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On the Weight Distributions of Optimal Cosets of the
First-Order Reed—Muller Codes

Anne Canteaut

Abstract—We study the weight distributions of cosets of the first-order
Reed-Muller codeR(1, m) for odd 2, whose minimum weight is greater
than or equal to the so-called quadratic bound. Some general restrictions on
the weight distribution of a coset of R(1, ) are obtained by partitioning
its words according to their weight divisibility. Most notably, we show that
there are exactly five weight distributions for optimal cosets of R(1, 7)
in R(5,7) and that these distributions are related to the degree of the
function generating the coset. Moreover, for any oddm > 9, we exhibit
optimal cubic cosets ofR(1, m) whose weights take on exactly five values.

Index Terms—Boolean function, covering radius, nonlinearity, Reed—
Muller code, weight distribution.

|. INTRODUCTION

This correspondence is devoted to the determination of the Weijﬁt
distributions of cosets of the first-order Reed—Muller code of length
2™ R(1,m), which have a high minimum weight. We notably focus
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Any Boolean function withn variables, i.e., a function frorR5" into
F,, can be represented by a unique polynomidgPgf, called itsalge-
braic normal form It can also be identified with the binary vector of
length2™ consisting of all valueg(x), « € F3'. The Reed—Muller
code of lengti2™ and of order,0 < » < m, denoted byR(r, m),

is then the linear binary code of leng?fi" composed of the vectors
corresponding to all Boolean functions withvariables of degree less
than or equal te. The codeR(r, m) can, therefore, be identified with
the set of all elements @?,,, of degree at most.

Letp(1, m) denote the covering radius &1, m ). Whenm is even,
itis known thatp(1,m) = 2~ —20"/2~! and the cosets achieving
this minimum weight are generated bgnt functiong10]. Whenm
is odd, the determination gf(1, m) is still an open problem. In the
general case, we know [11] that

m—1 m—L m—1 m_y
2 —277 <p(l,m)<?2 — 272
where the lower bound, called tiqeadratic boundis notably tight for
€ {3,5,7} [4], [12], [13]. On the other hand, it is known that

m—1

(27/32)272

p(lm) > 2" =

on almost optimal cosets, which are those whose minimum weighhensm > 15 [14], [15].

is greater than or equal &' — 20"=1/2 for oddm. This lower

bound, called the quadratic bound, coincides with the covering radiusP€finition 1: Letm be an odd integer. A coset 81, m) is said to
of R(1,m) for m < 7. The addressed problem is of great importanclgealmost optimalf its minimum weight is greater than or equal to the

in cryptography since the weight distributions of cosetsRot, m)
correspond to the Fourier spectra of Boolean functions witkari-

quadratic boun@™~* — 2("=1/2 Moreover, it is said to beptimal
if its minimum weight is equal te(1, m).

ables. Most notably, the nonlinearity of such a function is the min- gy wherp(1, m) is unknown, we may have some information on
imum weight of the corresponding coset. But most cryptographic applje covering radius oR(1,m)in R(r,m), denoted by, (1, m). This

cations require many other properties for a Boolean function, beyopgrameter corresponds to the highest possible minimum weight for a

a high nonlinearity: balancedness, correlation-immunity, propagati

8Bsetf + R(1, m) wheref € R(r, m). Itis proved, for example, that,

criterion, etc. All these criteria are related to the weight distribution gf, any oddm < 13

the corresponding coset (see, e.g., [1]-[3]).

The weight distributions of all cosets @f(1,5) have been deter-
mined by computer [4] but any enumerative search is obviously out
reach for higher values af.. Some properties concerning the weigh
divisibility of cosets ofR(1,m) [5] nevertheless yield restrictions on
their possible weight distributions. We here generalize a technique

troduced by Brouwer [6], Simonis [7], and Hou [8], [9], which consists

in splitting the words of the coset into two subsets depending on th
weight divisibility. This makes the determination of the weight distri
bution easier since both parts can be studied independently.

m—1
2

ps(l,m) = om=1 _ 9

of

t
[16], [8]. Moreover, the quadratic case is completely solved [17, p.

441]: for any oddm.

eir p2(l,m)=2""" = 275

and all almost optimal cosets @f(1,m) in R(2,m) have the same

Section Il recalls some important definitions and presents some pweeight distribution, namely,
liminary results on the weight divisibility of Boolean functions. We

then focus in Section Il on a subset of a cosefgt, m ) in R(r, m),

which is composed of all words whose weights are divisible by a higher
value than the one given by Katz theorem. We exhibit the remarkable

structure of this subset wherdoes not dividém — 2). The size of this
subset can also be determined whes m — 2 as shown in Section
IV. Section V, finally, focuses on almost optimal cosetdfl, 7) and
R(1,9).

