
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 1, JANUARY 2001 407

On the Weight Distributions of Optimal Cosets of the
First-Order Reed–Muller Codes

Anne Canteaut

Abstract—We study the weight distributions of cosets of the first-order
Reed–Muller code (1 ) for odd , whose minimum weight is greater
than or equal to the so-called quadratic bound. Some general restrictions on
the weight distribution of a coset of (1 ) are obtained by partitioning
its words according to their weight divisibility. Most notably, we show that
there are exactly five weight distributions for optimal cosets of (1 7)
in (5 7) and that these distributions are related to the degree of the
function generating the coset. Moreover, for any odd 9, we exhibit
optimal cubic cosets of (1 )whose weights take on exactly five values.

Index Terms—Boolean function, covering radius, nonlinearity, Reed–
Muller code, weight distribution.

I. INTRODUCTION

This correspondence is devoted to the determination of the weight
distributions of cosets of the first-order Reed–Muller code of length
2m; R(1;m), which have a high minimum weight. We notably focus
on almost optimal cosets, which are those whose minimum weight
is greater than or equal to2m�1

� 2(m�1)=2 for oddm. This lower
bound, called the quadratic bound, coincides with the covering radius
of R(1;m) for m � 7. The addressed problem is of great importance
in cryptography since the weight distributions of cosets ofR(1;m)
correspond to the Fourier spectra of Boolean functions withm vari-
ables. Most notably, the nonlinearity of such a function is the min-
imum weight of the corresponding coset. But most cryptographic appli-
cations require many other properties for a Boolean function, beyond
a high nonlinearity: balancedness, correlation-immunity, propagation
criterion, etc. All these criteria are related to the weight distribution of
the corresponding coset (see, e.g., [1]–[3]).

The weight distributions of all cosets ofR(1; 5) have been deter-
mined by computer [4] but any enumerative search is obviously out of
reach for higher values ofm. Some properties concerning the weight
divisibility of cosets ofR(1;m) [5] nevertheless yield restrictions on
their possible weight distributions. We here generalize a technique in-
troduced by Brouwer [6], Simonis [7], and Hou [8], [9], which consists
in splitting the words of the coset into two subsets depending on their
weight divisibility. This makes the determination of the weight distri-
bution easier since both parts can be studied independently.

Section II recalls some important definitions and presents some pre-
liminary results on the weight divisibility of Boolean functions. We
then focus in Section III on a subset of a coset ofR(1;m) in R(r;m),
which is composed of all words whose weights are divisible by a higher
value than the one given by Katz theorem. We exhibit the remarkable
structure of this subset whenr does not divide(m�2). The size of this
subset can also be determined whenr = m � 2 as shown in Section
IV. Section V, finally, focuses on almost optimal cosets ofR(1; 7) and
R(1; 9).

II. PRELIMINARY RESULTS

Let Pm denote the algebra

FFF 2[X1; . . . ; Xm]=(X2
1 �X1; . . . ; X

2
m �Xm):
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Any Boolean function withm variables, i.e., a function fromFFFm
2 into

FFF 2, can be represented by a unique polynomial ofPm, called itsalge-
braic normal form. It can also be identified with the binary vector of
length2m consisting of all valuesf(x), x 2 FFFm

2 . TheReed–Muller
code of length2m and of orderr; 0 � r � m, denoted byR(r;m),
is then the linear binary code of length2m composed of the vectors
corresponding to all Boolean functions withm variables of degree less
than or equal tor. The codeR(r;m) can, therefore, be identified with
the set of all elements ofPm of degree at mostr.

Let�(1;m) denote the covering radius ofR(1;m). Whenm is even,
it is known that�(1;m) = 2m�1�2(m=2)�1 and the cosets achieving
this minimum weight are generated bybent functions[10]. Whenm
is odd, the determination of�(1;m) is still an open problem. In the
general case, we know [11] that

2m�1 � 2 � �(1;m) < 2m�1 � 2 �1

where the lower bound, called thequadratic bound, is notably tight for
m 2 f3; 5; 7g [4], [12], [13]. On the other hand, it is known that

�(1;m) � 2m�1 � (27=32)2

whenm � 15 [14], [15].

Definition 1: Letm be an odd integer. A coset ofR(1;m) is said to
bealmost optimalif its minimum weight is greater than or equal to the
quadratic bound2m�1 � 2(m�1)=2. Moreover, it is said to beoptimal
if its minimum weight is equal to�(1;m).

