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On Cryptographic Properties of the Cosetg0t, m)

Anne Canteaut, Claude Carlet, Pascale Charpin, and Caroline Fontaine

Abstract—We introduce a new approach for the study of weight domains, the Boolean functions defined on the Egt of all
distribut_ions of cosets of the Ree_d—MuIIer code of ord(_al_l. Our ap-  binary words of lengthm play an important role. Some open
proach is based on the method introduced by Kasami in [1], using qpjlems on Boolean functions are of most interest in both
Pless identities. By interpreting some equations, we obtalnaneces-f. Ids. O f th is the det inati f th functi
sary condition for a coset to have a “high” minimum weight. Most e ) S. ) ne o em Is _e e.ermlna Ion o 0se functions
notably, we are able to distinguish such cosets which have three Which lie at large Hamming distance from the Reed-Muller
weights only. We then apply our results to the problem of the non- code of orderl, R(1, m). This code can be viewed as the
linearity of Boolean functions. We particularly study the links be- get of all affine forms on then-dimensional vector space
tween this criterion and the propagation characteristics of a func- F" (an affine form is the sum of a linear form and of one of
tion. the constant®) or 1). The Hamming distance between two
Boolean functions is equal to the number of wordsFf at
which they take different values. The maximum Hamming
distance between a general Boolean function &¢d, m) is
MAIN NOTATION the covering radius of this code. Its value is known only when

* 13, is the set of Boolean functions af variables; m 1S even or_wherm_: 1,357 . i

« Q. f € By is the codeword of length™ equal to the 'I_'he covering radius of a cpde is an |mpqrtant paramef[er,
ordered list of all values of; 0 and1 denote, respectively which can be used for analyzing and improving the decoding
the zero codeword and the’all—one codewor’d' " algorithms devoted to this code. The knowledge of the covering

« 2.y denotes the usual dot product between two vectausd radius of R(1, m) has Fherefore thgoreucal and practical im-
portance for coders. It is also a serious challenge for cryptogra-

Index Terms—Boolean function, derivation, nonlinearity, prop-
agation criterion, Reed—Muller codes.

. ‘y/’L denotes the dual of a subspdce F", i.e phers: the design of conventional cryptographic systems relies
T on two fundamental principles introduced by Shannondah-
Vi={z e Fy|VyecV, z-y=0} fusionanddiffusion The distance from a Boolean function to

the set of all affine functions is called tm®nlinearity of the

* {¢aler € F3'} is the subset oB3,,, consisting of all linear fynction and it allows to quantify some kind of confusion. More

functions precisely, the Boolean functions used in block ciphers must have
Do T = - T a large nonlinearity to resist linear attacks [3]; in stream ciphers,
' the use of highly nonlinear Boolean functions prevents fast cor-
e H, denotes the kernel af,; relation attacks [4]. The knowledge of the maximum nonlin-
o F(H), LIf), MD(£), V(f), andN (f) are, respectively, de- earity of Boolean functions is therefore necessary to appreciate
fined by (1), Definition I1.1, (5), and (6); (together with other criteria) the practical interest of a given
+ F is the finite field of orderg; Boolean function for cryptographic applications. Unfortunately,
» Ais the group algebr&’;[{FY’, +}]; the covering radius aR(1, m) for oddm > 9 is unknown. We
* W is the set of two-dimensional affine subspace#%, know only that it lies betwee™—! _o™5 andem—1_2% -1
* Wy is the set of two-dimensional linear subspaces; (the lower bound can be slightly improved far > 15). One
* {e1, ..., ex) is the linear space spanneddy ..., ¢x. aim of this paper is studying, fen odd, those functions whose
nonlinearities lie between these two numbers.
. INTRODUCTION For m even, the situation seems better since we know the

m
. . . : ; < om— -1
HE general framework of this paper is double: codingxact value of the covering radius &{1, m): 2™+ — 22
theory (and in particular the class of Reed—Muller codeégxcept that theentfunctions, whose nonlinearity is maximum,
on one hand and symmetric cryptography (block ciphers aate not all determined and that their determination is considered
stream ciphers) on the other hand. In both of these geneala difficult open problem). However, from a cryptographic
point of view, the case: even is in fact not better than the case
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We study also other cryptographic criteria related to the no- Section V deals with the propagation criterion and its rela-
tion of diffusion. Thestrict avalanche criterio{SAC) was in- tions with the nonlinearity. A function is said to be almost-op-
troduced by Webster and Tavares [5] and this concept was gémal (resp., three-valued almost-optimal) if the associated coset
eralized into theoropagation criterion(PC) by Preneel [6] (see of R(1, m) satisfies this property.
also [7]). The SAC, and its generalizations, are based on thdn Section V-A, we study thesum-of-squares indicator
properties of the derivatives of Boolean functions. These prop{f) of a Boolean functionf, which measures thglobal
erties describe the behavior of a function whenever some ingwialanche criterion(GAC)—introduced in [9]. We first give
coordinates are complemented. We want to point out the @ upper bound ol( f) in the case wherg is almost-optimal
lations between the propagation criterion and the nonlineariti2Zroposition V.2). This result will have a lot of applications in
These two criteria are of most interest and form the subjectthe sequel of the paper. For instance, we show in this section
many current works. The general idea we develop, with thetfeat an almost-optimal function of degrgenust have “many”
aims, is that the whole Fourier spectra of the functions have tolb@lanced derivatives (Corollary V.1).
taken in account. This point of view leads us to consider both theWe next study the restrictions of a Boolean functjoio each
Fourier spectrum of any given Boolean function and the cosaiset of any linear subspace BY' (Section V-B). The main
of the Reed—Muller code of ordérgenerated by the associatedesult is given by Theorem V.1, where we establish a relation
codeword. Therefore, several representations are proposedygtween the Fourier spectrum pand the Fourier spectra of its
particular in the context of group codes, the aim being to hawestrictions to these subspaces.
in hand all useful tools. In Section V-C, we examine the cases where the derivatives

The paper is organized as follows. Section Il is devoted #3. ./ of a given functionf are balanced for any# 0 belonging
the presentation of the main tools. We first give basic propertis @ subspace of codimension 1 or 2. These cases allow us
on Boolean functions oF”* where the functions are implicitly t©0 obtain some characterizations of bent functions and of
represented by thealgebraic normal formsThe study of al- three-valued almost-optimal functions. Theorem V.3 is most
gebraic properties of Boolean functionsrafvariables leads us Surprising since it provides a full explanation of links between
to the study of binary codewords of leng2 and of their re- bent functions and three-valued almost-optimal functions.
lation with Reed—Muller codes. On the other hand, we need toln the last section, we consider Boolean functions whose non-
use any basis i#* and to treat some permutations BY'. So balanced derivative®,, f exist whena belongs to a subset of
the codewords are viewed as formal sums in the binary grol@k* < m only. In this case, we can be more precise, by ap-
algebraA of the elementar2-group { F-, +}. Section Il is plying the results of Section V-B. We notably characterize the

also devoted to the derivation and its significance considerig§nost-optimal functions which have a linear structure (Corol-
the operations i. laries V.4 and V.5). By Theorem V.5, we show that the links

tween such functions and some of their decompositions are

These tools are applied in Section Ill, where we study trpt?e .
of most interest.

maximal odd-weighting subspaoéa given Boolean function

f. This concept was recently introduced in [8] and was shown
to be linked with the nonlinearity of. By replacing this con-
cept in the ambient space of Reed—Muller codes, we prove thelThe distance between two codewords will always be
existence of maximal odd-weighting subspaces, forfafiyhe- the Hamming distance. Theveight of any binary vector

II. DEFINITIONS AND BASIC PROPERTIES

orem l11.1). a = (a1, ..., a,) will be the Hamming weight
Section IV is devoted to the study of weight distributions wt (@) = zn:w
of cosets ofR(1, m). By Theorem IV.1 we establish general B < v

results on the weight polynomial of any binary linear code ofpe support ok, denoted b)gung(a), is the set of all labels
length2™ and dimensionn + 2. We introducealmost-optimal  gych thats; + 0.

cosetsof R(1, m) which correspond to functions with a
high nonlinearity (see Definitions 1.1 and IV.1). ConsideringA. Boolean Functions

the codeD U R(1, m), where D is any coset off(1, m), We denote byB,,, the set of Boolean functions of variables.

