By constructionf is 1-resilient ovels. The composed functiofi = h o g then results in
a 5-resilient Boolean function of degree 4 with 12 variables. O

Zhang and Zheng presented at Eurocrypt’95 some results about the construction of new
binary resilient functions from old ones by addition (Section 3 in [42]) and by composition
with a permutation (Section 4 in [42]). These results are immediate corollaries of the
previous theorem and they can be generalized to functions over any finite Abelianfroup

COROLLARY 3 Let (g;)1<i< be a family ofk functions fromF”™ onto F< which are
t-resilient overF, andh : (F¢)* — F? be the addition overr¢. Then the composed
function
K Fnk — F
(@1,...,2,) —  gi(z1) 4+ ... + gr(ag)
is t'-resilient overF wheret’ = k(¢ + 1) — 1.

COROLLARY 4 Letg: F"* — F?be at-resilient function overr andh be a permutation
of F¢. Thenh o g is still a t-resilient function overr.

Another interest of this result is that it enables us to construct large orthogonal arrays
whose strength is close to the theoretical bounds. The parameters of the orthogonal arrays
9; 1(2),z € Aare(¢g™ % m,q,t); those ofh~1(2),z € F* are (¢ * k,q%, r). This
results in orthogonal arrayt=!(z), 2 € F* with parameterg¢*™ ¢, km, q, (t + 1)(r +
1) —1).

ExamMPLE: We here consider two identical functiofsandg, obtained from the translated
codes of the Preparata coB¢5) (see Proposition 4). Sind@(5) is a nonlinear systematic
binary code of length 64, siz2? and dual distance 28, the function

91 = g2 : F§! — Fy?
is 27-resilient oveiF';.
Let nowry, m, andrz be three permutations of the alphalBgt. The function
h:(Fi?)?2 — Fi2
(x1,22) —  my(mi(x1) + ma(22))
is a 1-resilient function oveFi2.
The composed function
foEPS - EP

is then 55-resilient oveF,. For allv € Fi2, the arraysf —*(v) are therefore orthogonal

arrays with 64 constraints, of sizZ¢'® and strength 55. Their strength then equals the

highest strength one can get for an orthogonal array obtained with a known linear code [4].
Ol
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4.2. Composition of linear functions and concatenated codes

We here focus on the functions obtained by the composition of linear funcjjongh a

linear functionh. Such afunctiorf = hogis obviously linear; it can therefore be identified

to a syndrome function. We now express the associated code in terms of concatenated codes.
We here define concatenated codes having several inner codes. Justesen codes are a

particular case of this construction.

Definition 6.  [16] Let (B;)1<i<n, be a family of[ny, ky, dy)-linear codes oveF,, £
an [n., k., d.|-linear code oveF , and (0:)1<i<n, @ family of isomorphisms of vector
spaces

i : F oy — Bi
We define thd,-linear isomorphisn® as:

O: Fz,fb — Bi x...xB,,

r=(x1,...,n,) — (01(z1),...,0n, (2n,))
The concatenated code of inner codBs); <,<,, and outer cod€ is the code
(B)Oe& = {(01(x1),...,0n, (rn.)), Where(zy,...,x,,) € E}

This code is a linear code ové@, of lengthnyn., dimensionk,k. and minimum dis-
tanced,d..

PROPOSITION 11 Let(g;)1<i<x be a family oft linear ¢-resilient functions
gi: ¥y — Fg
whereG; is a systematic generator matrix of &m, d, t + 1]-linear code ovefF,,.
Let+) be an isomorphism fro';« ontoFg and ¥ ; the associated isomorphism
‘Ifj : (qu)j
(1,...,25)

(Fq)¥
(1/}(561)’ s 7¢($j))

Let thenh be a linearr-resilient function oveF . defined by

—
—

h: (Fua)f — Fgé
x — U, [\Illzl(x)GT]
whereG is a generator matrix of @k, £, r + 1]-linear code overF ;a.