Even when�(1;m) is unknown, we may have some information on
the covering radius ofR(1;m) in R(r;m), denoted by�r(1;m). This
parameter corresponds to the highest possible minimum weight for a
cosetf +R(1;m) wheref 2 R(r;m). It is proved, for example, that,
for any oddm � 13

�3(1;m) = 2m�1 � 2

[16], [8]. Moreover, the quadratic case is completely solved [17, p.
441]: for any oddm

�2(1;m) = 2m�1 � 2

and all almost optimal cosets ofR(1;m) in R(2;m) have the same
weight distribution, namely,

weight 2m�1 � 2 2m�1

number of words 2m�1 2m

For oddm, any almost optimal coset ofR(1;m)whose weights take on
exactly three values has the previous weight distribution. This weight
distribution is then calledthe three-weight almost-optimal distribution.
Note that any Boolean function withm variables which generates a
coset with the three-weight almost-optimal distribution has degree at
most(m+ 1)=2 [18, Proposition 4].

In the following, we denote bywt (x) the Hamming weight of a bi-
nary vectorx, i.e., the number of its nonzero components. A Boolean
function will often be identified with the binary vector composed of all
its values. The Hamming weight of a Boolean functionf with m vari-
ables then refers to the Hamming weight of the corresponding vector
(f(x); x 2 FFFm

2 ). We now recall a classical formula for computing the
Hamming weight of a Boolean function from its algebraic normal form
(see [19] or [20, p. 240]).
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Lemma 1: Let f be a Boolean function withm variables. Let
(f1; . . . ; fs) denote the monomials in the algebraic normal form of
f . Then we have

wt (f) =

s

k=1

(�1)k�12k�1

1�i <���<i �s

2m�r(i ;...;i )

wherer(i1; . . . ; ik) is the degree of the monomialkj=1 fi in Pm.

We immediately deduce the following lemma.

Lemma 2: Let f andg be two Boolean functions withm variables.
Let (f1; . . . ; fs ) (resp.,(g1; . . . ; gs )) denote the monomials in the
algebraic normal form off (resp.,g). Then we have

wt (f + g) = wt (f) +

s +s

k=1

(�1)k�12k�1

�

min(k;s )

n=1 1�i <���<i �s
1�j <���<j �s

2m�r(i ;...;i ;j ;...;j )

wherer(i1; . . . ; ik�n; j1; . . . ; jn) is the degree of the monomial

k�n

u=1

fi

n

v=1

gj

in Pm.
Proof: Since Lemma 1 holds even if some monomials ap-

pear twice in the algebraic normal form, we can consider that
the algebraic normal form off + g consists of all monomials
(f1; . . . ; fs ; g1; . . . ; gs ). It follows that

wt (f + g) =

s +s

k=1

(�1)k�12k�1

�

min(k;s )

n=0 1�i <���<i �s
1�j <���<j �s

2m�r(i ;...;i ;j ;...;j )

where r(i1; . . . ; ik�n; j1; . . . ; jn) is the degree of the monomial
fi . . . fi gj . . . gj after the reductionsx2i = xi. We deduce that

wt (f + g) =

s +s

k=1

(�1)k�12k�1

1�i <���<i �s

2m�r(i ;...;i )

+

s +s

k=1

(�1)k�12k�1

�

min(k;s )

n=1 1�i <���<i �s
1�j <���<j �s

2m�r(i ;...;i ;j ;...;j ):

Therefore, we have

wt (f + g) = wt (f) +

s +s

k=1

(�1)k�12k�1

�

min(k;s )

n=1 1�i <���<i �s
1�j <���<j �s

2m�r(i ;...;i ;j ;...;j ):

The previous formula leads to the following well-known result [5],
[8], known as Katz theorem, which will be extensively used in the cor-
respondence.

Proposition 1: Let f 2 R(r1;m) andg 2 R(r2;m) with r2 �
r1 � m. Then

wt (f + g) � wt (f)mod 2
d e

:

This proposition applied tog 2 R(1;m) notably yields the fol-
lowing corollaries.

Corollary 1: Letf 2 R(m�2;m). For any wordc in f+R(1;m)
we have

wt (c) � wt (f)mod4:

Corollary 2: Letf be an element ofR(r;m) such thatf+R(1;m)
is an almost optimal coset ofR(1;m).

