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Abstract — The Hamming distance of a Boolean
function to the functions having many linear
structures is an important cryptographic param-
eter. Most notably, the accuracy of the approx-
imation of the combining function by a function
of fewer variables is a major issue in most attacks
against combination generators. Here, we show
that the distance of a function to the functions
having a k-dimensional linear space is highly re-
lated to its nonlinearity. In particular, we prove
that there is no accurate approximation of any
highly nonlinear function by a function depend-
ing on a small subset of its input variables.

I. Introduction

For any Boolean function involved in a symmetric ci-
pher, the existence of linear structures can be exploited
in a cryptanalysis. More precisely, the dimension of
the linear space of a function f , i.e., the dimension of
the subspace consisting of all a such that the function
x 7→ f(x+a)+f(x) is constant, has a great cryptanalytic
significance. For block ciphers, the complexity of an ex-
haustive key search can be divided by 2k when the linear
space of the encryption function has dimension k [6]. Fil-
tered registers using a filtering function with linear struc-
tures are also vulnerable to some attacks [14]. However,
the use of a function without linear structures does not
always prevent such attacks. Similar cryptanalytic tech-
niques can still be performed when it is possible to find an
accurate approximation of a function by a function hav-
ing linear structures. Therefore, the Hamming distance of
a Boolean function to the set of all functions with linear
structures is an important cryptographic criterion, which
was investigated by Meier and Staffelbach [9]. Here, we
focus on the distance of a function to the set of all func-
tions having a k-dimensional linear space. Indeed, the
complexities of most attacks exploiting the existence of
linear structures highly depend on the dimension of the
linear space.

Amongst all functions having a k-dimensional linear
space, the functions for which all linear structures a sat-
isfy f(x + a) + f(x) = 0, for all x, present an additional
weakness. These functions are usually called degenerate
because their values only depend on a subset of the in-
put variables. Most notably, the existence of an accurate
approximation of a Boolean function by a function de-

pending on fewer variables is a major issue for the crypt-
analysis of combination generators.

Combination generators are classical devices for gen-
erating a running-key in stream ciphers. They consist of
n linear feedback shift registers (LFSR) combined by a
nonlinear Boolean function f of n variables. The secret-
key of the system is then composed of the initializations
of the n constituent LFSRs. It consists of L1 + . . . + Ln

bits, where Li denotes the length of the i-th LFSR. Such
running-key generators are vulnerable to correlation at-
tacks [13]. These “divide-and-conquer” techniques ex-
ploit the existence of a correlation between the running-
key and the output of one constituent LFSR for recov-
ering the initialization of each LFSR separately. But
Siegenthaler’s original attack can be prevented by using
a correlation-immune combining function [12]. In this
case, the running-key is statistically independent of the
output of each constituent LFSR; any correlation attack
should then consider several LFSRs together. More gen-
erally, a correlation attack on a set of k LFSRs, namely
LFSR i1, . . . , LFSR ik, exploits the existence of a cor-
relation between the running-key and the output σ of
a smaller combination generator, which consists of the
k involved LFSRs combined by a Boolean function g of
k variables. This attack only succeeds if there exists a
function g of k variables whose output is correlated to
the output of f , i.e., if there exists g such that

pg = Pr[f(X1, . . . , Xn) 6= g(Xi1 , . . . , Xik
)] 6= 1

2
.

When such a function exists, different attacks can be
performed. In fast correlation attacks [8], the running-key
is seen as the result of the transmission of σ through the
binary symmetric channel with cross-over probability pg.
Any subsequence of σ is a codeword of a linear code,
C, whose dimension corresponds to the linear complexity
of σ. In this context, the attack consists in recovering
the initializations of the k involved LFSRs by decoding
the running-key relatively to C. Therefore, the perfor-
mance of all techniques for fast correlation attack highly
depends on the Hamming distance between f and its best
approximation by a function of k variables, g, and on the
dimension of the associated code, which is usually equal
to g(Li1 , . . . , Lik

) where g is evaluated over integers.
Another technique for recovering the initializations of

the k involved LFSRs consists in solving a system of mul-
tivariate equations with a Gröbner bases algorithm [7].