Il. PRELIMINARY RESULTS

Let P,, denote the algebra

Po[X1,... . X0n)/(X7 = X1,..., X2 — X))
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m—1

weight | oam—1l 42 | gm—1

| om

number of word#’ gm—1

For oddm, any almost optimal coset &i( 1, m ) whose weights take on
exactly three values has the previous weight distribution. This weight
distribution is then callethe three-weight almost-optimal distribution
Note that any Boolean function withh variables which generates a
coset with the three-weight almost-optimal distribution has degree at
most(m + 1)/2 [18, Proposition 4].

In the following, we denote byt (x) the Hamming weight of a bi-
nary vectore, i.e., the number of its nonzero components. A Boolean
function will often be identified with the binary vector composed of all
its values. The Hamming weight of a Boolean functjowith . vari-
ables then refers to the Hamming weight of the corresponding vector
f?(x), x € F3"). We now recall a classical formula for computing the
Hamming weight of a Boolean function from its algebraic normal form
(see [19] or [20, p. 240)).

0018-9448/01$10.00 © 2001 IEEE
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Lemma 1: Let f be a Boolean function withr variables. Let Proposition 1: Let f € R(r1,m) andg € R(rz,m) with ro <
(f1,.... fs) denote the monomials in the algebraic normal form of; < m. Then
f. Then we have mory
wt (f + g) = wt () mod ol =l

s

~ _ k—1gk—1 am—r(ty,...,ig)
wt (f) = Z (=172 , Z ‘ 2 r This proposition applied tg € R(1,m) notably yields the fol-
k=1 1SS <ikss lowing corollaries.
wherer (i, ...,i) is the degree of the monomiﬁ[f:1 fi; NP Corollary 1: Letf € R(m—2,m). Forany word:in f +R(1,m)
We immediately deduce the following lemma. we have
Lemma 2: Let f andg be two Boolean functions with: variables. wt () = wt (f) mod 4.
Let (fi,..., fs;) (resp.,(g1,....gs,)) denote the monomials in the
algebraic normal form of (resp.,¢). Then we have Corollary 2: Let f be an element aR(r, m) such thatf + R(1,m)
it is an almost optimal coset @(1,m).
wt(f+g) =wt(f)+ Y (=12 » Form = 5:if r = 3, f + R(1,m) has the three-weight optimal
1 distribution, and if* = 4, the weight of any word of + R(1,m)
min(k,s2) ) be|0ngS to
X Z Z 27777T(i1""’ik—71’j1"'"’j”) am—1 4m—1 m—3 am—1 m—1
Dl i< n<a {2 ,2 +27z .2 +277 }.

1<j1<- < jn<s .
ST « Form = 7and3 < r < 5, the weight of any word off +

wherer(iy,...,ik—n,J1,---,jn) is the degree of the monomial R(1,m) belongs to
k—n n {2m7172mfl :t?mjg,{_)mil :I:ngl}
H fiu 9w . )
u=1 o=1 * Form € {9,11} andr = 3, the weight of any word of +
in P, R(1,m) belongs to
Proc_>f: S_ince Lemma 1 holds even if some monomials ap- fomt gt iQ’”Z‘S,mel iQ’”gl}_
pear twice in the algebraic normal form, we can consider that
the algebraic normal form off + ¢ consists of all monomials Proof: In all considered cases, it is known tha(1, m) is equal
(fi,o oy fsinG1s--+»9gsy). It follows that to the quadratic bound. Without loss of generality, we may assume that
. f is a minimum-weight word in the coset, i.e.,
51182
Wt (f+g) = Z (_1)1"_121“_1 wt (f) = 2m—1 _ QMTA.
k=1
min(k,s2) By applying Proposition 1, we obtain that, for anye R(1,m)
X 2"177"(i17~~x1'k—na].1e-wa]‘n) m—1
2 §<§§ Wt (f +¢) = wi () mod 20
1<j1<<jn<s2 = OmOdemfilW_
where r(i1,...,ik—n,Jj1,...,jn) iS the degree of the monomial