Corollary 1V.1 is then deduced: we show that it is possibl@etf € B,,; thus, f is a function fromF? to F'». The classical
to distinguish among almost-optimal cosets those which hat‘@presentation of is its algebraic normal form
three weights only, theahree-valued almost-optimal cosets

The next subsection is an extension of Corollary IV.1. We f(zy, ..., Zm) = > Au <H a:é“) , Ay € Fy.

exhibit as an indicator of the nonlinearity, the numibegrof ucFy i=1

codewords of weight in the dual code. We are more explicitThe degreeof f, denoted bydeg( f), is the maximal value of

about the computation @i, for cosets which are contained inwt (») such that\, # 0. On the other hand, let us denote by

the third-order Reed—Muller cod@(3, m). Qs the codeword equal to the list of all valugér), = € F5'.
Note that, whenn is odd, the main open problem is the deThen we denote by the mapping”(f) = 3=, pm (1))

termination of almost-optimal cosets Bf 1, m) with unknown  related to théourier transform(see below). It is also related to

weight distributions. But the context is similar foreven, if we the weight of the codewortt;

consider the problem of the nonlinearity of balanced Boolean F(f) = Z (=17 = 2™ 2wt (Q)). (1)

functions. )
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We denote byp,, o € F5', the linear functionc — « - x. [9]. These criteria are based on the properties of the functions

Note that the algebraic normal form ¢f, is xr— f(z)+ f(x +a),a € Fy".
e 7 Definition I1.3: Let f be a Boolean function ofy' anda €
Palry, oo Tm) = 2 iy @; € £2. F7'. We denote byD, f the derivative off with respect ta:

We now give a list of basic definitions and properties; we keep Do f(z) = f(z) + fla+ ).
the above stated notation.

Definition I.1: WhenF(f) = 0, the functionf is said to be
balanced The mappingy € F3' — F(f + ¢.) is called the
Fourier transformof f. The multiset

i) The linear spaceof f is the linear subspace of thoge
such thatD,, f is a constant function. Suah) a # 0, is
said to be a linear structure ¢f[14].

i) Let E C F'. The functionf satisfiesPC with respect to

{£F(f + pa)|a € F3'} Eiffor all ¢ € E the functionD. f is balanced.
is called theFourier spectrunof f. ThenonlinearityA’(f) of i) The function f is said to have a good GAC [#(D..f)|
[ is the minimum Hamming distance betwe@p and all code- is zero or is very close to zero for most nonzero
words associated to the affine functiops andya + 1. 1tiS  we now recall some fundamental formulas. Parseval's relation
equal to2™—1 — % where Z , ,
Ff +pa) =27 )
£(f) = max |F(f + va)l. acFy
2

. ] and a formula which states the link betwegand its derivatives
Note that we are not only interested in the values appearing

in the Fourier spectrum, but also in the number of times they FAf+¢a) = Z F(Dof + ¢ala))
occur. The multisef+F( f + ¢, )} is often called thextended acFy
Walsh spec_trum_(see, for_lnstance,_ [10]). _ _ _ Z (—1)**F(D, f). ©)

The nonlinearity off being the minimum Hamming weight =1
of the cosef2; + R(1, m) we haveN (f) < p(R(1, m)) where e . _
p(R(1, m)) is thecovering radiusof R(1, m): This was proved by Carlet in [15] and [16], giving particularly

20 £\ _
p(R(1, m)) = max < min  wt (X)) . FAD= Z F(Daf). @
yeEF™ \xCy+R(1,m) acF

Whenm is even, it is known thap(R(1, m)) = 27—+ — In [9], the authors propose two indicators related to the GAC:
9m/2-1 and that the Fourier spectrum of functions of maxima¥€ shall denote bpMD(f) theabsolute indicator
nonlinearity is unique [11]. In particular, it does not contéin MD(f) = max \F(Dof)| (5)
(hence those functions are not balanced). ;a0

Definition I1.2: A Boolean functionf € 5,,, m even, issaid and byV(f) the second moment of the autocorrelation coeffi-
to be bent when cients called thsum-of-squaresdicator

N(f) = p(R(1, m)) =2t —2m/L, V()= FADuf)= Y F(DuDpf). (6)

aCFL" a,bCFy

Note that obviously(f) > 2™, sinceF?(Dyf) = 2*™. The
next formula provides a relation betwe¥lf) and the Fourier
spectrum off, i.e., the valuesF(f + o )|, o € FJ".

The Fourier spectrum of such a function{i&2"/2}.

The case wheren is odd is completely different. A recent
review is given in [12]. We have [13]

2"l 277 < p(R(1,m)) < 2" —22 L Proposition I.1: For any Boolean functiofi € 5,,,, we have
m—1
Form = 3,5, 7, p(R(1, m)) is equal to2™* —2 2 . But Vec Fy', Z FH 4+ 0a)FAf + Pate)
the exact lower bound is not known for > 9. a€EFY
. Afunctlon has gyood nonlinearityif !ts nonlinearity is large, —gm Z FAD,f) (~1)~°
i.e., if £L(f) is small. We say thaf(f) is small when o=t
22 < £(f) < 20mtD/2, providing, fore = 0, a relation between the Fourier spectrum
This corresponds to the case where of f and the sum-of-squares indicator defined by (6)
2771—1 _ 2%_1 < N(f) < 2771—1 _ 2%—1. Z fA(f + SO(Y) = 2nlv(f) (7)
- aCF*
The SAC was generalized into theopagation criterion(PC) Proof Let

by Preneel [6]. More recently, Zhang and Zheng introduced
the global avalanche criteriofGAC), in order to measure the G= Z FHE+ 0a)FAHf + Codte)-
global avalanche characteristics of cryptographic functions acFT
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According to (3), we have for all € F5’ lation immunity. However, this concept is strongly related to the
properties of balanced functions and thus with our next results
G = Z Z F(Dof) (=1)™° (see [10, Sec. 7).
aCF \aCF7* Definition 11.4: Lete = (ey, ..., ¢,,) be any basis of;".
A function f € 13,,, is said to becorrelation-immune of ordek,
. 1<k <m, with respect te if for any vectora =(c1, ..., am)
_1\b-(a+te) ) )
X sz: F(Duf) (1) in 7' such thad < wt () < k, the function
cFy
= 3 S FDNHFD) (~1)Eeree frea a=) o
a€FT a,beFT? =1
= Z F(D f)F(Dyf)(=1)"° Z (—1)(oth) is balanced. The functiofiis said to beaesilient of orderk if it
a,beFy: acFy is additionally balanced.
where We now recall the simplest link between nonlinearity and re-
Z (—1)) = g siliency.
weFy Proposition 11.2: Let f € B,,. Letus denote by the number

of 0’s in the Fourier spectrum of. Then we have
unlessa = b. Then we deduce, for anye F5'

2m

G=2" 3 FADf)(-1)"". v<2m - 2
acFy . T . N .
) o with equality if and only if the values occurring in the Fourier
We complete the proof by using the definition of the S“m'og'pectrum off lie in {0, =£(f)}

squares indicator given by (6).

Most notably, this implies:

Our purpose is to point out that there are interesting connec-, or ,,, even ifL(f) < 20m+2)/2 theny < 2m—1 4 gm=2
tions between the GAC and_ the npnlmeanty. Npte, as a trivial  \ith equality if and only if the values occurring in the
example, that the bent functions—i.e., the functions which have o rier spectrum of lie in {0, £207+2)/2};
the best nonlinearitg™—! —2271 for m even—have a perfect | for m odd, if £(f) < 2(m+1)/2 theny < 271 with
GAC’ since their derivatives are all bala2nnciédr such a func- equality if and only if the values occurring in the Fourier
tion f, we haveMD(f) = 0 andV(f) = 2*™. Moreover these spectrum off lie in {0, +2(m+1/2}
equalities hold for bent functions only. ’ '

On the other hand, a functighwhich has a linear spadé Proof: We simply use Parseval's relation (see (2)). Het
satisfies be the set of alkx such thatf + ¢, is not balanced. Then we
have
[F(Daf)l =27,  VaeV 8)

Z FQ(f‘i‘(Pa) = 22",
(see Definition 11.3). HenceMD( f) takes the maximal value acA

and one can say thgthas not a good GAC. We obviously de-_. .
duce a lower bound fov( f). Since|A| = 2™ — v, we deduce that

Lemma II.1: A function f, which has a linear spadé of di- L™ —v) > 22
mensionk, k > 1, satisfies (8) and is such thel{ f) > 22m+k

However, the nonlinearity of a functiofwhich has a linear €.
structure is not always so bad. We will show later that there 22m

exist such functions satisfying(f) = 2(m*2/2 for evenm v < 2™ - LR
and£(f) = 20m+1/2 for oddm (see Corollaries V.4 and V.5).
) i ) ... Equality in the above formula holds if and only if all nonzero
For clarlty,' we notice tthD(f) an.dV(f) are invariant i values of the Fourier spectrum are equatio( f). 0
we changef into f + ¢,: sinceD,¢,, is a constant function,
we have Remark I1.1: By the previous property we give a significant
upper bound on the number of balanced functipase,,, when
| F (Do)l = |F(Da(f +¢a))l,  foranya f has a good nonlinearity. This contradicts a high order of re-
implying the next property. siliency.
Lemma Il.2: For anya € Fy', we have B. Product and Derivation
MD(f 4+ po)=MD(f) and V(f+¢.) = V(f). The study of properties of Boolean functionsrafvariables

leads us to the study of binary codewords of lerjth More
We want to end this section with few elementgesilient func- generally, any set of Boolean functions provides a set of code-
tions In this paper, we do not emphasize the criterion of correvords and can be studied by means of tools of coding theory.
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The main concern is with Reed—Muller codes as we first stathereP'P? = Pit+i andP™+! = {0}. Recall the fundamental
in the next definition. result, due to Berman [20] (see also [17, Theorem 4.2]).