Any output bit of the i-th LFSR can obviously be ex-
pressed as a linear combination of its initial bits. There-
fore, if we approximate f by a function g of k variables,
the knowledge of any m running-key bits provides a sys-
tem of m multivariate equations, which only depends on
Li1 + . . . + Lik

variables (corresponding to the initializa-
tions of the k LFSRs i1, . . . , ik) and which holds with
probability (1 − pg)m. Suppose that the attacker knows
(1− pg)m different subsets of m running-key bits. Then,
the attack consists in successively applying a Gröbner
bases algorithm for solving the systems of m equations
corresponding to all m-bit subsets of the running-key [4].
Here, the performance of the attack depends on the Ham-
ming distance between the combining function f and its
approximation by a function of k variables, g, on the num-
ber of involved variables, Li1 +. . .+Lik

, and on the degree
of g.

Therefore, the number k of involved registers plays a
major role in both attacks: the number of involved vari-
ables, Li1 + . . . + Lik

, and the distance of the combin-
ing function f to the set of all functions depending on
k variables both increase with k. The attacker has then
to determine the subset of LFSRs which yields the best
trade-off between both parameters. Moreover, these at-
tacks require the approximation g to have a low degree.
When the combining function f is t-resilient (i.e., t-th or-
der correlation-immune and balanced), the smallest num-
ber of LFSRs that should be considered in the attack is
(t + 1). In that case, the Boolean function g of (t + 1)
variables which provides the best approximation of f is
the affine function

∑k
j=1 xij + ε [3, 16]. The number of

involved variables and the dimension of the code which
appears in fast correlation attacks are then minimal but
the error-probability pg is lower-bounded by NL(f)/2n

where NL(f) denotes the nonlinearity of the combining
function f . The following natural question then arises: is
(t+1) the optimal number of LFSRs that should be con-
sidered together in such attacks? The underlying problem
is the existence of an accurate approximation of the n-
variable combining function f by a function g with 2n−k

linear structures a satisfying g(x + a) + g(x) = 0, for all
x. Zhang [16] recently investigated this problem. Most
notably, he focused on the approximation of a bent func-
tion by a Boolean function of fewer variables. His re-
sults point out that the Hamming distance between an
n-variable bent function and any k-variable function is
always high when the number of involved variables k is
small regarding to n. Here, we show that this property
holds for any highly nonlinear function, since we prove
that the Hamming distance between a function f and the
set of all functions having a k-dimensional linear space is
highly related to the nonlinearity of f . As a consequence,
the optimal number of LFSRs that should be considered
together for cryptanalysing a combination generator is
t + 1 when the t-resilient combining function has a high
nonlinearity.

II. Preliminaries

We denote by Bn the set of all Boolean functions of

n variables. For any α ∈ Fn
2 , ϕα is the linear function

x 7→ α ·x in Bn, where “·” denotes the usual dot product.
Moreover, V ⊥ denotes the dual of a subspace V ⊂ Fn

2

relatively to this dot product. The Hamming distance
between two Boolean functions f and g in Bn is denoted
by dH(f, g). It corresponds to the number of elements
x ∈ Fn

2 for which f(x) 6= g(x).
A powerful tool for studying the properties of Boolean

functions is the Walsh transform. We denote by F(f) the
value in 0 of the Walsh transform of f ∈ Bn:

F(f) =
∑

x∈Fn
2

(−1)f(x) = 2n − 2wt(f)

where wt(f) is the Hamming weight of f . A function
is said to be balanced if F(f) = 0. With the previous
notation, the Walsh spectrum of a function f ∈ Bn is the
multiset {F(f + ϕα), α ∈ Fn

2}. An important parameter
for a Boolean function, which has a great significance for
different cryptographic applications, is its nonlinearity.

Definition 1 The nonlinearity of a Boolean function f ∈
Bn is its Hamming distance to the set of affine functions.
It is equal to can be expressed as

2n−1 − 1
2
L(f) where L(f) = max

α∈Fn
2

|F(f + ϕα)| .

Any Boolean function f ∈ Bn satisfies L(f) ≥ 2n/2; the
functions for which equality holds are called bent func-
tions [11].

Other cryptographic criteria are related to some prop-
erties of the derivatives of a Boolean function.

Definition 2 Let f ∈ Bn. For any a ∈ Fn
2 , the deriva-

tive of f with respect to a is the function Daf ∈ Bn de-
fined by Daf(x) = f(x+a)+ f(x). The linear space of f
is the subspace of those a such that Daf is a constant
function. Such a nonzero a is called a linear structure
for f .

Notation 3 For any positive integer n and any linear
subspace V ⊂ Fn

2 , we denote by LS(n, V ) the set of all
Boolean functions of n variables whose linear space con-
tains V , i.e.,

LS(n, V ) = {f ∈ Bn, Daf is constant, ∀a ∈ V } .