The composed functicgh= h o g is then a linear(r + 1)(¢ + 1) — 1]-resilient function
which can be written as
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where M is a generator matrix of thén, d¢, (t + 1)(r + 1)]-linear code(C;)0de& and
where the isomorphisi® = (64, ..., 0;) is defined by

x — Y(@)G;

Proof: Sincef = h o g is linear, we only have to prove th#t 1 (0) = ((C;)Def)™. Let
z € ((C;)De&)™ and letv be its image undeg. We now consider the vectar (Fp)*
defined by

V1§Z§k7 1_)1':(1)1',07...,0)

Since all matricess; are in systematic form, we hayé€v) = v = g(x). For all index:, v;
can then be written as the sumagfand a codeword af;-. We then get

Vue&, v-0(u)=2-0(u)=0

sincez is in the dual code ofC;)0g&. On the other hand we have for alin &:
k

v-0(u) = > 0i(¥(u)G;)

=1

k
Z vith(u;)
i=1
= U, (v)-u
We then deduce that; ' (v) is an element of -. We therefore conclude that

flx) =T (T ' (v)GT) =0

Since both vector-spacgs ! (0) and((C;) Do &)™ have the same dimension, we have proved
that f is associated to the concatenated c@¢Co . [ |

This proposition also enables us to explicitly describe the codewords of the dual of a
concatenated code.

COROLLARY 5 Let (B;)1<i<n, be a family ofn, ks, dp]-linear codes ovetF,, £ an
[ne, ke, de]-linear code ovelF », and© = (01,...,0,,) anFg-linear isomorphism from
Fggb ontoB; x ... x B,, defined by

91' : Fqkb — Bl
r = Y(x)G;
whereG; is a systematic generator matrix Bf and+ is an isomorphism fronk' x, onto
Fke,
q
The dual of the concatenated cad® ) Oe £ then consists of all codewords®t in which
each componeny; is replaced by a vector dfy* with syndromey; relatively toB;-.

(Bi)Oof = {(z1,...,2a,) Where(yy ™! (z1GT), ..., (2., G7,)) € £}
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LFSR 1 ~
g1
LFSRn 7
h — >
LFSRn(k—1)+1 ~
. "
LFSRnk 7

Figure 2. Combining LFSRs with a composed function

4.3. Application to combining functions

These resilient functions obtained by composition are particularly appropriate for combining
LFSRs. Their use enables to reduce the number of operations required for computing the
output of the pseudo-random generator from the outputs of the registers since all fugictions
can be evaluated in parallel (see Fig 2).

Another advantage of this construction arises when the combining function is used as
a secret key. In this case the function is transmitted as the sequence of its ougputs,
tq" g-ary digits forf : Fj; — F,. If acomposed function is used, we only have to send the
small functions(g;)1<i<x andh, i.e. (kdg™ + ¢*%) digits, while transmitting any function
for combiningkn ¢-ary LFSRs requireg®” digits. For instance we have constructed in a
previous example a Boolean resilient function for combining 12 LFSRs. This function can
be described with only 56 bytes (even 32 bytes if we take- g-) instead of 512 bytes in
the general case.

5. Other related cryptographic objects

The original interest of correlation-immune functions in cryptography consists in conceiv-
ing pseudo-random generators by combining several LFSRs. But some other applica-
tions appeared after Siegenthaler’'s work. For instance Maurer and Massey [25] defined a
whole class of pseudo-random generators, called perfect local randomizers, which lead to a
provably-secure stream cipher under some conditions. Similar objects appear in the design
of some conventional cryptographic primitives: in [32] Schnorr and Vaudenay recommend
that the diffusion boxes of a primitive should realize perfect diffusion. We show here that
these objects are connected with correlation-immune functions and we generalize them to
any finite alphabet.
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5.1. Perfect local randomizers over a finite alphabet

Since a pseudo-random generator transforrhsdagit secret sequence into a longer one,
such arunning-key can obviously not be completely random and the associated stream cipher
can not be provably secure. However Maurer and Massey defined running-key generators,
called theperfect local randomizer@5], leading to a provably-secure stream cipher under

the assumption that the enemy is able to obtain only a limited number of plaintext digits.
We here generalize this definition to any finite alphabet:

Definition 7. Let F be a finite alphabet. A functiofi : F* — F™ wherek < n
is a (k, n)-perfect local randomizer of orderover F if any subset of or less digits of
the output is a set of independent uniformly distributed digits wherik timput digits are
uniformly random.

This means that the knowledge iofligits of the output of a perfect local randomizer of
ordert does not suffice for deducing the value of any other digit of this output. An additive
stream cipher using such a running-key generator is therefore provably-secure if we assume
that the enemy cannot have access to moretthagits of the plaintext in a known-plaintext
attack.