• Form = 5: if r = 3; f + R(1;m) has the three-weight optimal
distribution, and ifr = 4, the weight of any word off+R(1;m)
belongs to

f2m�1; 2m�1 � 2 ; 2m�1 � 2 g:

• For m = 7 and3 � r � 5, the weight of any word off +
R(1;m) belongs to

f2m�1; 2m�1 � 2 ; 2m�1 � 2 g

• For m 2 f9; 11g andr = 3, the weight of any word off +
R(1;m) belongs to

f2m�1; 2m�1 � 2 ; 2m�1 � 2 g:

Proof: In all considered cases, it is known that�r(1;m) is equal
to the quadratic bound. Without loss of generality, we may assume that
f is a minimum-weight word in the coset, i.e.,

wt (f) = 2m�1 � 2 :

By applying Proposition 1, we obtain that, for any� 2 R(1;m)

wt (f + �) � wt (f)mod2d e

� 0mod2d e:

We then deduce that, forf 2 R(3; 5), the weights of all words in
f + R(1; 5) are divisible by4 = 2(m�1)=2. For all other considered
values ofm andr, we have2d(m�1)=re = 2(m�3)=2. It follows that
the weight of any word inf +R(1;m) takes one of the following five
values:2m�1; 2m�1 � 2(m�3)=2; 2m�1 � 2(m�1)=2.

III. COSETS OFR(1;m) IN R(r;m) WHEN r
DOESNOT DIVIDE m � 2

Proposition 1 shows that, iff belongs toR(r;m), then any� 2
R(1;m) satisfies

wt (f + �) � wt (f)mod2`

with ` = d(m� 1)=re. We are now interested in the structure of the
following subset ofR(1;m):

Ef = f� 2 R(1;m);wt (f + �) � wt (f)mod2`+1g:

The following result generalizes a technique used by Hou [8], [9] in
some particular cases.

Proposition 2: Let m andr be two integers such that2 < r � m
andr does not divide(m�2). Letf 2 R(r;m) and` = d(m� 1)=re.
Suppose thatf + R(1;m) contains a wordc such that

wt (c) 6� wt (f)mod2`+1:
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Then

Ef = f� 2 R(1;m);wt (f + �) � wt (f)mod 2`+1g

is a linear subspace ofR(1;m) of codimension1. Moreover,Ef con-
tains the all-one vector if and only ifwt (f) � 0mod2`.

Proof: Let us identify any element ofR(r;m) with the corre-
sponding polynomial in the algebraPm. We can write

wt (f + �) = wt (f) + wt (�)� 2wt (f�)

wheref� is the usual product inPm, i.e.,f�(x) = 1 if and only if
f(x) = �(x) = 1. Sincewt (�) � 0mod2m�1, we have

wt (f + �) � wt (f)� 2wt (f�)mod2`+1:

The setEf can then be defined as

Ef = f� 2 R(1;m);wt (f�) � 0mod2`g:

Let us consider the mapping

	 : R(1;m) �! FFF 2

� 7�! 0; if wt (f�) � 0mod2`

1; otherwise:

We now prove that	 is a linear mapping. For any�1; �2 2 R(1;m),
we have

wt (f(�1 + �2)) = wt (f�1) + wt (f�2)� 2wt (f�1�2): (1)

Since�1�2 2 R(2;m), its weight is divisible by2` because

` = d(m� 1)=re � b(m� 1)=2c

for r > 2. It follows that

wt (f + (�1�2)) = wt (f) + wt (�1�2)� 2wt (f�1�2)

� wt (f)� 2wt (f�1�2)mod2`:

Moreover, Proposition 1 implies that

wt (f + (�1�2)) � wt (f)mod2d e:

Sincer is not a divisor of(m�2); d(m� 2)=re = d(m� 1)=re = `.
We deduce that

wt (f�1�2) � 0mod2`�1:

Equation (1) then implies that

wt (f(�1 + �2)) � wt (f�1) + wt (f�2)mod2`:

	 is, therefore, a linear mapping. Since it is assumed that	�1(1) 6=
;; Ef = Ker	 is a linear subspace ofR(1;m) of codimension1.
Since

wt (f + 1) � �wt (f)mod2`+1

we obtain that the all-one vector belongs toEf if and only ifwt (f) �
0mod2`.

This result enables us to split a cosetf +R(1;m) into two different
parts, namely,f + Ef andf + (R(1;m) n Ef). We now suppose
that all assumptions of the previous proposition are satisfied and that
f + R(1;m) is an almost optimal coset withwt (f) � 0mod2`+1.
In that case, we deduce some information on the weight distribution of
the coset ofR(1;m� 1) generated by the restriction off toEf .