We then deduce that, fof € R(3,5), the weights of all words in

. . v . a2
Fir oo fin_n9s -~ 9i, after the reductions; = ;. We deduce that f + R(1,5) are divisible bya = 20™~1/2_For all other considered

s1tsa values ofm andr, we have2[(m—1/71 = 20m=3)/2 |t follows that
wt(f+g) = Z (—1)F ikt Z gmr(iv, o in) the weight of any word irf + R(1,m) takes one of the following five
=1 1<ii< iy <st values2™ 1, 2m 1 4 9(m=3)/2 gm—1 4 9(m=1)/2 O
s1+s2
+ Z (=1)ftok ! lll. COSETS OFR(1,m) IN R(r,m) WHEN 7
k=1 DoesNoOT DIVIDE m — 2

min(k,sg) . .
% Z ’ Z om=r (i1 it eenin) Proposition 1 shows that, if belongs toR(r,m), then anyy €
T << T <n R(1,m) satisfies
1<j1< <jn<s . :
SIS Smse wt (f + ¢) = wt (f) mod 2°
Therefore, we have . . )
with ¢ = [(m — 1)/+]. We are now interested in the structure of the

sitss following subset ofR(1, m):
wt(f+g)=wt(f)+ > (=12 ° (
=1 E;={¢ € R(1,m),wt(f+ ¢) = wt(f)mod 2“‘1}.

min(k,s2) i . . .
% Z Z om (il ikond1dn) | The following result generalizes a technique used by Hou [8], [9] in
=l T - some particular cases.
b= St k—m2>%1

1SS Snses Proposition 2: Let m andr be two integers such that< r < m

i . andr does notdividém —2).Letf € R(r,m)and( = - 1)/r].
The previous formula leads to the following well-known result [5]Sup7pose thaf + Rﬁnin,) c):ontai];s avx(/;rgtl)such that[(m )]

[8], known as Katz theorem, which will be extensively used in the cor-
respondence. wt (¢) # wt (f) mod 2",
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Then
Er={¢€ R(1L,m),wt(f+¢) =wt(f)mod 2l+1}

is a linear subspace @t(1,m) of codimensiorl. Moreover,E; con-
tains the all-one vector if and only ¥t () = O mod 2°.

Proof: Let us identify any element oR(r, m) with the corre-
sponding polynomial in the algebfa... We can write

wt (f +¢) = Wt (f) + wt (6) — 2wt ()

where f¢ is the usual product i, i.e., f¢(x) = 1 if and only if
f(z) = ¢(x) = 1. Sincewt (¢) = 0mod 2™ ™', we have

wt (f+ ¢) = wt(f) — 2wt (f¢) mod 2t
The setE'; can then be defined as
E; ={¢ € R(1,m),wt(fo) = 0mod QC}.

Let us consider the mapping

¥: R(1l,m) — F9
o — 0, if wt(f¢) = 0mod?2°
1, otherwise

We now prove tha is a linear mapping. For an, ¢» € R(1,m),
we have

Wt (F(61+ 62)) = Wt (for) + Wt (£2) — 2wt (fér6a). (1)

Sinces¢2 € R(2,m), its weight is divisible by2* because
(=T0m=1)/r] < [(m—1)/2]

for r > 2. It follows that

wt (f+ (0102)) = wt (f) + wt (d1¢2) — 2wt (fd102)
= wt (f) — 2wt (fé1¢2) mod 2¢.

Moreover, Proposition 1 implies that
Wb (f + (6162)) = wt (f) mod 2171,

Sincer is nota divisor ofm —2), [(m — 2)/r] = [(m — 1)/r] = L.
We deduce that

wt (fo1¢2) = 0mod 20!,
Equation (1) then implies that
wt (f(d1+ ¢2)) = wt (fo1) + wt (fd2) mod 2t

¥ is, therefore, a linear mapping. Since it is assumed#alt(1) #
0, E; = Ker¥ is a linear subspace dk(1,m) of codimensionl.
Since

wt(f+1)= —wt(f)mod 2f+!

we obtain that the all-one vector belongsp if and only if wt () =
0 mod 2°. O

This result enables us to split a coget R(1, m) into two different
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Proposition 3: Let m» be an odd integer and let be such that
2 < r < mandr does notdividen—2.Let{ = [(m — 1)/r] andf €
R(r,m) such thatwt (f) = 0mod 2°T'. Assume thaff + R(1,m)
is an almost optimal coset and that it contains a werslich that
wt (¢) = 2° mod 27", Then there existg € R(r,m — 1) such that
the weight of any codeword in+ R(1,m — 1) belongs to

{2’”*2 + (2”51 L i2f‘) 0<i< 2”7“*‘}.