This concept exactly corresponds to the combinatorial structure of an orthogonal array. All
results of Section 2 then apply. We sum up these properties in the following characterizations
of the notion of perfect local randomizer.

ProposITION 12 Let F be a finite alphabet witly elements. The following assertions
are equivalent:

1. The functiory : 7* — F™ wherek < nis a(k,n)-perfect local randomizer of order
overF.

2. The array whose rows consist of the vectgf&r)),.c =+ is an orthogonal array with
n constraints, of size* and strengtht over F.

3. The functiony : 7" — F, defined bys(z) = 1if and only ifx € f(F*) is t-th order
correlation-immune ovef.

4. The functionf is the encoder for a code of length sizeq* and dual distance + 1
over F providedF is endowed with the structure of an Abelian group.

5.2. Multipermutations

Correlation-immune functions also appear in the design of conventional cryptographic
primitives which consist of small boxes connected by a graph structure as many secret-
key ciphers or hash functions. Following Shannon’s classification [34] we distinguish two
different types of boxes in such a primitive depending on their action on the data:

e confusion boxesvhich aim at concealing any algebraic or statistical structure of the
input data.
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o diffusion boxesvhich aim at diffusing any modification of their inputs in their outputs.
The main purpose of using such a box in a secret-key cipher is that the whole information
contained by the secret key and by the plaintext spreads into the ciphertext. They are
also essential in hash functions because their use avoids some collision attacks.

Many criteria were developed for confusion boxes (strict avalanche criterion, propagation
criterion .. .). One of the strongest conditions is that they should contain perfect nonlinear
or bent functions [30, 27]. Schnorr and Vaudenay [32] claimed that diffusion boxes should
be multipermutations.

Definition 8. A (r,n) multipermutation over a finite alphab&tis a functionr from
F" to F™ such that 2 differenfr 4+ n)-tuples of the form(z, 7 (x)) differ in at leastn + 1
positions.

The use of a multipermutation in a box withnputs and- outputs implies that a modifi-
cation oft values amongst all inputs and outputs of the box leads to a modification of at least
(n —t + 1) other inputs and outputs. This therefore realize perfect diffusion in the sense
that a modification of only one input spreads into all the outputs. Another consequence of
this property is that the knowledge of afiy — 1) or less values amongst all inputs and
outputs of such a box does not permit to determine any of the other inputs/outputs.

Multipermutations are essential in the design of cryptographic primitives since functions
which do not realize perfect diffusion may be subject to some clever cryptanalysis in which
the flow of information is controlled throughout the computation network. As anillustration
of this statement, Vaudenay [40] constructed collisions to MD4 restricted to its first two
rounds and he showed that some generalizations of SAFER are vulnerable. This criterion
has been applied to the design of the ciphers SHARK [29] and SQUARE [12]: the diffusion
layer of both of these block ciphers contains linear multipermutations defined by Reed-
Solomon codes.

Since multipermutations obviously correspond to orthogonal arrays of maximal strength [39],
we obtain the following characterizations.

ProposITION 13 Let F be an alphabet witly elements. The following assertions are
equivalent:

1. The functionr : 7" — F™ is an(r, n)-multipermutation over.

2. The array whose rows are the vectdss 7 (z)).c#- is an orthogonal array with- +
n constraints, of size” and strength- over F.

3. The code whose codewords are {het n)-tuples(z, 7(z)),ec#- is an MDS code of
lengthr + n and size;".

4. The functiory, from F" onto 7" *" defined byy,(z) = (z,n(z)) is an(r,r + n)-
perfect local randomizer of orderover F.

5. The functiory, from 7"+ ontoF, defined byf, (x,y) = 1 if and only ify = w(z) is
r-th order correlation-immune oveF.
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In practice cryptographic primitives use multipermutations dver. This means that
the inputs and outputs of the corresponding diffusion box are considered as elements of the
field Fom. However all the arguments developed in [40] for the use of multipermutations
can also be applied at the bit level: the security of a function may then be weakened if it does
not perform a high diffusion at the bit levéke. when its inputs and outputs are considered as
binary strings of lengtin. Atthe binary level the diffusion performed by a multipermutation
then corresponds to the correlation-immunity order of the associated Boolean fufjction
overF5. This ordert has indeed the following cryptographic significance: the knowledge
of anyt — 1 bits of inputs and outputs of the box does not allow to determine any of the
other bits. We now considgt, as a Boolean function and we first give some bounds on the
degree of its algebraic normal form.