Proposition 3: Let m be an odd integer and letr be such that
2 < r � m andr does not dividem�2. Let` = d(m� 1)=re andf 2
R(r;m) such thatwt (f) � 0mod2`+1. Assume thatf + R(1;m)
is an almost optimal coset and that it contains a wordc such that
wt (c) � 2`mod2`+1. Then there existsg 2 R(r;m � 1) such that
the weight of any codeword ing + R(1;m� 1) belongs to

2m�2 � 2 � 2`�1 � i2` ; 0 � i � 2 �` :

Proof: Sincewt (f) � 0mod2`+1 and since all hypotheses of
Proposition 2 are satisfied

Ef = f� 2 R(1;m);wt (f + �) � 0mod2`+1g

is a linear subspace ofR(1;m) of codimension1 which contains the
all-one vector. After a nonsingular affine transformation, we may as-
sume thatEf is spanned by1; x1; . . . ; xm�1. For any Boolean function
F withm variables, we denote byF = (F1; F2) its decomposition rel-
atively toxm

F = (xm + 1)F1 + xmF2

whereF1 andF2 are Boolean functions with(m � 1) variables. By
definition, any function� 2 Ef can be written as� = ( ;  ) with
 2 R(1;m � 1). Similarly, any function� 2 (R(1;m) n Ef) can
be decomposed as� = ( ; + 1) with  2 R(1;m � 1). Let f =
(g; h) denote the decomposition off where bothg andh belong to
R(r;m� 1). Then we have, for any� = ( ;  ) in Ef

wt (f + �) = wt (g +  ) + wt (h+  )

� 0mod2`+1:

For any� = ( ;  + 1) in R(1;m) n Ef , we obtain

wt (f + �) = wt (g +  ) + wt (h+  + 1)

= wt (g +  ) + 2m�1 � wt (h+  )

� 2`mod2`+1:

It follows that, for any 2 R(1;m � 1)

wt (g +  ) � 2`�1mod2`

wt (h+  ) � 2`�1mod2`:

We now prove that the minimum weight ofg+R(1;m� 1) is at least
2m�2� 2(m�1)=2+2`�1. Suppose that there exists 2 R(1;m� 1)
such that

wt (g +  ) � 2m�2 � 2 : (2)

Sinceh+R(1;m�1) contains no codeword of weight2m�2, we have
that eitherwt (h+ ) < 2m�2 orwt (h+1+ ) < 2m�2. We deduce
that either

wt (f + ( ;  )) = wt (g +  ) + wt (h+  )

< 2m�1 � 2

or

wt (f + ( ; + 1)) = wt (g + �) + wt (h+ 1 + �)

< 2m�1 � 2 :

This would mean thatf+R(1;m) is not almost optimal, contradicting
the assumption of the proposition. Therefore, satisfying (2) does not
exist.

IV. COSETS OFR(1;m) IN R(m� 2;m)

The previous results do not hold whenr dividesm�2. In the special
caser = m� 2, we can nevertheless derive some information on the
size ofEf , i.e., on the number of codewords inf + R(1;m) whose
weight is divisible by8.
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Lemma 3: Let f 2 R(m � 2; m) with m � 5. Let I denote the
set of all pairs of indexes(i; j) such that the algebraic normal form
of f contains the monomial of degreem � 2,

k 6=(i;j) xk. For any
g 2 R(2;m), we have

wt (fg) � #f(i; j) 2 I; xixj 2 ggmod2:

Proof: Let g 2 R(2;m). Using that

wt (f + g) = wt (f) + wt (g)� 2wt (fg)

and thatwt (g) is divisible by4 if m � 5, we havewt (fg) � 0mod2
if and only if wt (f + g) � wt (f)mod4. Let (f1; . . . ; fs ) (resp.,
(g1; . . . ; gs )) denote the monomials off (resp.,g). The formula given
in Lemma 2 leads to

wt (f + g) � wt (f) +

s

j=1

2m�r(j) � 2
1�j <j �s

2m�r(j ;j )

�2
1�i�s
1�j�s

2m�r(i;j)mod4:

Sinceg 2 R(2;m), for anyj1; j2 2 f1; . . . ; s2g, we haver(j1) � 2
andr(j1; j2) � 4. Form � 5, we then deduce that

wt (f + g) � wt (f)� 2
1�i�s
1�j�s

2m�r(i;j)mod4

� wt (f)� 2#f(i; j) 2 I; xixj 2 ggmod4

Proposition 4: Let f 2 R(m� 2;m) nR(m� 3;m) with m � 5.
Suppose thatwt (f) � 0mod8. Then the weight of any codeword in
f + R(1;m) is divisible by4 and