Proof: Sincewt (#) = 0mod 27" and since all hypotheses of
Proposition 2 are satisfied

Ef={6 € R(1,m),wt(f + ¢) = 0mod 2€+1}

is a linear subspace d@(1,m) of codimensiorl which contains the
all-one vector. After a nonsingular affine transformation, we may as-
sumetha¥; is spanned by, ., ..., #,,—1. For any Boolean function

F with m variables, we denote by = (Fi, F>) its decomposition rel-
atively to .,

F = (il/’m + 1)F1 + e/L'm,FZ

whereF; and F, are Boolean functions witfvn — 1) variables. By
definition, any functionp € E; can be written a® = (v, ) with
W € R(1,m — 1). Similarly, any functiony € (R(1,m) \ Ey) can
be decomposed as= (v, ¢ + 1) with¢ € R(1,m — 1). Letf =
(g, k) denote the decomposition ¢f where bothg and’ belong to
R(r,m — 1). Then we have, for any = (v, ¢) in Ef
wt(f+¢)=wt(g+v)+wt(h+)
= 0mod 2“7,
Foranys = (¢,¢ + 1) in R(1,m) \ E¢, we obtain
wt(f+o)=wt(g+v)+wt(h+v+1)
=wt(g+¢)+2""" —wt(h+v)
= 2" mod 2",
It follows that, for anyy) € R(1,m — 1)
wt(g+v)= 2~ " mod 2°
wt (h+¢) = 2~  mod 2°.
We now prove that the minimum weight i+ R(1,m — 1) is at least
gm=2 _9(m=1)/2 1 9t=1 gyppose that there existsc R(1,m —1)
such that

m—1

wt(g+1y)<2m7 =2 @)
Sinceh + R(1,m —1) contains no codeword of weight' 2, we have
that eithemwt (h4+v) < 2" 2 orwt (h+14+v) < 2™ 2, We deduce
that either

wt (f+ (1. 9) = wt (g +v) + wt (h + ¢)

-1

< 277171 _ sz

or
wt(f+ (¢, +1)=wt(g+¢)+wt(h+14+9)
< 27n—1 _ Zm;1

This would mean that + R(1, m) is not almost optimal, contradicting
the assumption of the proposition. Therefasesatisfying (2) does not
exist. O

IV. COSETS OFR(1,m) IN R(m — 2,m)

parts, namelyf + E; and f + (R(1,m) \ E;). We now suppose
that all assumptions of the previous proposition are satisfied and thaf he previous results do not hold whedividesm — 2. In the special

f + R(1,m) is an almost optimal coset witlat (f) = 0mod 2°t'. caser = m — 2, we can nevertheless derive some information on the
In that case, we deduce some information on the weight distributionsife of E;, i.e., on the number of codewords jr++ R(1,m) whose

the coset of?(1, m — 1) generated by the restriction @fto E. weight is divisible by8.
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Lemma 3: Let f € R(m — 2, m) with m > 5. LetI denote the determine the size af;1; as a function of E;|. Let us decompose
set of all pairs of indexe§, j) such that the algebraic normal form¢ € Vo & -+ @ Viqq as¢ = ¢1 + ¢z withoy € Vo & --- & Vi and
of f contains the monomial of degree — 2, Hk#i‘j) zr. Forany o2 € V;41. From Lemma 3, we similarly have

g € R(2,m), we have
wt (f6) = wt (f(é1 + 2))

wt (fg) = #{(i,j) € I, x;z; € g} mod 2. = wt (fé1) + Wt (fh2) — 2wt (fb162)
Proof: Letg € R(2,m). Using that = wt (fo1) + Wt (f¢2) mod4
wt (f 4+ g) = wt (f) + wt (g) — 2wt (fg) since the quadratic function; ¢ contains no monomiat,x—1 x2x

with 1 < k& < h. It follows that(¢2 + E;) C FE;41 if and only
and thatvt (g) is divisible by4 if m > 5, we havewt (fg) = 0mod2  if wt (f¢,) = Omod4 and(¢, + E;) C E;y, otherwise, where
if and only if wt (f + ¢) = wt (f) mod 4. Let(fi,....fs,) (resp., E; = (Vo & --- @ Vi) \ E:. Using Lemma 3 we also obtain
(g1,...,9s,)) denote the monomials gf(resp. g). The formula given

in Lemma 2 leads to wt (f(@2i41 + 22i42)) = Wt (faoip1) + wt (fa2,42) + 2mod 4.
S2
om—r(j m—r(j1.52) We then deduce that the three nonzero element®;of, namely,
rt ) = wt 2 (7)) _ 2 2 (71.92) > Pl s
Wi (S +g) = wt(f)+ Zl e ;< T2i41, T2i42, @andxsziy1 + x2i42 do not lie all together irF; 1 orin
J= SJ1<J2>52 —