PROPOSITION 14 Any (r,n) multipermutationr over Fym corresponds to a Boolean
functionf, : F;”(””) — F5 which isr-th order correlation-immune ovéf,~. Moreover
the degree of the algebraic normal form ff satisfies:
mn — 1+ maxdegree(m; ;) <d <m(r+n)—r
]

wherer = (71, ..., m,) is considered as a function froly;"” to F5'* and; ; is thej-th
binary component of;.

Proof: The right hand of the inequality directly comes from Theorem 5. The left one can
be deduced from the explicit form g¢f.: let us consider as a set ofnn Boolean functions
defined by:

Ti,5 + Fg"’ — F2
(xl,Ov'--7xr,m—1) = Wi,j(xl,()a"'axrﬂn—l)
By definition f (21,0, - - -, Zr4n,m—1) = Lifand onlyif, foralll <i <mnand0 < j < m,
Zryij = Ti;(Z1,0,- -+, 2r,m—1). Wethen obtain the following algebraic normal formfof

j 0 m— j
=11 I FE2e. 2 -2, 1]
1<i<n 0<j<m—1
which contains all the monomiats, ;(z) H(i,j#(,{’z) zr4i,;. Its degreeis therefore greater
than or equal tonn — 1 + max; ; deg(m; ;). [

Applying Siegenthaler’s inequality t6, gives an upper bound on its binary correlation-
immunity order depending on its degree.

THEOREM 8 Letr be an(r, n) multipermutation oveF, and letf, : Fr't) — 1,
be the associated Boolean function. Its binary correlation-immune drthean satisfies

r <t < mr —maxdegree(m; ;)
i

Proof: The binary correlation-immunity orders obviously greater than. The second
part of the inequality directly comes from Siegenthaler’s inequality and from the remark
associated to Theorem 4. In fact we have
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—1 0
BT 2™t = () mod 2 and ‘fzif()‘ =2m=H(2™" _ 1) = 0 mod 2
since Bush bound ensures thiat mr because it points out the non-existence of binary
orthogonal arrays of siz&™", strengthms with n(r + m) constraints provideehr > 1.

[ |

EXAMPLE:

Letr : F§ — Fg

(z3y) = (@ +9°)% (@ + R°) + (¥° Aa))?)

whereq is a root of X® + X + 1, R denotes the circular rotation to the right,is the
bitwise XOR andA the bitwise AND.
Schnorrand Vaudenay provedin[32, Theorem 4] that this functionis a (2,2)-multipermutation
overFyg.

We now consider the Boolean functian y corresponding to the low-weight component
of 1 (x; y):

’/TL()IFS — F2
(@y) — @ +y?)

wherez|, denotes the low-weight bit of. The algebraic normal form of this function is
1,0(T0, 1, T2, Y0, Y1, Y2) = To + Yo + T1y2 + Toy1 + Tox1y1 + T1YoY1 + T2Yoy1 +
ToT1Y2 + T2YoY2 + ToZ2Y2 + ToT2YoY1 + ToZ1YoY2-
It then has degree 4. The previous theorem therefore givest < 6 — 4. It follows
that this multipermutation performs the worst possible diffusion at the binary level.
O

6. Conclusion

Since correlation-immunity and resilience are not algebraic but purely combinatorial prop-
erties we have apprehended these notions in a very general context. We have characterized
them in terms of combinatorial structures, in terms of Fourier transform and in terms of
matrices. These multiple points of view make these objects powerful since they can be de-
scribed in many different and complementary ways. The combinatorial approach implies
for example some bounds on the maximal correlation-immunity order of a function, the
Fourier transform approach enabled us to construct new resilient functions by compaosition,
etc

Correlation-immune and resilient functions over a finite field can also be expressed as a
polynomial function. This other approach is essential when they are used for combining
linear feedback shift registers since the nonlinearity order of this polynomial conditions the
linear complexity of the resulting pseudo-random sequence. We have proved here that there
is a tradeoff between the nonlinearity and the correlation-immunity order of any function
overF, and we have constructed a familyghry ¢-resilient functions whose nonlinearity
order achieves this bound. Using these functions as combining functions is then of great
interest since they provide to the resulting generator the highest possible resistance to
both correlation attacks and attacks using Berlekamp-Massey algorithm. This inequality
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governing the degree gfary correlation-functions also gives a bound on the diffusion
performed at the binary level by a perfect diffusion function dver. .
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