#fc 2 f +R(1;m);wt (c) � 0mod8g = 2m + 2i or 2m

with dm=2e � i � m � 1.
Proof: Let I denote the set of all pairs(i; j) such thatf contains

the monomial of degreem� 2;
k 6=(i;j) xk. Let

f̂(x) =
(i;j)2I

xixj :

From Dickson’s theorem [21, p. 197] there exists a function in the gen-
eral affine groupAGLm(FFF 2)which transformŝf into h

i=1 x2i�1x2i
with 1 � h � bm=2c. f can then be written as

f =

h

i=1 k 6=2i�1;2i

xk + g; with g 2 R(m� 3;m):

We now decomposeR(1;m) as the direct sumV0�V1 � � ��Vh�f1g
where V0 is the subspace spanned by the linear functions
x2h+1; . . . ; xm and, for1 � i � h, Vi is the subspace spanned by
x2i�1 andx2i. Let

Ei = f� 2 V0 � � � � � Vi;wt (f�) � 0mod4g:

Assume thatm 6= 2h, i.e.,V0 6= ;. For any�1; �2 2 V0, we have

wt (f(�1 + �2)) = wt (f�1) + wt (f�2)� 2wt (f�1�2):

Since the quadratic function�1�2 does not contain any monomial
x2k�1x2k with 1 � k � h, we have from Lemma 3

wt (f(�1 + �2)) � wt (f�1) + wt (f�2)mod4:

It follows that eitherE0 = V0 or E0 is a linear subspace ofV0 of
codimension1. Therefore,jE0j 2 f2m�2h�1; 2m�2hg. Let us now

determine the size ofEi+1 as a function ofjEij. Let us decompose
� 2 V0 � � � � � Vi+1 as� = �1 + �2 with �1 2 V0 � � � � � Vi and
�2 2 Vi+1. From Lemma 3, we similarly have

wt (f�) = wt (f(�1 + �2))

= wt (f�1) + wt (f�2)� 2wt (f�1�2)

� wt (f�1) + wt (f�2)mod4

since the quadratic function�1�2 contains no monomialx2k�1x2k
with 1 � k � h. It follows that (�2 + Ei) � Ei+1 if and only
if wt (f�2) � 0mod4 and (�2 + �Ei) � Ei+1 otherwise, where
�Ei = (V0 � � � � � Vi) n Ei. Using Lemma 3 we also obtain

wt (f(x2i+1 + x2i+2)) � wt (fx2i+1) + wt (fx2i+2) + 2mod4:

We then deduce that the three nonzero elements ofVi+1, namely,
x2i+1; x2i+2; andx2i+1 + x2i+2 do not lie all together inEi+1 or in
�Ei+1: among these three functions, only one or two belong toEi+1.
By adding the zero vector, we obtain that two or three elements of
Vi+1 belong toEi+1. It follows that

jEi+1j = 2jEij+ 2j �Eij or jEi+1j = 3jEij+ j �Eij:

The first case leads tojEi+1j = 2m�2h+2i+1 and the second one to
jEi+1j = 2m�2h+2i�1 + 2jEij, i.e.,

jEi+1j � 2m�2h+2i+1 = 2(jEij � 2m�2h+2i�1):

By induction, we obtain that eitherjEhj = 2m�1 or

jEhj = 2m�1 + 2h(jE0j � 2m�2h�1):

We then conclude that

jEhj = 2m�1 or jEhj = 2m�1 + 2m�h�1:

Note that this result also holds whenm = 2h. In this case, we start
fromE1: we havejE1j 2 f2; 3g and we similarly obtain

jEhj = 2m�1 or jEhj = 2m�1 + 2h�1(jE1j � 2):

The expected result can then be deduced from

#f� 2 R(1;m);wt (f + �) � 0mod8g = 2jEhj:

V. WEIGHT DISTRIBUTION OF SOME ALMOST OPTIMAL

COSETS OFR(1; 7) AND R(1; 9)

When the assumptions of Proposition 2 are satisfied, the decompo-
sition of f + R(1;m) into two parts makes the determination of the
weight distribution easier: the weight distributions of both parts can
be studied independently. This decomposition enables us to restrict the
number of possible weight distributions for (almost) optimal cosets of
R(1;m) in R(r;m) whenm 2 f5; 7; 9g in some particular cases.