Definition 11.5: The Reed—Muller code of lengtt™ and Theorem II.1: The powers of the radical of the algebdzare
orderr, 1 < r < m, denoted byRR(r, m), is the binary code of the Reed—Muller codes. More precisely, for anyR(r, m) =
length2™ composed of the codewor€sy wheref is a Boolean P™~".

function of m variables whose degree is less than or equal to In the sequel, we will generally use the notatiBhwhen we

We described above some propertiesif by taking the have to handle some multiplications.i Recall thatP? is the
standard basis i#'y". It is clear that any basis can be chosersubspace generated by the codewords whose supports are the
From now on, we will consider that € 5, is a function from j-dimensional subspaces £7'[17, Corollary 3.11]

F7 to F; whereFy is viewed as an additive group. We will fix j

a basis inF'y' when it will be necessary. However, we have to v _ v _ :

mention that generally, for cryptographic applications, the basis 2 Xr=]ler . V= to o) O

is fixed and the properties have to be considered relatively to
chosen basis.

The concept of “derivative” can be seen as a multiplication
a group algebra, the ambient space of binary codes of |&figth

veV i=1
ﬂPﬁe so-calledlenning’s Basiprovides a basis ofl containing

a basis of eac®’ as we recall in the next proposition—a proof,
R any characteristic, can be found in [17, p. 1299].

We begin by recalling some definitions and properties. An ex- Proposition 11.3: Let (e, ..., e,,) be a basis of'5". Then
tensive study was made by Assmus and Key in [17] and Charpie set
in [18] and [19]; we only give basic elements for the use of the m
algebraic tools which are provided here. { H (X 4+ D)% (k1, ..., k) € {0, 1}’"}
=1

Definition 11.6: Let us denote by.A the group algebra : ) )
F,[F7']. The algebrad is the set of all binary words of length 'S & Pasis of4. Moreover, for each, 1 < j < m, the set

2™: such a wordk is a formal polynomial m m
[[x 043 bz
X = Z ]}gX‘r], Tg EFQ. =1 i=1
geFy is a basis ofP/, the Reed—Muller code of ordet — .
The operations are Let f. € B,,. The associated codeword ¢fis written as
follows in A:
ax+by=a Z g X9 4+ b Z Yg X9 .
Qr = X9,
gCFL" gCFL" f CEF:*” f(g)
g 9

= by ) X?
Z (azg +byg) X7, So we clearly have

geEFT
xy= Y X9x Y yeX? N(f)= min Swt(x) [x= > (f(g) +¢alg)X*
geF;n, geF;n, (YEF;' gEFgL
(10)
= Z Z rryr | XY On the other hand, for any € F3', we have

geFy h, kEFT"

i X0 = Y fl@Xt =Y flgtaXs, (1)

geFy geFy

wherea € Fo,b € Fy,x € A,y € A. Note that the multiplica-
tive unit is X°. The all-one vector and the null vector will beshowing tha{X* + 1)2 is the associated codeword bf, f.
denoted byl and0, respectively. By conventiod{ ® is denoted More generally, the concept @tth-derivative given in the
1. Anideall of Ais a subgroup (and, thus, a subspace) invarianext definition, is actually a multiplication in the algebda
under the multiplication byk®, for someb. The algebrad has
only one maximal ideal, called itadical, which is the set of all
words of even weights

Definition 11.7: Let V' be ak-dimensional subspace #f;".
The kth-derivativeof f € B,,, with respect td/ is the function

Da17~~~7akf = Da1Da2 T 'Dakf
- Z 2,XY Z 2, =0mod 2. where(ay, ..., ai) is any basis oV .
geFy 9eFs Proposition I1.4: LetV be ak-dimensional subspace BY';

Thus, we can define the idea®, 1 < j < m + 1, generated (.al’ fd’ ) d?rgote; in}/)basis of. L_?rt]f € By, be any func-
by the productd]/_, x;, x; € P, providing the decreasing se-tion ot degree. Seth = Da,, S Then

quence
e 3 (S )= ()

A=P’o>Po>...OoP" !t o>P™={0,1} geFy \acV vV
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The degree of is less than or equal to— k. Whenr < k, his  that the dimension of their linear space is sufficient for deter-
the zero function. In particular, the derivative pivith respect mining their Fourier spectra. With our terminology we obtain
to a has degree at most- 1 and corresponds to the product bydirectly, from [16, p. 137], the form of the codewords corre-

X*+1linA sponding to partially bent functions.
Qp, ;= (X°+1)Q. Proposition I1.6: A Boolean functiory of m variables is said
¢ to bepartially bentif there exists a basi&;, ..., ¢,) of Fy'
Proof: We deduce from (11) such thatf = ¢ + ¢, whereg is a bent function on thén —
k)-dimensional spacé:j+1, ..., cn) for somek < m such
(X +1)Q = Y (flo)+ flg+a) X =Qp,;. thatm — k is even, andy,, is a linear function.
geEF

The codewords corresponding to partially bent functions have

Sety = Y,y X", the codeword of suppoit. The general the following form:
formula is easily obtained by expanding the prodyét ). For

instance, k
Q=[x +1) > g()X* | + Q..
DalDazf(g) i=1 aC<€k+1,...,€m>
= + +a1) + +a2)+ + a1 +a2).
Hoy+Hg+a)+ilgra)+flgta 2) Note that(e,, ..., ¢) is the linear space gfand that; lies in

. . X .. m—k
The codewordy is in P*, by definition (see (9)). As- p™7" Moreover.f is a balanced partially bent functidhand

sume thatf has degreer—this means that the codewordyny if there isc € F* such thatD.. f = 1 (see [16, Proposition
{1; is in the Reed—Muller code of order. So, from The- 2] and Appendix I).
orem 1.1, €2 GJFZZT'_T implying that the producy{l; is in  open Problem I1.1: Since any quadratic function is partially
PprEpm=T =PmTETT, which is the Reed-Muller code of orderyent, the derivatives of any function of degreare partially
r—Fk. So the degree df is less than or equal to—k. L' bent. Characterize a class of functions of degree> 3, whose

In the next section, we will develop a concept directly stenflerivatives are all partially bent. o
give some obvious properties and mention an important cldi all partially bent. Consider, for instance, Maiorana—McFar-
of functions. Note thayf = 1 (resp.,f = 0) means that the land functions: we identify the elements Bf’, m = 2¢, with

function f is constant, with associated codewdrgresp.,0).  the pairs(z, y) wherez = (zy, ..., =) andy = (v, .-, w)
» ) and we define
Proposition 11.5: Let f € B,,,. Then we have the following.

1) If there existsa € F}' such thatD,f = 1thenf is [z, y)=x-7(y) + 9(y)
balanced. . o , L

2) Whendeg(f) < 2, f is balanced ifand only if there existsWherem is some bijection from¥'; to F', (with the usual dot
ac F7 such thath F=1. product “”) and g is some function iri3,. The derivativeD., f

. . ) of f with respect to théth word of weightl, ¢;, for1 <i <,
3) Whendeg(leg 3, Do f Is balanced if and only if there i equal to théth coordinate functiom; of 7. Since then-vari-
existsh € Fy' such thaDe D f = 1. able functiond,, f only depends onvariables, its linear space

Proof: For proving the first property, it is sufficient to no-has dimension at least —t = t. Recall that the degree of a par-
tice that2; + X*Q; = 1 implies that2wt (25) = 2™. We tially bent function is at most the half of the codimension of its
recall the proof of the second property in Appendix I. The thirghear space [16]. The derivativ@., f cannot be partially bent if
property is then deduced, singg, f has degree at mo3twhen the degree of; is greater than/2. This situation occurs, for ex-
deg(f) < 3. O ample, ifr(y) = y* whereF' is identified with the finite field

Example 11.1: The above property allows us to characteriz4th 2* elements, and whereis such thaged(s, 2' — 1,) =1
a large class of balanced functions by means of their associa®@§l the binary expansion @fggf}tal'ns more thar/2 1's. An
codewords. Letd be any subspace of codimensiprin F7'. €xample of such isx(y) =y* ~fort > 3.
The weight of the following codewordsis 2™ ~1:

I1l. M AXIMAL ODD-WEIGHTING SUBSPACES OFBOOLEAN

x=(X°4+ 1)y +z, z:ZXh, and e¢¢ H. FUNCTIONS

hCH
Zheng, Zhang, and Imai introduced in [8] theaximal odd-

Indeed x is balanced for any, since weighting subspacef a given Boolean functiorf. They indi-

(X +1)x=(X+1z=1. cated the link between this concept and the nonlinearity.of
Replacing their concept in the ambient spatef Reed—Muller
The corresponding functions have a linear structure. codes, we deduce additional properties.