(i) FE;41: among these three functions, only one or two belong'to; .
-2 > 2 “’mod4. By adding the zero vector, we obtain that two or three elements of

Egz; Vit1 belong toE; . It follows that
Sinceg € R(2,m), for anyji, j2 € {1,...,s2}, we haver(ji) < 2 |Eia] = 2|Ei| + 2| Ei| or | Eisa| = 3|Ei] + | Ei.

andr(ji,j2) < 4. Form > 5, we then deduce that ) o
Ji:d2) S - The first case leads ;1| = 2™ 2"*2**! and the second one to

wt(f+g) =wt(f)—2 Z 20D od 4 [Eiv1| = gkl 2|Ei|, ie.,
1<i<s . . . .
1;]58; |Ei+1| _ 2777,—2h+21+1 _ 2(|Ez| _ 2777,—2h+21—1 )

=wt(f) —2#{(i,j) € I,zix; € g mod4 O
v 1 ’ I By induction, we obtain that eith¢fE),| = 2™~ or

Proposition 4: Let f € R(m —2,m)\ R(m — 3, m) withm > 5. |En] = 277" 4+ 2"(|Eg| — 272 7).
Suppose tha#t (f) = 0 mod 8. Then the weight of any codeword in
f =+ R(1,m) is divisible by4 and We then conclude that
#{c € f+ R(1,m),wt(c)=0mod8} = 2™ +2' or2™ |En| =2 or|E,| =27 427",
with [m /2] <i < m —1. Note that this result also holds whem = 2%. In this case, we start

Proof: LetI denote the set of all pai(s, j) such thatf contains from E: we havelE,| € {2,3} and we similarly obtain

the monomial of degree: — 2, 1], ., - ««. Let '
k(i) |En| =27 or|Ey| =277 + 2" (| By | - 2).

fla) = (v;g rits The expected result can then be deduced from
3
From Dickson'’s theorem [21, p. 197] there exists a function in the gen- #{0 € R(1,m), wt (f + ¢) = 0mod 8} = 2|E4|. O

eral affine groupiGL,, (F2) which transformg into >-"_| wa;_1 s
with1 < h < |m/2]. f can then be written as

h
f:Z < H rk> + g, with g € R(m — 3,m).

i=1 \k#2i—1,2i

V. WEIGHT DISTRIBUTION OF SOME ALMOST OPTIMAL
COSETS OFR(1,7) AND R(1,9)

When the assumptions of Proposition 2 are satisfied, the decompo-
sition of f + R(1,m) into two parts makes the determination of the
We now decompos&(1, m) as the directsuio © Vi --- D Vi {1}  weight distribution easier: the weight distributions of both parts can
where V5 is the subspace spanned by the linear functionse studied independently. This decomposition enables us to restrict the

Cant1s.. . &m AN, forl < i < h, Vi is the subspace spanned byhumber of possible weight distributions for (almost) optimal cosets of
Toi—1 andro;. Let R(1,m) in R(r,m) whenm € {5,7,9} in some particular cases.
Ei={6eVod® - - DVi,wt(f¢) =0mod4}. Proposition 5: Let f € R(r,m) such thatf + R(1,m) is an (al-

most) optimal coset. Ifn € {5,7} andr = 4 orif m = 9 and
r = 3, f + R(1,m) has either the three-weight almost optimal dis-
tribution or the following five-weight distribution:

Assume thatn # 2h,i.e.,Vo # (. For anyo:, ¢2 € V5, we have

wh (f(¢1 + ¢2)) = wt (for) + wt (fd2) — 2wt (fd102).

m—

H om—1 9 1 m—1 :)M :)mfl
Since the quadratic function; ¢. does not contain any monomial weight 12 2 7 |2 27 |2
Tap_1a25 With 1 < &k < I, we have from Lemma 3 number of Word4‘ 3.2m~3 ‘ gm—l ‘2”“2
Wt (f(61 + ¢2)) = wt (fé1) + wt (fo2) mod 4. Proof: Let(Ay,..., A2m ) denote the weight distribution gf+

R(1,m). From Corollary 2, we know that,, = 0 except for

m

It follows that eitherEy, = V4 or Ey is a linear subspace df, of s
>

. . —3
codimensionl. Therefore|E,| € {2m2"~1,2m~2"} Let us now we 2" P27 2m T L2727
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m1 + Agm_1 = 2™, we
2