Proposition 5: Let f 2 R(r;m) such thatf + R(1;m) is an (al-
most) optimal coset. Ifm 2 f5; 7g and r = 4 or if m = 9 and
r = 3; f + R(1;m) has either the three-weight almost optimal dis-
tribution or the following five-weight distribution:

weight 2m�1 � 2 2m�1 � 2 2m�1

number of words 3:2m�3 2m�1 2m�2

Proof: Let (A0; . . . ; A2 ) denote the weight distribution off +
R(1;m). From Corollary 2, we know thatAw = 0 except for

w 2 f2m�1 � 2 ; 2m�1 � 2 ; 2m�1g:
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Moreover, we may assume without loss of generality thatwt (f) =
2m�1� 2(m�1)=2. Suppose thatf +R(1;m) does not have the three-
weight almost-optimal distribution. Since all hypotheses of Proposition
2 are satisfied

Ef = � 2 R(1;m);wt (f�) � 0mod 2

is a linear subspace ofR(1;m)which contains the all-one vector. After
a nonsingular affine transformation, we may assume thatEf is spanned
by 1; x1; . . . ; xm�1. We now consider the[2m; m+ 1]-linear codes

C1 = (f + Ef) [Ef

and

C2 = (f + (R(1;m) nEf))[ Ef :

We denote byf = (g; h) the decomposition off relatively toxm.
Using the same technique as in the proof of Proposition 3, we have that

C1 = f(g +  ; h+  );  2 R(1;m� 1)g

[ f( ; );  2 R(1;m� 1)g;

C2 = f(g +  ; h+ 1 +  );  2 R(1;m� 1)g

[ f( ; );  2 R(1;m� 1)g:

Let (�0; . . . ; �2 ) and(�0; . . . ; �2 ) denote the weight distributions
of these codes and(�?0 ; . . . ; �

?

2 ) and(�?0 ; . . . ; �
?

2 ) the weight dis-
tributions of their duals. By definition ofEf ; C2 is a five-weight code
whose weight distribution is given by

�0 = �2 = 1

�
2 �2

= �
2 +2

= 2m�1

�2 = 2m � 2:

The second Pless power moment identity [22] applied to this code then
leads to

2

w=0

w2�w = 23m�1 + 22m�1 + 22m�3

= 22m�1(2m + 1) + 22m�?1 + 2m�?2 :

SinceEf contains the all-one vector,�?1 = 0. We deduce that�?2 =
2m�3. The definition ofC2 also implies that

�?2 = # x 2 FFFm�12 ; g(x) = h(x) + 1 = wt (g + h):

Now, the five-weight codeC1 has the following weight distribution:

�0 = �2 = 1

�
2 �2

= �
2 +2

= A
2 �2

�2 = A2 + 2m � 2:

Here, the Pless second-power moment identity gives

2

w=0

w2�w = (22m�1 + 2m)A
2 �2

+ 22m�2A2 + 23m�2 + 22m�1

= 22m�1(2m + 1) + 22m�?1 + 2m�?2 :

Exactly as forC2, we have�?1 = 0 and

�?2 = #fx 2 FFFm�12 ; g(x) = h(x)g = 2m�1 � �?2 :

It follows that

A
2 �2

+ 22m�2A2 = 23m�2 + 3 � 22m�3:

By combining this relation with2A
2 �2

+A2 = 2m, we

deduce that

A
2 �2

= 3 � 2m�3 andA2 = 2m�2:

We notably recover the weight distributions of optimal cosets of
R(1; 5) found by simulations in [4].

Corollary 3: Let f+R(1; 5) be an optimal coset ofR(1; 5). If f 2
R(3; 5), this coset has the three-weight optimal distribution; otherwise,
it has the five-weight distribution described in Proposition 5.

Proof: Since�(1; 5) is even, any optimal coset ofR(1; 5) is gen-
erated by a function of degree at most4. From Corollary 2, we have
thatf + R(1; 5) is a three-weight optimal coset whenf 2 R(3; 5).
Whenf has degree4, this weight distribution can not appear since
deg (f) > (m + 1)=2 = 3. In this case, the five-weight distribu-
tion given in Proposition 5 is the only possible weight distribution for
f +R(1; 5).

A. Optimal Cosets ofR(1; 7) in R(5; 7)

We now focus on optimal cosets ofR(1; 7) in R(5; 7). We have
proved that there are only two possible weight distributions for optimal
cosets ofR(1; 7) in R(4; 7). We now show that, iff 2 R(3; 7), then
f + R(1; 7) has the three-weight optimal distribution.

Theorem 1: Letf 2 R(3; 7) such thatf+R(1; 7) is optimal. Then
f + R(1; 7) has the three-weight optimal distribution.