The partially bent functionswere introduced by Carlet in  Lemmalll.1: LetV be ak-dimensional subspace 8Y,". Set

[16]. These functions are quadratic-like functions, in the senge= »_ _,, X" and\ = 2m—k \We denote by, ..., Vi the
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A cosets of wherelV; = V. Letx € .4 and, for eachi, denote  Remember that any element can be represented with respect to
by x; the restriction ok to V;. Then the producty satisfies aJenning’s Basigsee Theorem Il.1 and Proposition 11.3).
The codeP? is generated by the codewords whose supports

Xy = Z Z X9 are the subspacds of dimension;j [17, Corollary 3.11]. The
wt (15330(1(1 g€V dual of PJ is the codeP™~7+!, which is generated by the
codewords whose supports are the subspHcesf dimension
Furthermore, m — j + 1. Since
i) xy = 0 (resp.= 1) if and only if the weight of; is even
(resp., odd) foralf, 1 < i < X; pipm—itl — pmtl — [0}
i) wt(xy) = A, x 2%, where), is the number ok; which '
have odd weights. we obviously have: € P/ if and only if the product ok with
Proof: We have any generator oP™ 7+ is 0, completing the proof of i).
Assume thak € P7. The dual ofP’*! being?”™ 7/, we have
X= Z g XY x ¢ P/*Lif and only if at least one generator with supp®it
gCFy sayy = ) .oy X", wheredim V' = m — j, satisfiesxy # 0.
Since

whereFy' = J, ., ., Vi. SettingV; = a; + V, for each:, with
a; = 0, we obtain

=3 2, X9= ) me X =X Y a0 X

PiPm =P™ ={0,1}

geVvi uev uev we can conclude thaty = 1, completing the proof of ii). O
Now Now we give the definition of Zhengt al. [8].
’ Y Definition 111.1: Let f be a Boolean function od"". Let
- Z Z wgX Z X U be somé:-dimensional subspace #F;'. Denote byf; the
=1 gcVs veV restriction off to U/, i.e., the function o/ defined by (z) =
x f(@).
=D XYY wa Xt )XY ThenU is said to be anaximal odd-weighting subspaoé f
i=1 uev eV if the weight of the codeword corresponding fig is odd and
A the weight of the codeword correspondingfto is even for all
— Z <Z xaﬁu) <Z Xv) subspacé/’ which strictly containd/.
=1 uey veV Using Proposition 111.1 we are able to complete this defini-
tion.
= Z Z X7 (wt (xi) mod 2) Theorem Il1.1: Let f be a Boolean function of degreeRe-
=1 \gcVs call that$2 ; denotes the corresponding codeword ofet U be

giving the main formula. Note that *y = y, foranyw € V.  ak-dimensional subspace #%," andsety = 3, ., X*. Then
Sincezgevi X7 is the all-one vector of length* and sup- we have

portV;, i) and ii) are immediately deduced. O a) U is a maximal odd-weighting subspace foff and only
Proposition ll.1: Letx € Aand1 < j < m. Then if the producty2; is equal to the all-one codeword; or,
i) x lies in R(m — j, m) if and only if for any subspact” equivalently, if thekth-derivative off with respect td”/,
of Fy' of dimensionm — j + 1, we have: say De, --- D, f for some basiges, ..., ex) of U, is
equal to the constant functidn
- Z x| =0 b) If U is a maximal odd-weighting subspace ff then
et k < 7. Moreover, there exists at least onglimensional
— i.e., the restriction ok to each coset of¥’ has an even maximal odd-weighting subspace ff
weight. Proof: By definition, U is a maximal odd-weighting sub-

i) xliesinR(m — j, m)\ R(m —j — 1, m) if and only space off if and only if the weight of the restriction &2, to U
if x € R(m — j, m) and there is a subspateof F3' of and to any cosek of I/ is odd. This is because the dety I/

dimensionm — j such that is a subspace containifg and any subspace containihgis
a union of an even number of cosetsléfIn accordance with
< Z x| =1 Lemma lll.1, we obtaini/ is a maximal odd-weighting sub-
= space off if and only if yQ2; = 1. Sincey = Hf:l(X“ +1),
— i.e., the restriction ok to each coset of” has an odd theny{l; is the codeword corresponding fa., --- D., f (see

Proposition 11.4), completing the proof of a).

Sincef has degree, €}y is in R(r, m) \ R(r — 1, m). From
Proposition 111.1 ii) and from a), there exisi§ of dimension
(Pt = R(m — j, m)* = R(j — 1, m) =P+, which is a maximal odd-weighting subspacefoMoreover,

weight.
Proof: Recall thatR(m — j, m) = P?, implying
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from Proposition 111.1 i), it is not the case for aml/ of dimen- In the next theorem, we treat linear binary codégf length2™
sionk > 7. O and dimensiom: + 2. Note that we will focus later on the linear

Remark I11.1: In their paper, Zhengt al. noticed that if/ is codes(x + £i(1, m)) U K(1, m), for anyx ¢ K(1, m).

a maximal odd-weighting subspaceobf dimensiork, k& > 2, Theorem IV.1: Let m be a positive integer > 3. Consider

then A/(f) > 2™~*. Note that it is simply because (with theany binary linear cod€ of lengthn = 2™, dimensionk =

above notation) m + 2, and minimum distancé. Let us denote by, (resp.,
b.,) the number of codewords of weigltin C (resp.,C*) and

27 = wt (yQp) < wt (y)wt () = 28wt (). by Z()) the number
Moreover, wherk > 2, this inequality holds foff + ., for any 2 -1
a, since any second derivative @f, is 0. I = Y (w=2"" ((w =277 =A%) 4. (13)
w=1

Note that, according to Proposition 1.5, a Boolean function of

. 1

degree3 has a maximal odd-weighting subspace of dimensié%‘?surne that’”’ contains the all-one vectar and _thatq IS

2 as soon as it has a balanced derivative. such thathy = b, = bz = 0. Then, for any positive integer
A < 271 we have

IV. THE WEIGHTS OFCOSETS OF THEREED-MULLER CODE I\ =2™ (3(,4 —gm=—2 ((Qm—l — 1)2 + ()\2 — Qm—l))) .
OF ORDER 1 (14)

In this section, we study the nonlinearity through the prop- . .
erties of weight polynomials of cosets B{1, m). To be more If § > 2~% — AthenZ()) < 0 which can be expressed as
precise, we establish a necessary condition for such a coset to by < Lom Z(2mt 1) _omol gz, (15)
have a high minimum weight.

Equality holds in (15) if and only it = 2™~! — X and if the
A. An Extension of the Results of Kasami weight distribution ofC' is: ap = az= = 1 and we get the

. . L . xpression shown at the bottom of the page for the other nonzero
The major result of this section is presented in Theorem IVE, 's. Sinceb, = 0, the minimum distance aF* is exactlyd.

providing a new point of view on the characterization of th&v ) .
weight distributions of the cos R(1, m) for anym. This Proof. The proof is based on the study of the numbers

result is based on Pless identities, introduced by Pless in [21], n—1 "
and which are obtained from MacWilliams identities (see also Iy = Z (w—=2""") aw.
[22, Ch. 5]). w=1

LetC denote arn, k, 6] binary linear code, an@- its dual, \We are particularly interested i andl,; according to (12),
which has®’ as minimum distance. Let us denotedy (resp., we have

b,), w € [0, n], the number of codewords @f (resp.,C+) n
whose Hamming weight is. If & > 4, then we have the fol- I = Z (w — 2" 12q,, — 22m—1
lowing Pless identities (see [22, p. 130]): w=0
” — 2k—2n(n + 1) _ 27712k—1n + 22771—22k _ 22771—1
__ ok
E:O Gy =2 which gives, replacing by m + 2 andn by 2™
n 1 12 — 22771(2771 + 1) _ 277122771—1—1 +227n—2(27n+2 _ 2) — 22771—1.
Z W Ay = 2 n
(16)
'n=° In the same way, we obtain
2 k—2
wa, =2 n(n+1) n
wz::o I4 _ Z (w _ 2n1—1)4aw _ 24771,—3
- 3 k—3 2 w=0
> whay, =282 (n*(n + 3)) — 25 4(n(n + 1)(n? + 5n — 2) + 41by)

w=0

Z whay =27 (n(n + 1) (n® 4+ 50— 2) +4!Dy).  (12)

w=0

_ 2nz+k72(n2(n + 3)) + 3'22m+k73n(n + 1)

_ 23n1+k—2n + 24n1—42k _ 24771,—3

w | § | g1 | 2
22771,—2 22771,—1 22771,—2
m—+2
A H (§ — 2m—1)2 ‘ 2 o (§ — 2m—1)2 -2 (§ — 2m—1)2
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which finally gives, replacing: by m + 2 andn by 2™
I, =2m72 (327 —2mtt 2%l 4 q1p,). (17)

Since the codeword belongs toC, we havea,, = a,_., for
all 0 < w < n, and thus,

2ml1
I, = Z ((w _ 277171)( + (—1)[(111 _ 277171)() Q-
w=1
Then
0, for odd/
Ié = 2m—l_q (18)

2 > (w-2m"1),, forevens.
w=1

Thus, we havd, > 0, and from (17) we deduce

0 S 3.22771—3 _ 2771—2 _ 23771—4 + 3b4
S 2771—2(3'2771—1 _ 1 _ 22771—2) + 3'b4'

Thus, by must satisfy
1
b4 Z 3 2771,—2 ((2771,—1 _ 1)2 _ 2771,—1)

which impliesb, > 0—i.e., the minimum distance @~ is 4.