Moreover, we may assume without loss of generality the€f) = By combining this relation witl2 A

2m=! _2(m=1/2 guppose thaf + R(1,m) does not have the three- geduce that e
weight almost-optimal distribution. Since all hypotheses of Proposition )
2 are satisfied A moa=3 2™ andAgm_1 = 2777, O

Ef = {¢ € R(1,m),wt (f¢) = 0mod 2”771} o .
We notably recover the weight distributions of optimal cosets of

is a linear subspace @( 1, m ) which contains the all-one vector. After £(1,5) found by simulations in [4].

anonsingular affinetransformatiqn,we may assumel_ﬂ}eis spanned Corollary 3: Let f + R(1,5) be an optimal coset d8(1, 5). If f €
by 1, @i,...,@m-1. We now consider th™, m + 1]-linear codes  p(3 5) this coset has the three-weight optimal distribution; otherwise,
_ it has the five-weight distribution described in Proposition 5.
G=(+EHUE, Proof: Sincep(1,5) is even, any optimal coset &(1, 5) is gen-
erated by a function of degree at mdstFrom Corollary 2, we have
Co=(f+ (R(1,m)\ Ef))UE;. that f + R(1,5) is a three-weight optimal coset whe¢ne R(3,5).
. . When f has degred, this weight distribution can not appear since
We denote byf = (g, %) the decomposition of relatively toxy.. g, (f) > (m +1)/2 = 3. In this case, the five-weight distribu-
Using the same technique as in the proof of Proposition 3, we have tﬂéi given in Proposition 5 is the only possible weight distribution for

and

Co={(g+ v, h+ )0 € R(1,m — 1)} f+R(1.5). .
Ui, ¥),¢ € R(1,m = 1)}, A. Optimal Cosets aR(1,7) in R(5,7)

C={lg+v.h+1+¢).¢ € R(1Lm—1)} We now focus on optimal cosets @f(1,7) in R(5,7). We have
U{(¢,¢),v € R(1,m — 1)}. proved that there are only two possible weight distributions for optimal

cosets ofR(1,7) in R(4,7). We now show that, iff € R(3,7), then

Let (no,...,n2m) and(vo, . .., vem) denote the weight distributions - A B P
of these codes antii, . .. nin) and(vi-. ... vk ) the weight dis- f + R(1,7) has the three-weight optimal distribution.
tributions of their duals. By definition oE;, C; is a five-weight code Theorem 1: Let f € R(3,7) suchthatf + R(1,7) is optimal. Then
whose weight distribution is given by f + R(1,7) has the three-weight optimal distribution.
Proof: We may assume thatt (f) = 2™~ ! — 2"~ D/2 = 56,
vo =vam =1 Suppose thaf + R(1,7) does not have the three-weight optimal dis-
SR R gm=! tribution. It then contains a word of weiglf. Proposition 3 then

implies the existence of € R(1,6) such that the weights of +
R(1,6) belong to{26,30,34,38}. Let C be the[64, 8]-linear code

The second Pless power moment identity [22] applied to this code tHght F(1,6)) U R(1,6) and letdo, ..., A4 denote its weight distri-

Vom—1 = 2™ — 2,

leads to bution. We obviously havely, = Aes = 1, Ags = 126, Azs = Ass,
. and Az = Ass = 64 — Asg. SinceC C R(1,6), we have that
2 2, gBm—l | g2m—l | p2m=3 ¢t C R(4,6). It follows that the minimum distance 6f- is at least
— Wt = 4. The Pless second-power moment identity applied tieen leads to
— 22WL—1<2HL + 1) + 22mVL + 2”LI/-L. 64 .
’ ! : 3w A = (267 +387) Asg + (307 434%) (64— Az ) 43271264647
SinceE; contains the all-one vectar;" = 0. We deduce that; = w=o0
2™~3_ The definition ofC, also implies that =2'2.65.
vi =#{x € Fy™', g(x) = h(z)+1} = wt(g+h). This implies thatd. = 24 and Az, = 40. Without loss of generality,

) ) ) ) o we can suppose thatt (¢) = 26. By Proposition 2 we now deduce
Now, the five-weight cod€ has the following weight distribution: -+

o = 1z =1 E;,={¢ € R(1,6),wt (g + ¢) = 2mod 8}

n m—1 = 1] m_1 = A m—1

am—1__ m—1 m—1__ . . . . . .
2 2’ oA e 2 2z is a linear subspace (1, 6) of codimensiorl which does not contain

the all-one vectorE, is then the set of all linear functions with six

Here, the Pless second-power moment identity gives variables. Let’’ = (g + E,;) U E, and let(By, ..., Bss4) denote its
weight distribution. By definition, the weight of any codeworddh

m

Nom—1 = Agm—1 + 2" — 2.