Proof: We may assume thatwt (f) = 2m�1 � 2(m�1)=2 = 56.
Suppose thatf + R(1; 7) does not have the three-weight optimal dis-
tribution. It then contains a word of weight60. Proposition 3 then
implies the existence ofg 2 R(1; 6) such that the weights ofg +
R(1; 6) belong tof26;30; 34; 38g. Let C be the[64; 8]-linear code
(g +R(1; 6)) [R(1; 6) and letA0; . . . ; A64 denote its weight distri-
bution. We obviously haveA0 = A64 = 1, A32 = 126;A26 = A38,
andA30 = A34 = 64 � A26. SinceC � R(1; 6), we have that
C? � R(4; 6). It follows that the minimum distance ofC? is at least
4. The Pless second-power moment identity applied toC then leads to

64

w=0

w2Aw=(262+382)A26+(302+342)(64�A26)+322�126+642

=212 �65:

This implies thatA26 = 24 andA30 = 40. Without loss of generality,
we can suppose thatwt (g) = 26. By Proposition 2 we now deduce
that

Eg = f� 2 R(1; 6);wt (g + �) � 2mod8g

is a linear subspace ofR(1; 6) of codimension1which does not contain
the all-one vector.Eg is then the set of all linear functions with six
variables. LetC0 = (g + Eg) [ Eg and let(B0; . . . ; B64) denote its
weight distribution. By definition, the weight of any codeword inC0

belongs tof0; 26; 32; 34g. Moreover, we have

B0 = 1; B32 = 63; B26 = 24; andB34 = 40:

By applying the Pless first-power moment identity onC0, we obtain

64

w=0

wBw = 4000 = 26(26 �B?

1 )

whereB?

1 denotes the number of codewords of weight1 in (C0)?.
SinceEg corresponds to the set of all linear functions with six vari-
ables, we have thatB?

1 = 1 if g(0) = 0 andB?

1 = 0 otherwise. It
follows that the previous identity is not satisfied and therefore thatg+



412 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 1, JANUARY 2001

R(1; 6) cannot have the expected weight distribution. Sof + R(1; 7)
has the three-weight optimal distribution.

Using Proposition 4 we are now able to restrict the number of pos-
sible weight distributions for optimal cosets ofR(1; 7) in R(5; 7) n
R(4; 7).

Proposition 6: Let f 2 R(5; 7) nR(4; 7) such thatf + R(1; 7) is
optimal. Thenf+R(1; 7)has one of the following weight distributions.

Proof: From Corollary 2, the weight of any word inf +R(1; 7)
belongs tof56; 60; 64; 68; 72g. Let (A0; . . . ; A128) denote the weight
distribution off + R(1; 7). Proposition 4 implies that

jR(1; 7) nEf j = A60 +A68 = 2A60 = 27 � 2i or 27

wherei 2 f4; 5; 6g. The weight distribution(B0; . . . ; B128) of the
[128; 9]-linear codeC = (f +R(1; 7)) [ R(1; 7) then satisfies

B0 = B128 = 1

B56 = B72 = A56

B60 = B68 = A60

and

B64 = 254 + A64 = 510� 2A56 � 2A60:

The Pless second-power moment identity here gives

(562+722)A56+(602+682)A60+642(510�2A56�2A60)+1282

=214(27+1):

It follows thatA56 = 64�A60=4. We then deduce the complete weight
distribution off +R(1; 7) corresponding to each one of the four pos-
sible values ofA60.

It follows that there are at most five different weight distributions for
all optimal cosets ofR(1; 7) in R(5; 7). These results are summed up
in the following table.

Moreover, we can exhibit a coset having anyone of these weight dis-
tributions. Optimal cosets with weight distributions (I) and (III) have
been found by Fontaine [18] (note that weight distribution (I) was ob-
tained both for functions of degree3 and4). Distribution (II) appears
for the following function of degree4, f(II), which is derived from the
five-weight optimal coset ofR(1; 5) found in [4]

f(II) = x2x3x4x5 + x1x2x3 + x2x4 + x3x5 + x6x7:

We obtained by simulations some functions of degree5 providing dis-
tributions (IV) and (V)

f(IV) = x1x2x3x4x5 + x1x2x3x6x7 + x1x2x4x5

+ x1x2x7 + x1x4 + x2x5 + x3x6;

f(V) = x1x2x3x4x5 + x1x3x7 + x1x2 + x3x4 + x5x6:

As pointed out in [23] and [18], the existence of a coset ofR(1;m) in
R(r;m)with weight distribution(A0; . . . ; A2 ) implies the existence
of a coset ofR(1;m0) inR(r;m0) with a “similar” weight distribution
(B0; . . . ; B2 ) for anym0 = m+ 2i; i � 0

B2 �2 u
= 22iA2 �u; for all 0 � u � 2m�1

the otherBj ’s being zero. Using this construction we conclude.