Now we computdy — A2I>. On one hand, we have by (18) H

I — NI, =2Z(\). (19)

On the other hand, we exprebs— \?I, by means of (16) and

(17). Therefore, we deduce from (19)
T(N\) =3.23m 3 _2m=2 _gdm—d 4 3 om _ 92m=2)2
=2 (2m72(3.2m 7 — 1 — 222 — A2) + 3.by)
=2™ (3.by — 27732 —1)7 =27+ A7)

Equation (13) implies that the quantifif ) consists of a sum

of termsT,,, 1 < w < 2™~! — 1, with T}, < 0 for everyw
such thatw — 2m=1)2 < A2 If A > 2m~1 — §thenZ,, < 0 for

every nonzero weight,, since2™ ! — w < 2™~1 — §. Thus,
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Proof: This result comes from well-known properties of
Reed-Muller codesk(1, m)*+ = R(m—2, m) is the extended
Hamming code and has minimum weightThe codewords of
weight4 have the form

y = X +Xa+b +Xa+c _’_‘X'a-l—b-l—c7

Witha, b, c € FT', b#£c#0. (20)

Their supports are two-dimensional affine subspaces (see [22,
Ch. 13, Theorems 4 and 5]). Sin&1, m) C Cy, thenC C
R(m — 2, m), completing the proof. O

We focus here on the weight enumerators of cosets of
R(1, m) whose minimum weights are near the optimal value.
Two values of) are of most interest2”/2 for m even and
20m=1)/2 for m odd, corresponding to the following kinds of
cosets.

Definition IV.1: A coset of R(1, m) is said to bealmost-
optimal if its minimum weight is greater than or equal 4@,
wherew, = 2m~1 — 20m=1)/2 for oddm, andw, = 2"~ —
2™/2 for evenm. It is said to bahree-valuedvhen it has exactly
three nonzero weights.

Proposition IV.2: A cosetofRR(1, m) is three-valued almost-
optimal if and only if its weight distribution is

w H 2771—1_2(771—1)/2 ‘ om—1 ‘ 2nl—1+2(nl—l)/2

277171 ‘ om ‘ 2771,1
for oddm and
w H 2rn—1 _ 2nl/2 ‘ 2771—1 ‘ 2rn—1 + 2771/2
2N H 2m—2 ‘ 3.2m-1 ’ gm—2
for evenm.

Proof: Supposethata coset R(1, m) has three weights
only. Clearly, these weights lie if2m~1, §, 2™ — §}. Com-
bining (18) and (16), we obtain

2ml_1
Z (w _ 2771—1)20/“} —_ (2771—1 _ 6)20/(5 —_ 22771—2.
w=§
Thus,2m~1 — § is a power of2. Assume thak + R(1, m)

is almost-optimal. Then the only possibility fer odd isé =

if A >2m~! —§ thenZ()) < 0, which exactly corresponds togm—1 _ 9(m=1)/2 \Whenm is even, the only possibility for the

the inequality (15).

coset to have exactly three weightsis= 21 — 2m/2 [

Moreover, equality holds in (15) if and only if the values of

w such thata,, # 0 lie in {2m~1, 2m=1 + A} (i.e.,Z(A\) = 0).
ThenX = 2™~ — §. We obtain the valuess by computingl,
by means of (16) and (18). O

We now come back to the cod&, = (x + R(1, m)) U

Consider the notation of Theorem IV.1. By replacifigby
C, we obtain the following necessary condition on three-valued
almost-optimal cosets.

Corollary IV.1: If the cosetx + R(1, m) is almost-optimal,

R(1, m), x € R(1, m). Note that such a code satisfies the hyen we have
pothesis of the previous theorem. Indeed, the code contains the, i ., is odd, therb, < Lgm=2(gm-1 _ 1y2;

all-one vector and, denoting hy, (resp..b,), w € [0, n], the
number of codewords of; (resp.,Cy) of weightw, we have

the following proposition.

Proposition IV.1: The codeCL is contained inR(m —2, m);

thus, we havé, = b, = bz = 0. The codewords of’, which
have weight! are the indicators of two-dimensional affine sub-

spaces off";".

« if miseven, the, < § (2™ 2(2m 1 — 1)2 4+ 22m73),

In both cases, equality holds if and onlyif- R(1, m) is three-
valued almost-optimal.
Proof: We simply apply Theorem IV.1.

« If m is odd, we seh = 2(m=1)/2_ As the coset is almost-
optimal,§ > 2m—1 — 2(m—1)/2,
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« If m is even, we sek = 2™/2, As the coset is almost-op-  In accordance with Lemma l11.1, we have
; ~ om—1_gm/2 i ini i - .
timal,6 > 2 2™/ =(whered is the minimum distance wh (yVx) = #43 | wt (x;) is odd} x 4

of Cy—i.e., the minimum weight of the coset). O
Remark IV 1: yvhe_re thex;’s are the restrictions of to the cosets of/. This
implies that the number of cosétst V such that+V € Ct
1) By taking\ = 2(™=2/2 with m even, we obtain cosetsis equal to(2"* — wt (y"'x))/4. The value o, is obtained by
whose minimum weightig(R(1, m)) only. These cosets considering all” € W. O
have two weights2™—1 + 2(m=2)/2 and correspond to

. v )
the bent functions. Moreover, When there are few possible values far(y" x), the expres

sion of by, becomes simpler. It is especially the case whés
by=L2m 7 ((2m Tt —1)2 —2m?), in R(3, m).

2) Itis quite easy to construct three-valued almost-optimal Corollary IV.2: LetxbeinR(3, m)\R(1, m). Letus define
cosets. Although these cosets are not yet classified, they. n, = #{V € WylyVx = 0}
are completely known wher € R(2, m) (see [22, Ch. o N = #{V € Whlwt (vVx) = om—1
14] and a short presentation in Appendix I). We will give b=V € Wolwt (y7x) g
other examples in the next section. Thenb, = 2™ 2Ny + 2™ 3N,. We haveN, = 0 whenx €

3) Assume thak + R(1, m) is almost-optimal and that theR(2’ m). v _
upper bound orb, is not reached. Very little is known  Proof: Asx € R(3, m)andy” € R(m —2, m),y"xis
about these cosets and several hard open problems '3r&(1, m)—since
involved, as the covering radius &{1, m) for m odd, or ppm—3 — pm-1
the covering radius ak(1, m) restricted to codewords of
weight2™~1 for anym. Examples of such cosets can b
found in [23] form = 5 and in [12] form < 11.

Sowt (y"x) belongs to{0, 2~*, 2™}, Whenx € R(2, m),
we havey"'x € {0, 1} implying V;, = 0.

In accordance with Proposition V.3, we obtain

Open Problem IV.1:The dual of the cod€; is a subspace of — - — -
R(m—2, m) of codimensiori. How can a subspace containing’+ = DYooy Y 2mTaN2T TR N2
few codewords of weightbe constructed? ;’VEXVX% wt (y‘v’,i)vff; .

B. Computing, H

Let us denote byV the set of all affine subspacesBE’ of di- Remark IV._2: Note that the weight enumerators of th_e cosets
mensior2 and bylV, the subset of of all linear subspacesf X *+#(1, m) withx € R(2, m) are known. For cosets which are
F7. Recallthaly = (x+R(1, m))UR(L, m), x € R(1, m), not contained imX(2, m), the welghtenumeraftors are gengrally
and thath, is the number of codewords of weightn C1. In Nt known. The study of such cosets containedi(3, m) is
this subsection, we want to be more explicit about the comptlﬁl-e first open problem. In this paper, we point out that these

tation of b,. We later apply our results to the cosets which afePsets have specific properties. However, it seems difficult to
contained inR(3, m) strengthen any conjecture.
, m).