Additionally, for any integer k ≤ n, LS(n, k) is the set of
all functions in Bn whose linear space has dimension at
least k. Similarly, we denote by LS0(n, V ) the subset of
LS(n, V ) defined by

LS0(n, V ) = {f ∈ Bn, Daf = 0, ∀a ∈ V } ,

and LS0(n, k) is the set of all functions in Bn having at
least 2k zero derivatives.

A particular case is the set Bn(I) of all n-variable
functions which only depend on xi, i ∈ I where I is a
subset of {1, . . . , n}. Then, Bn(I) exactly corresponds



to LS0(n, V ) with V = Span(ei, i ∈ {1, . . . , n} \ I),
where ei is the i-th canonical basis vector. It follows
that the Hamming distance between any function f ∈ Bn

and the set Bn(k) of all functions in Bn depending on
k input variables only, k ≤ n, is lower-bounded by
dH(f, LS0(n, n− k)).

It is worth noticing that the distance of f to the func-
tions of fewer variables may be of little significance in
some applications because it is not invariant under the
action of the general affine group. As pointed out by
Meier and Staffelbach [9], some weaknesses of the involved
Boolean function f may be exploited up to equivalence
in the sense that some attacks equally apply to f and to
any function derived from f by a simple transformation
(especially by an affine transformation). It turns out that
the quantity that should be considered in such a context
is not the distance of f to the set of all functions in Bn

depending on k input variables only, but its distance to
the set of all functions in LS0(n, n−k). Actually, we have

dH(f, LS0(n, n− k)) = min
π∈AGL(n)

dH(f ◦ π,Bn(k)) ,

where AGL(n) is the general affine group.
Moreover, it appears that, for any subspace V ⊂ Fn

2 ,
the set LS(n, V ) can be obtained from LS0(n, V ) by ad-
dition of some linear functions:

LS(n, V ) = {g + ϕb, g ∈ LS0(n, V ), b ∈ W⊥} .

Therefore, for any function f ∈ Bn, we have

dH(f, LS(n, V )) = min
b∈W⊥

dH(f + ϕb, LS0(n, V )) .

III. Distance of a function to the functions
having a k-dimensional linear space

Let f be a Boolean function of n variables. For any
subset V ⊂ Fn

2 , we denote by fV the restriction of f
to V , i.e., the function defined on V by fV (x) = f(x), for
any x ∈ V . When V is a k-dimensional linear subspace
of Fn

2 , fV can obviously be identified with a function of
k variables. Similarly, for any coset a+V of V , we identify
fa+V with h ∈ Bk as follows: h(x) = f(x + a), x ∈ V .
Then, the decomposition of f with respect to V is the
sequence {fa+V , a ∈ W} where V × W = Fn

2 and all
fa+V are considered as Boolean functions in Bk.

Now, we express the distance of a Boolean function
to LS(n, V ) and to LS0(n, V ) by using its decomposi-
tion with respect to V . The following theorem provides
a new expression and a generalization of a result due to
Zhang [16, Th. 1].

Theorem 4 Let f ∈ Bn, let V be a k-dimensional sub-
space of Fn

2 and let W be such that W × V = Fn
2 . Then,

we have

dH(f, LS0(n, V )) = 2n−1 − 1
2

∑

a∈W

|F(fa+V )| .

Moreover,

dH(f, LS(n, V )) = 2n−1 − 1
2

max
b∈W⊥

∑

a∈W

|F((f+ϕb)a+V )|.

Therefore, the Hamming distance of f to the set of all
functions having a linear space of dimension at least k
involves the weights of all elements of the decomposition
of f with respect to a k-dimensional subspace. But, these
weights are related to Walsh coefficients of f as shown
by [2, Th. V.1]. We then deduce a lower bound on the
distance of a function f to LS(n, k), which involves the
nonlinearity of f .

Theorem 5 Let f ∈ Bn and let V be a k-dimensional
subspace of Fn

2 . Then,

dH(f, LS0(n, V )) ≥ 2n−1 − 1
2


 ∑

α∈V ⊥

F2(f + ϕα)




1
2

.

Therefore, the distance of f to the set of all functions
having a linear space of dimension at least k satisfies

dH(f, LS(n, k)) ≥ 2n−1 − 2
n−k

2 −1L(f)

where L(f) is the highest magnitude occurring in the
Walsh spectrum of f , i.e., L(f) = maxα∈Fn

2
|F(f + ϕα)|.