om

< . . belongs to{0, 26, 32, 34}. Moreover, we have

Z w’ne = (2" 4 2"M)A L met gs to{0, 34}

w=0 2 -2 By = 1, Bs3o = 63, Bog = 24, andB34 = 40.
+ 22”L_2442m—1 + 23m—2 + 227n—l

By applying the Pless first-power moment identity@n we obtain

— 22WL—1(2WL + 1) + 22m77% + 2m77j. y ppy g p y
64

Exactly as forC,, we haveyi- = 0 and Z wB,, = 4000 = 2°(2° - Bi")
w=0

1 1. m—1 N AL 9gm—1 L

ny = #{x € F. , glx) =h(x)} =2 — ;.

2 #1 2 9(x) )} ’ where Bi- denotes the number of codewords of weidhin ceHt.

It follows that Since £, corresponds to the set of all linear functions with six vari-
. . . ables, we have thaBi- = 1 if ¢(0) = 0 andBi- = 0 otherwise. It
A me1 + 27" T T Ay =277 4 3277 ; i i i ifi
1t 2 follows that the previous identity is not satisfied and therefore ghat

2m—1_.
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R(1,6) cannot have the expected weight distribution.fSé R(1,7)
has the three-weight optimal distribution. O

Using Proposition 4 we are now able to restrict the number of pos-

sible weight distributions for optimal cosets &(1,7) in R(5,7) \
R(4,7).

Proposition 6: Let f € R(5,7) \ R(4,7) such thatf + R(1,7) is
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We obtained by simulations some functions of dedreeoviding dis-
tributions (V) and (V)
f(l\,r) = X1 X2T3T4X5 + T1T2X3TeT7 + T1T2T4X5

+ zixoxr + 124 + T25 + X376,

f(\/) = X1XoX3L4T5 + L1237 + T1X2 + T3T4 + T526.

optimal. Thenf+R(1, 7) has one of the following weight distributions. As pointed out in [23] and [18], the existence of a coseRo6f, m ) in

weight 56 | 60 | 64
72 | 68
48 | 64 | 32
number 50 | 56 | 44
of words || 52 | 48 | 656
56 | 32 | 80

Proof: From Corollary 2, the weight of any word i+ R(1,7)
belongs to{ 56, 60, 64, 68, 72}. Let (Ao, . . ., A125) denote the weight
distribution of f + R(1, 7). Proposition 4 implies that

|R(1,7)\ Ey| = Aso + Ass = 2460 = 27 _ 2 or2”

wherei € {4,5,6}. The weight distribution Bo, ..., Bi2s) of the

[128,9]-linear codeC = (f + R(1,7)) U R(1,7) then satisfies
By =Bz =1
B56 B72 = ‘456
Beo = BGS = ASO

and
Bgs = 254 + Ay = 510 — 2455 — 2A¢0.

The Pless second-power moment identity here gives

(56%+72%) Ass+ (60" +68%) Ao+ 64 (510 —2 A5 — 2 A6 ) + 128°
=227 +1).

R(r, m) with weight distribution Ao, ..., A>= ) implies the existence
of acoset of2(1,m’) in R(r, m’) with a “similar” weight distribution
., B,..) foranym’ = m +2i,i > 0

By 1 4gin = 27 Ay 14y, forall0 <u < 2™

the otherB;’s being zero. Using this construction we conclude.

-

Corollary 4: For any oddm > 7, there exists some almost op-
timal cosets oR(1,m)in R(5,m), f+ R(1,m), having the following
weight distributions:

weight distribution of f + R(1,m)
gm-14 975 [ gm-149772 | ogm-1 | deg(p) |
3.2m-3 gm-1 gm—2 4
25.2m—6 7.0m—4 11.2m-3 5
13.2m-5 3.om-3 7.2m4 5
7. 9m—4 gm-2 5.2m—3 5

B. Optimal Cosets aR(1,9) in R(3,9)

We have pointed out that, fear = 7, the existence of an optimal
weight distribution is strongly related to the degree of the considered
Boolean function. Finding how these parameters are related in the gen-
eral case appears as an interesting problem. It is known, for instance,
that, for any oddn > 5, there exists some almost-optimal cosets of