The codewords of weight in C;- are of type (20). These  Corollary IV.3: Let R, = x + R(1, m) with x € R(3, m) \
codewords have as support an eleméndf 1V; they belong to R(1, m). Let
R(m — 2, m) (i.e., P?). In this section, we will denote by"’

_ Ve _
such a codeword. Let, b, c € F3', b # ¢ # 0, andV = N =#{V eWoly'x =1}
{a, a+b,a+c, a+b+c}. Then and Ny has been defined in the previous corollaryRf is al-
g Z X = XX 1) (X +1). 1) most-optimal, we have 1
vev « if mis odd, thenV; — Np > 25—,
The next result is a direct application of Lemma lll.1. « if m is even, themVy — N, < 2m 41

3

Proposition IV.3: ForanyV’ € Wy we denote by;, 1 <i < |n poth cases, equality holds if and onlyA, is three-valued
2m=2 the restrictions of to the cosets of’. Then the number almost-optimal.

b, of codewords of weight in C- can be expressed as follows: Proof: Recall that
mo__ Vv m m—
b= Y 2 Vzt(y x) AWo =L@ —1)2" 1) =N+ N+ N, (22)
VeWws implying
where the codeword" is defined by (21). Moreover, by = 22N, + 2m=3 N,
wt (yV'x) = 4 x #{¢ | wt (x;) is odd}. om _ 1) (gm—1 _1
(530 = 4 il w () isodd. s (- 4 EEDE DY
Proof: LetV € W,. Sincey" € R(m—2, m), y¥ € Ct

if and only if y¥ is orthogonal tac—i.e., the weight of the re- Suppose thak, is almost-optimal. According to Corollary IV.1
strictionx; of x to V is even. we obtain the expected bounds. O
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For m even, it is easy to find cosets, defined as above, sat-fact corollaries of Theorem IV.1; our aim is to make explicit
isfying No — V; < (2™~ + 1)/3 (see the next example). Inthe link between two points of view (in terms of codewords and
the case whera is odd it is not so easy to find cosets satisfyingn terms of functions).

Ny —Ny > (2™~ —1)/3. Actually, the existence of such cosets
is just proved by Canteaut in [24]; she exhibits almost-optimal
cosets with five weights which are contained(3, 9). These Z(A) = 2" HV(f) — AT2mH2),
weights are2® &+ 24, 28 4+ 23 and2®. However, the determina- _ . oma?
tion of the minimum weights of such cosets remains an opgﬁ]us,I()\) < Oifand only if V(f) < A2 :
problem form < 13 (see the end of Section V-A for more ex- Proof: From (19), we have

Lemma V.1:Let A < 2™~ be any positive integer. Then

planations). U
_ _ om—1\2 _om—=1\2 _ 2
Example IV.1: Letm = 6 and ) = Z:é (= 277w = 2779)7 = M
f@1, ooy @6) = 217223 + 213274 + T1T2 + D374 + T3T6- _ % [14 _ )\212] )

The weight distribution of the cos€t; + R(1, 6) is According to (18) we obtain

aoq = aqo = 8, g = age =32, and azy =48. gm—1_y

1
This coset is almost-optimal with five weights. Li=2 Y (w-2""Ya, = 3 > FHf+va) (23)
w=1 a€F

V. THE PROPAGATION CRITERION AND THE NONLINEARITY SinCe F4(f + pa) = (2™ — 2w)* wherew is the weight of

We come back to the terminology of Boolean functions b&; . , and
we will always consider together a given functigrof m vari-
ables and its associated binary codew@yd So we first fix the
terminology for functions which generate a caQgt- R(1, m)  Moreover,I, = 221,
with a high minimum weight (see Definition V.1 and the fol- |t follows that
lowing proposition).

Definition V.1: The Boolean functiorf is said to be almost- IN =13 ST FH 4 o) — A2
optimal if its associated cos&t; + R(1, m) is almost-optimal aeFy
or equivalently if

Ay = |{a S F72n|Wt (Qf+<,9a) =wor2™ — w}|

Using (7), we deduce that
. [,(f) S 2(m+2)/2' whenm is even, I()\) _ 2771—4 [V(f) _ )\22771—1—2]

o L(f) < 20m+D/2 'whenm is odd. _
completing the proof. O

The function f is said to be three-valued almost-optimal if » _
its associated coset is three-valued almost-optimal—i.e., itd"roPosition V.1 Let f € B, andx :LQf . Letb,, denote the
Fourier spectrum is{0, £207+2/2} when m is even and number of codewords of weight in C;-. Then

{0, £20m+1)/2% whenm is odd. 1
by = —

48

Proof: We simply consider together the formula given in

(V(f) + 2771,—1—2 ((2771,—1 _ 1)2 _ 2771,—1)) .
Recall the definition of the so-calleBC(¢) property.

Definition V.2: Lete = (e1, ..., e,) be a basis o', the previous lemma and (14). So
Then f satisfies thepropagation criterion of order¥ (PC(¥¢)), oot
with respect te if, for any vectora =(ay, . . ., am)in F such  Y(f) —A"2"
that0 < wt (a) <k — 94 (3b4 _gm=2 ((2m—1 . 1)2 + ()\2 _ 2m—1))) )

Hence,

Daf7 a = AiCq
ZZ:; V(f) — 24 (3()4 _ 2m—2 ((2m—1 _ 1)2 _ 2m—1))

is balanced. completing the proof. U

A. Bounds on the Sum-of-Squares Indicator Proposition V.2: Let m be a positive integer > 3, and
From now on, we focus on almost-optimal functighs B,,, J/ € Bm. Assume thaf is almost-optimal. Then

5 e E(l,m),.m > 3. Nptation is the same as in Theorem IV.1 i .., is odd therV(f) < 22m+1 with equality if and only
and its proof: we consider the code if fis three-valued almost-optimal:

Cx = (x+ R(1, m)) U R(1, m) « if m is even theV(f) < 22™+2 with equality if and only

with x = Q; a,, denotes the number of codewords of weight If 1 is three-valued almost-optimal.

w in Cy, andZ(}\) is defined by (13). Recall that the sum-of- Proof: Sincef is almost-optimal, the minimum weight
squares indicatov( f) allows to measure the global avalanchef the coset; + R(1, m) satisfiess > 2m~1 — 2(m=1)/2
criterion of f (see Section II-A, (6)). The next propositions aréor odd m andé > 2! — 2"/2 for evenm. According to
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Theorem IV.1, this impliegZ(2(™~1)/2) < 0 for oddm and i) Whenm is odd thenV(f) > 22™ + (#E; — 1)2m+L.
Z(2™/?) < 0 for evenm. Thus, if £(f) < 20m+D/2 then#E; > 2m~ L — 1.
From Lemma V.1, replacing by either2(m—1)/2 or 2m/2
(depending on whethen is odd or even), we immediately de-
duce the expected bounds B(y). O

Therefore, we point out that for almost-optimal functions of
degree3, the rank of£’; must behigh. Note that we caltank of
E; the dimension of the subspace generated by the elements of

Example V.1: There are many three-valued almost-optimat’; (remark that; U {0} is not, in general, a subspace).
funct|ons_. Thealmost-bentfunctions provide such functlons Corollary V.2: An almost-optimal function of degre is
(see, for instance, [25]-[28]). Any three-valued almost-optimal .

: G . ... such that the rank oF; is at leastn — 2 for evenm and at
partially bent function is linearly equivalent to (see Proposmolré astm — 1 for oddm
11.6) . ) L
Whenm is odd, such a function is P@), unlessE; U {0}
fl@, oo, zm) =9(@1, ooy Tmee) + 0a(T1, o) Tm) is a subspace of codimensianin this casef is three-valued
) almost-optimal.

whereg is bent and’ = 1 'Eglrﬁ;jgm and¢ = 2 f%;?l’éenm' For Proof: If E; isa setof rank then its cardinality is at most
these functions{(f) = 2 andV(f) =2 : 2% —1 (E; does not contaifl). Assume thaf is almost-optimal.

It is easy to find almost-optimal functions such tifgtf) = Clearly, Corollary V.1 provides the lower bounas-2 (m even)
2/m+6)/2 gnd V(f) < 2?m+¢ where/ is defined as above. andm — 1 (m odd) fork. Whenm is odd, % is eitherm — 1 or
These functions have a good (generally not the best) nonlin-~
earity but are not three-valued (see Example 1V.1, a number ofAssume thatn is odd. Ifk = m — 1 then#E; = 2m~1 — 1
numerical results in [29], [12] and Proposition V.5). (sinceE; U {0} is a subspace of codimensids), implying

It is not so easy to obtain almost-optimal functions sucH(f) = 2?™*! thanks to Corollary V.1 and Proposition V.2. In
that £(f) < 20m+0/2 (implying V(f) < 2¥™+¢ according accordance with Proposition V.Z,is three-valued almost-op-
to Proposition V.2). The class of bent functions seems twnal; note that it can be proved by another way, using Theorem
be the only known large class. Numerical results are easW2 of Section V-C.
obtained form even (see [30], [12]). Whem is odd, the only =~ Whenk = m, it means that there exists a basisfdf, say
known such functions are obtained from those given in [31] fer= (e, ..., e,,), suchthat; € E; andD., f is balanced, for
m = 15. all ¢; so f is PC(1), with respect te. O