The previous theorem clearly points out that any
highly nonlinear function lies at high Hamming distance
to the set of all functions having a k-dimensional linear
space, when k is large. In particular, when a function f
has a high nonlinearity, there is no accurate approxima-
tion of f by a function depending on a small subset of
its input variables. Note that, for bent functions, the
previous theorem directly improves Zhang’s result [16,
Theorem 5].

IV. Approximations of resilient functions and
of functions satisfying the propagation

criterion

When f is used in a combination generator, the dis-
tribution probability of its output should be unaltered
when any t of its inputs are fixed [13]. This property is
called t-th order correlation-immunity [12]. Balanced t-th
order correlation-immune functions are called t-resilient
functions. Such functions are characterized by the set of
zero values in their Walsh spectra [15]. Now, Theorem 5
allows to estimate the distance of a resilient function to
all functions depending on fewer variables.

Theorem 6 Let f ∈ Bn be a t-resilient function. Then,
the Hamming distance of f to the set Bn(k) of all func-
tions depending on k input variables satisfies:

dH(f,Bn(k)) ≥ 2n−1 − L(f)
2

(
k∑

i=t+1

(
k

i

)) 1
2

.

Note that this theorem clearly implies that any t-resilient
function is uncorrelated to any function depending on
t variables only. Moreover, we also recover from Theo-
rem 5 that the Hamming distance of a t-resilient function
to the functions depending on (t + 1) variables, xi, i ∈ I,



is equal to 2n−1− 1
2 |F(f +ϕu)| where u is the n-bit vector

of support I [3, 16]. Theorem 5 actually proves that this
value is a lower bound for dH(f,B(I)), and it is an up-
per bound too since it is achieved by the affine function∑

i∈I xi + ε.
Some applications require that the output difference

of a Boolean function be uniformly distributed for low-
weight input differences. This property, referred as propa-
gation criterion [10], is notably important when the func-
tion is used in a hash function or in a block cipher. This
criterion involves some properties of the derivatives of f .

Definition 7 A function f ∈ Bn satisfies the propaga-
tion criterion of degree t (PC(t)) if F(Dαf) = 0 for all
α ∈ Fn

2 such that 1 ≤ wt(α) ≤ t.

The propagation criterion is clearly related to the dis-
tance to the functions having linear structures. This dis-
tance is maximal if and only if the involved function sat-
isfies PC(n) [9]. More generally, when f satisfies the
propagation criterion of degree t, the lower bound on its
distance to the set of all functions depending on k vari-
ables can be improved, especially for k ≥ n−t, by using [1,
Prop. 5].

Theorem 8 Let f ∈ Bn be a function satisfying PC(t).
Then, the Hamming distance of f to the set Bn(k) of all
functions depending on k input variables satisfies:

dH(f,Bn(k)) ≥ 2n−1 − 2
k
2−1

(
2n +M(f)

n−k∑

i=t+1

(
k

i

)) 1
2

where M(f) = maxe 6=0 |F(Def)|.
Most notably, if k ≥ n− t, we have

dH(f,Bn(k)) ≥ 2n−1 − 2
n+k

2 −1 .

Note that this theorem provides the same upper bound
as Theorem 5 for bent functions, since n-variable bent
functions satisfy PC(n).

V. Distance of a bent function to the
functions having a k-dimensional linear space

The case of bent functions is of most interest because
they lie as far as possible from the functions having lin-
ear structures. Moreover, it clearly appears from The-
orem 5 that their distance to the functions having a k-
dimensional subspace is high, because it is lower-bounded
by 2n−1 − 2n−1− k

2 . However, bent functions may have
different behaviors in the sense that the accuracy of their
best approximation by a function having 2k linear struc-
tures may vary when k > 1. Now, we characterize the
bent functions which lie as close as possible to the func-
tions having a k-dimensional linear space, i.e., the func-
tions which achieve the previous lower bound. This char-
acterization is related to some properties of the dual func-
tion.

Definition 9 [5] Let f be a bent function in Bn. Then,
there exists a Boolean function f̃ ∈ Bn, called the dual of
f , such that

F(f + ϕα) = 2
n
2 (−1) ef(α) for all α ∈ Fn

2 .

Theorem 10 Let f ∈ Bn be a bent function and let V be
a k-dimensional subspace of Fn

2 . Then,

dH(f, LS(n, V )) ≥ 2n−1 − 2n−1− k
2

where equality holds if and only if k is even and the re-
striction of the dual function, f̃ , to a coset of V ⊥ is bent.
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