Itfollows thatAss = 64— Ago /4. We then deduce the complete weigth(.l* m) in R(4, 'm.) Who.se yveight distributions differ from the three-
distribution of f + R(1,7) corresponding to each one of the four pOS\_/velght almost-optimal distribution. But we conversely proved that any

sible values ofdso. O

optimal coset of?(1, 7) in R(3, 7) has the three-weight optimal distri-
bution. The following problem then immediately arises: do there exist

It follows that there are at most five different weight distributions foaimost-optimal cubic cosets d#(1,m), m odd, whose weights take
all optimal cosets oRR(1,7) in R(5,7). These results are summed upn more than three values?

in the following table.

weight 56 | 60 | 64 ! degree
72 | 68 of f
64 128 [ 3ord | ()
number || 48 ] 64 | 32 |[ 4or5 | (II)
of words || 50 | 56 | 44 5 (Im)
52 | 48 | 56 51 (IV)
56 | 32 | 80 5 V)

Moreover, we can exhibit a coset having anyone of these weight dtl -
tributions. Optimal cosets with weight distributions (1) and (l1I) hav
been found by Fontaine [18] (note that weight distribution (I) was o

tained both for functions of degré@eand4). Distribution (II) appears
for the following function of degre¢, fr), which is derived from the
five-weight optimal coset oR(1,5) found in [4]

fany = xaasrans + x1vons + xaka + X325 + Vo7

If such a coset exists for. = 9, it has the five-weight distribution
described in Proposition 5. Proposition 3 then implies that it is gen-
erated by a cubic function which is equivalent under the action of the
general affine group to

@)

whereg; andg. are some elements &f(3, 8) such that the weights of
g1 + R(1,8) andgs + R(1,8) lie in {116,124, 132, 140}.

We then determine by computer all cubic coset$201, 8) having
that property, up toAG Ls(F'>)-equivalence. Since representatives
of the 32G' Ls (F;)-orbits of R(3, 8) / R(2,8) are known, we only have
0 examine the cubic functiong € F; + R(2.8),1 < i < 32,
ere allF; are given in [24, Table 2]. Cosets whose weights lie in

(14 z9)gi(z1y...,28) + xoga(wi,y...,28)

W

3_116, 124,132,140} were found fotF; = Fi4, Fse, For. An example

g = T1X223 + L4526 + T1X7x8 + Tax7T8 + T1T5
+ T1x6 + X127 + L1208 + X224 + T2X5 + X227

+ r3xq4 + 56 + w577,
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For some pairs of such functions, construction (3) provides almost od17] F.J. MacWilliams and N. J. A. Sloan€he Theory of Error-Correcting

timal cubic cosets oR(1,9) having a five-weight distribution. An ex- Codes Amsterdam, The Netherlands: North-Holland, 1977.

ample is [18] C. Fontaine, “On some cosets of the first-order Reed-Muller code
with high minimum weight,"IEEE Trans. Inform. Theorwol. 45, pp.
1237-1243, May 1999.

f=mixons + vars26 + 1207708 + TaTTY + ToXT1TY [19] O. Moreno and J. C. Moreno, “The MacWilliams—Sloane conjecture on
the tightness of the Carlitz—Uchiyama bound and the weights of duals
+r1ws + X126 + 1107 + T1ws + X22a + 2205 of BCH codes,”IEEE Trans. Inform. Theorwol. 40, pp. 1894-1907,
+ T2w7 + X374 + T5X6 + X3T7 + Tox1. Nov. 1994.

[20] G. Cohen, I. Honkala, S. Litsyn, and A. LobsteilGovering
) Codes Amsterdam, The Netherlands: North-Holland, 1997.
We then deduce the following theorem. [21] L. E. Dickson,Linear Groups with an Exposition of the Galois Field
Theory New York: Dover, 1958.

Theorem 2: For any oddn > 9, there exists almost optimal cosets [22] v pless, “Power moment identities on weight distributions in error-cor-

of R(1,m) in R(3,m) having the following weight distribution: recting codes,Inform. Contr, vol. 3, pp. 147-152, 1963.
[23] R.A.Brualdi, N.Cai,and V. S. Pless, “Orphan structure of the first-order
; om—1 4 o2=L om—1 m=3  Sm—1 Reed-Muller codes,Discr. Math, no. 102, pp. 239-247, 1992.
weight |27 %2 = |27 £2= |2 [24] X.-D.Hou, “GL(m, 2) acting onR(r.m)/R(r—1,m),” Discr. Math,
number of word:%’ 3.2m—3 ‘ gm—t ’ om—2 no. 149, pp. 99-122, 1996.
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