Note that there exist non-almost-optimal functighsuch

thatV(f) < 22m+. Note that it is very easy to construct almost-optimal func-

tions of degree3, which are three-valued. It is more difficult
Example V.2:Form = 5 one finds in [23] the function to construct such functions which are almost-optimal and not
three-valued, especially when is odd—as we indicated in
other terms at the end of Section IV-B. Moreover, the general
+r3T5 + 224 + T273. problem of the maximal nonlinearity of functions of degkee
remains open for odeh.
It is known that, for any oddn < 13, all almost-optimal
a1 =a21 =4, a3=a19=16, and a3 =a1r =12 functionsf of degree3 satisfy £(f) = 2(m+1)/2 [32]. It has
aw = 0 otherwise. Thus£(f) = 10. Using (7), we obtain been recently_ proved b_y Canteaut that, for any edd< 7,
o ; 11 all almost-optimal functions of degrekeare three-valued. For
V(f) = 1904 which is strictly less thag'* = 2048. : . :
m = 9, she has proved that there is only one weight polynomial

J(x1.. .., @5) = 102830405 + T1T2T3 + T104T5 + 4T3

It generates a coset &¥(1, m) with weight distribution

Let f € B,, be a function of degreé. Set the notation for almost-optimal non-three-valued cosetsRifl, m) which
_ m . = m are contained itR(3, 9); moreover, she proves that such cosets
Er={ee Fy |D.fisbalancey and E;=F;\ E;. exist [24].

In [10, Proposition 14], we have stated the following relation Open Problem V.1:For oddm, m > 13, does there exist
between the cardinality of s, denoted by#E, and the value f € B, of degree3 such thatf is almost-optimal and(f) <
of V(f). 2(m+1)/29

Proposition V.3: Let f € B,,, be afunction of degreé Then
B. Decompositions on Affine Subspace#gf

m—2
2m . _ 2|.dTJ+4
V(f)z2" + (#Ef 1) 2 P We are going to study the restrictions $f € 5, to any

This is of . for functi fd We obvi subspacéV of F'. Lemma V.2 is derived from well-known
is is of most interest for functions of degr@eWe obvi- properties of the Fourier transform.

ously obtain from the previous result and from Proposition V.2
the following corollary. Lemma V.2:Let f be a Boolean function of. variables and

. let V be a subspace dfy" of dimensionk. Then we have, for
Corollary V.1: Let f € B, a function of degre8. So the anys € F7"
2

following properties hold.

i) Whenm is even thenV(f) > 22™ + (#E; — 1)2m+2, FUf 4 Qagp) =28 (=) F(D.f).
Thus, if£(f) < 2m+2)/2 then# E; > 2m~2 — 1, ; ’ CEV:L
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Proof: According to (3), we have for any € F3’ Thus,
_ om _ m—k
FQ(f + <Pa) — Z (_1)a~eF(D€f)' F(D’@f) = 2 —_ 2Wt (QDﬁf) = 2 (2 — 2Wt (QDﬁha))
ccFp a€cV
We deduce that, for ang € Fy' - Z F(Dsha).
acV
Z FUL+ Parp) = Z Z (=1)e+ e F (D, f) SetL = 3w F2(f + 9a). According to Lemma V.2 and
3% acV ecFT to the above formula, we have
= 3 CVRFEDN DT L=t Y F =2t Y (Z F(D,aha)>
eCFy" acV BEW BEW \a€eV
=2 3" (-D)PF(D.f). O
ceve =27 N ST F(Dsha) | =277 ST F (R
aCV \ BeWw acV
Remark V.1:Note that forV = F3', Lemma V.2 provides according to (4). O
the well-known formula of Parseval. Whén' = {0, a}, we »
get the following relation: _Corollary V.3: Let _(ha|a € V) be the decomposition of
with respect to thé-dimensional subspad&. Then
D P A @ars) =27 (27 + () P F(Daf)) S F2ha) < £2(f).
acV

acV
Moreover,L(h,) < L(f),foralla € V.

] . o Proof: According to Theorem V.1 and since
We need to define precisely the restrictions of gng 5,, || = 2% we obviously deduce

to a subspac#&’, of dimensionk, and to the cosets d¥. Let

forall g € Fy'.

such a coseV’ = a + W, a ¢ W. The restriction off to 2m =k Z F2(ha) < 27 7R L2(F)

W' can be identified withh € 54, such thati(z) = f(a + z). acV

This representation depends, in fact, on the choice ef W’  implying 7*(h,) < L?(f) for everya. Moreover, this property
since forb = a +u, u € W, we haveh'(z) = f(b+z) = holds if we replacé.,, by . + £, where/ is any linear function

h(u + z) (I is atranslationof ). However, in the context of of By—considering the decomposition $tt 5, for somess €
our study, and’’ have the same properties. So when we sdj» , instead off. Hence,L(h,) < L(f) for all a, completing
the decomposition of (as defined below) we mean that, for ghe proof. U
fixed W, the restrictions are chosen up to translations. Remark V.2:We have

Definition V.3: Let W be a subspace dfy’ of dimension  Ar(f) — A/(h,)
k. The decomposition of with respect tol¥ is the sequence — oM=L okl 4 (L(hy) — L(f))/2 < 2L — ok
{ho|a € V} whereV is such thatF';" is the direct sum oiV N -
andV andh, is the Boolean function gt variables, fromi¥ to ~ SinceL(h,) — L(f) < 0. This upper bound oN () — N (h,)

F,, defined byh, (z) = f(a+ z) foranyz € W. was already proved by Zhergg al. in [8]. The authors noticed

i i that whenm is odd,k = (m+1)/2 andh, is an affine function,
Theorem V.1:Let W be a subspace dfy’ of dimensionk thenA(f) < 2m—t — 2(m—1)/2,

and let(h,|a € V) be the decomposition of with respect to
W . Then Notice that, whemn is even . = m/2 andk, affine, we find

again the covering radius @t(1, m).
Yo Pt =20 Y F(ha). The previous results provide the exact connection between
acWwt acV the nonlinearity off and the nonlinearity of each element of any
Proof: Considers2; the associated codeword gt We decomposition of —*any” means “with respect té’, for any
have W.” The well-known conjecture of Dobbertin has to be placed
in this context. In [30], he introduced the notionmafrmalfunc-
Qy = Z XeQy,, . (24) tion for evenm. A function f € 3, is said to be normal if it is
acv constant on at least ome/2-dimensional flat. He proposed the

We obviously deduce next conjecture.

wh () = wh ().

et The link between the nonlinearity of a function and the non-

linearity of each element of its decomposition has several con-

sequences. For instance, wheis almost-optimal, any function

h of any decomposition of is such thatC(h) < 2(m+1)/2 for

Qp.p=>_ XQUp,n,. oddm, and£(R) < 20m+2)/2 for evenm. This notably leads to
Py the following property.

Conjecture. Any bent function is normal

Note the extension of this property 19s f, for any 3 € W.
Indeed, we have for such/a
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Proposition V.4: Assume thatn is odd. Suppose that has 72 (f)—F*(f + ga)=2 »_ F(D.f) (28)
codimensionl. For simplicity, we denote byi, &.) the de- ccH.
composition off with respect td¥V'. ) )
If hy (or ho) is partially bent and not bent thefi(f) > F>(f)=F(f+@a)e > F(Df)=0 (29)
2(771—1—1)/2_ ecﬁa
Proof: If i, is partially bent therC(h;) = 2#, wherep is 9
. > (o i o :
an !ntegersuch that > (m — 1)/2, with equality if and only if FUHFUS + pa) = Z (D.f)
h1 is bent. o
If h; is not bent we have, in accordance with Corollary V.3 ° )
L(f) 2 £(hy) = 20mHD/2
. o D25 )
completing the proof. O =
eCH,
Remark V.3:The function with five variables given in Ex- Proof: Relations (3) and (4) can be rewritten
ample V.6 FAf+9a)= >, FDf) = Y. F(D.f)
g(1, ..., x5) = X305 + 2wy + T1T2T3 + T2X3T4Ts eCH, ecT.
is almost-optimal (not three-valued) of degeeét satisfies the which is exactly (26), and
hypothesis of Proposition V.4, since one element of its decom- FAf) = Z F(Df) + Z F(D.f).
position with respect to the hyperplane ceH. =
{{z1, ..., x5) € FY', 2o =0} Formulas (27), (28), and (30) are obtained by combining the
i i above relations. Formula obviously implies . Note that
is quadratic b lati F la (28) obviously implies (29). N h

(27) can be directly obtained from Lemma (2= 1). O
g(x1, -0y T5)

= (1 + 372)373375 + 372(374 + x3xs + x103 + 373374375).
This proves that the class of such functions is interesting.