Corollary 4: For any oddm � 7, there exists some almost op-
timal cosets ofR(1;m) inR(5;m),f+R(1;m), having the following
weight distributions:

B. Optimal Cosets ofR(1; 9) in R(3; 9)

We have pointed out that, form = 7, the existence of an optimal
weight distribution is strongly related to the degree of the considered
Boolean function. Finding how these parameters are related in the gen-
eral case appears as an interesting problem. It is known, for instance,
that, for any oddm � 5, there exists some almost-optimal cosets of
R(1;m) in R(4;m) whose weight distributions differ from the three-
weight almost-optimal distribution. But we conversely proved that any
optimal coset ofR(1; 7) inR(3; 7) has the three-weight optimal distri-
bution. The following problem then immediately arises: do there exist
almost-optimal cubic cosets ofR(1;m), m odd, whose weights take
on more than three values?

If such a coset exists form = 9, it has the five-weight distribution
described in Proposition 5. Proposition 3 then implies that it is gen-
erated by a cubic function which is equivalent under the action of the
general affine group to

(1 + x9)g1(x1; . . . ; x8) + x9g2(x1; . . . ; x8) (3)

whereg1 andg2 are some elements ofR(3; 8) such that the weights of
g1 +R(1; 8) andg2 + R(1; 8) lie in f116;124; 132;140g.

We then determine by computer all cubic cosets ofR(1; 8) having
that property, up toAGL8(FFF 2)-equivalence. Since representativesFi
of the 32GL8(FFF 2)-orbits ofR(3; 8)=R(2;8) are known, we only have
to examine the cubic functionsg 2 Fi + R(2; 8), 1 � i � 32,
where allFi are given in [24, Table 2]. Cosets whose weights lie in
f116;124; 132; 140gwere found forFi = F14; F26; F27. An example
is

g = x1x2x3 + x4x5x6 + x1x7x8 + x4x7x8 + x1x5

+ x1x6 + x1x7 + x1x8 + x2x4 + x2x5 + x2x7

+ x3x4 + x5x6 + x5x7:
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For some pairs of such functions, construction (3) provides almost op-
timal cubic cosets ofR(1; 9) having a five-weight distribution. An ex-
ample is

f = x1x2x3 + x4x5x6 + x1x7x8 + x4x7x8 + x9x1x4

+ x1x5 + x1x6 + x1x7 + x1x8 + x2x4 + x2x5

+ x2x7 + x3x4 + x5x6 + x5x7 + x9x1:

We then deduce the following theorem.

Theorem 2: For any oddm � 9, there exists almost optimal cosets
of R(1;m) in R(3;m) having the following weight distribution:

weight 2m�1 � 2 2m�1 � 2 2m�1

number of words 3:2m�3 2m�1 2m�2
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On the Covering Radius of Ternary Negacyclic Codes with
Length up to

Tsonka S. Baicheva

Abstract—The covering radius of all ternary negacyclic codes of even
length up to 26 is given. The minimum distances and weight distributions
of all codes were recalculated. Seven of the open cases for the least covering
radius of ternary linear codes were solved and for the other three cases
upper bounds were improved.

Index Terms—Covering radius, least covering radius, ternary linear
codes, ternary negacyclic codes.

I. INTRODUCTION

Covering radius is an important code parameter. If the code is used
to correct errors and decoding to the nearest codeword is performed,
then error vectors of weight greater than the covering radius are uncor-
rectable. If the code is used to compress data, its covering radius is a
measure of maximum distortion. The covering radius also shows if a
code is maximal, i.e., no more new codewords can be added to the code
without decreasing its minimum distance.

There are now many papers concerning covering radius (see [1]) and
many upper and lower bounds have been derived. Not much is known,
however, about the exact values of the covering radii of basic families
of codes and especially of codes over fields of more than two elements.
One such example is ternary negacyclic codes whose covering radii
are unknown. The aim of this work is to calculate the covering radii of
all nonequivalent ternary negacyclic codes of length up to26. Using
the results obtained, open cases for the least covering radius of ternary
linear codes are solved or upper bounds improved.
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