Lemma V.4:Let m be a positive integerp > 3, andf €
B,,. Define, for anye € F3', the propertyH,,): the function
D. f is balanced for every nonzero elemertdf H,. If f satis-
Example V.3:It is very easy to construct a functighsatis- fies (H,) for someq, then

fying the hypothesis o_f Proposition V.4, with algebraic normal FHL 4 0) + FAUf + 0ppa) =27

form equal, up to equivalence, to forall g € F.

flor, ooy o) = 9(@1, ooy Tm1) + T (21, ooy T1) Proof: SinceD. f is balanced if and only iF(D. f) = 0,

(25) (H.) implies, in accordance with (27)
whereg has degreé. FAHL) +FHS + ¢a) =2F(Dof) =27
Let m = 7. The functions Moreover, this property holds for arfit-¢ 5, since any function
Flxy, ..., w7) = 3y2s + w334 + T7h(21, ..., T6) D. g is constant, implying thab. (f +¢3) is balanced as soon

asD. f is balanced. O

whereh is any function inBg, satisfy£(f) > 2(7+1)/2, Indeed,
itis well known that(z; z2 +x374) = 2* (see Appendix land ~ Theorem V.2:Letm be an odd integerp > 3, « € Fy', a #0,
[22, Ch. 15, Sec. 2]). and f € B,,,. Then the following properties are equivalent:

C. Derivatives on Subspaces of Large Dimensions i) f satisfies ta);

Now we are considering the cases where the derivafixegs i) £ is three-valued aimost-optimal and

of a given functionf are balanced for any # 0 belonging FAf+98) 2 FHf + 0o4a)

to a subspace of codimensitror 2. This allows us to obtain a forall g € Fy';

new characterization of bent functions and of some three- valueq") both restrictions off to H,, andH,, are bent.
almost-optimal functions. We first fix notation.

Recall thatp,,, o € F'', denotes the linear function — Proof: i) = ii). Lemma V.4 implies that
« - z. We denote byH,, the kernel ofp,, FAf +¢p) + FHf + ¢otpa) =271
H, ={z € FY', p.(x) =0} for all 3 € F3'. If there exists? € F5' such that
We denote by, the affine subspacEs,' \ H,. Clearly,¢,, is FAf+¢p) = F(f + @ars)
the characteristic function o .. then we obtaiF?(f + ¢) = 2™ where2™ is not a square, a

Lemma V.3:Leta € F' ande, the associated linear func-contradiction. _ _ _
tion with kernelH,. We have Moreover, applying Lemma B.1 (in Appendix 1), we deduce
thatF2(f + ¢5) € {0, 2m+1}, for all 3. So f is three-valued
2 f ) ’
FAf+9a)= Z F(Def)= 2_: F(Def) (26) almost-optimal.

cCHa eCHo ii) = iii). Let us denote by k1, h2) the decomposition of

FUHFf + go)=2 Z F(D.f) 27) with respect taH,,. From Theorem V.1, we have
ey FHH+Ff +¢a) =2(F(h) + FX(h)) . (31)
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Since the Fourier spectrum of is {0, £2(m+1/2} and  Conversely, if iv) is satisfied then

F2L) # F2Sf + ¢a), We obtainF?(hy) + F2(hy) = 2™, ) ) -
implying (see Lemma B.1) FAf + @) + FHf + patp) =277F

F2(hy) = F2(hy) = 2™~ L. for all 3, implying thatf is bent, completing the proof of i

This property holds foff + ¢, for any3. Note that the decom- Iv). -
position of f + ¢ with respect td.,, whenf ranges over;’, Remark V.5: Note that the previous theorem is of interest for
is (h1 + 41, ha + £2) where?; is any affine or constant function effective purpose. For checking that a functipris bent it is
and wheré; + ¢, is constant. This proves that the Fourier spegufficient to compute théF( D, f) for ¢ in some hyperplane.
trum of eachy; is {12"’/2}; thush, is a bent function ofn — 1
variables.

iiiy = i). Since h; is bent, thenD, h; is balanced for any
nonzeroe € H,; but

Example V.4: On the other hand, Property iv) provides some
constructions: for every bent functioghand everya € F73’,
a # 0, both restrictions off to H, and H,, are three-valued
almost-optimal. For instance, chooé classPS,,, (cf. [33]):

F(Def) = F(Dehr) + F(Deho) F7 isidentified, as a vector space, wWilly...;z X F's.. 2 (i.€., the
for any suche. So we obtainF(D. f) = 0 for all suche. Hence elements ofF;" are considered as ordered pgis y) where
f satisfies(H,,). O x andy belong to the finite fieldF';..,.) and f is defined as

f(z, y) = g(%), with § = 0, whereg is any balanced Boolean
function onF;m/z. We do not know how to prove directly (i.e.,
without using Theorem V.3) that the restrictions of such a func-

FAL) + FAf 4 ¢a) € {0, 21, 2m+2} tion to any hyperplane are three-valued almost-optimal.
according to Lemma B.1. Thus, the values occurring in the We study now the more general case where a funcfibas
Fourier spectrum of:; (resp., h,) are always contained in balanced derivative®, f for all nonzeros of W, a subspace of
{0, £20m=1)/2 4o(m+1)/2} This means thak;, andh, are F3 of codimensior®. First note that, with the notation of Sec-
both almost-optimal and this is true for amy—then for any tion V-B, we obtain, by applying Lemma V.2 and Theorem V.1
corresponding decomposition ¢f 4

2 _ — 20,
Theorem V.3:Letm be an even integer > 4, and letf ¢ Z FAf+wa)=4 Z F(Def) =4 Z F=(hi) (32)
B,... Then the following properties are equivalent: aEW eeW =1

Remark V.4:1t is important to notice that whelfi is three-
valued almost-optimal{ odd) we have for any

; ; m o ) here(hy, ..., h4) is the decomposition of with respect to
there isac € F5' such thatf satisfies(H,,); w Lo S :

__I) . I a_e 2 SU f satisfies(H.) W as described at the beginning of Section V-B. These formulas

ii) fis bent; hold whenf is replaced byf + ¢z, for anys € Fy'.

i) f satisfies(H,,) for all F7\ {0} L
) ) 7 S(H) a”e 2 \ {0} , Theorem V.4:Let m be any positive integer, > 3, and
iv) foranya, the decompositiof., h2) of f withrespectto f € B,,,. Assume that there exists a linear subspéte F75’

H, satisfiesh, andh, are three-valued almost-optlmalof codimensior2 such thatD,, f is balanced for any nonzero

and for any linear Boolean functidhof 5,1, we have i | et(n,, ..., h4) be the decomposition gfwith respect
F2(hy +£) # F2(hy +£) to W.
(.e., F2(hi +£) = 2™ if and only if 72(ho + £) = 0). « If m is odd thenf is three-valued almost-optimal and
Proof: Recall that a Boolean functiofis bent if and only everyh; is three-valued almost-optimal.
if D.f is balanced for alt # 0. Hence: iiy= iii) and i) = i). « If m is even, then eithef is bent orL(f) = 2(m+2)/2
Assume thatf satisfies ) for somea. Then for all3 we and the values occurring in the Fourier spectrumfof
have from Lemma V.4 belong to {0, £2™/2 +2(m+2)/2}  Moreover, all the

F2 F2 L) = omtL h; havg the same Fourier spectrum: either aIIh@gre
R (f +00) + 7S + pira) bent, either all theh; are three-valued almost-optimal,
This implies, from Lemma B.1 or the h; have the same Fourier spectrum with values

FUf49p) = FHf + 0pta) =27 {0, £20m=2/2 49m/21 |f all the h; are three-valued

completing the proof of i} ii). almost-optimal thery is bent.

Assuming thatf is bent, we fixa € F5' and we denote by Proof: SinceF(D,f) = 0 for any nonzera: in W, we
(h1, h2) the decomposition of with respect taH,,. As in the have from (32), for any’
previous proof, we obtain (31) which implies here (by using
Lemma B.1),F%(h;) € {0, 2™} andF2(hy) # F2(hy). This > P+ parp) = 4F(Dof) = 27F2
property holds if we considef + ¢ instead off in (31) aCW+

. N o .
F2fa + P2+ oq — T2y +0) + F2(hy + ' SinceW - has cardinality, we deduce from Lemma B.2 (in
(f+0) (FH¢arp) = UF (+0) (hz +£)) Appendix I1) that the Fourier spectrum gfis {0, £2(m+1)/2}

where?, ¢ € B,,_1, £is alinear function (which can b8, and whenm is odd; the values occurring in this Fourier spectrum
#'is eitherf or 1 +£. Thus,F2(hy +#') = F2(h,+¢) and then belong to{0, £27/2, +2(m+2)/2} whenm is even. Hencef is
F2(hy 4+ £) # F2(ha + ¢) completing the proof of iv). either three-valued almost-optimah(odd), either bent or such
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that £(f) = 20"12)/2 and the values of its Fourier transformTheorem V.4. Indeed, we have for evéne W: D,g = D, f
belong to{0, £2™/2 42(m+2)/2}, sincea + W is invariant under the translation by vector
Consider now the decompositiongfsay(hi, ..., ha), with

respect tdV’. We have from (32) again Itis clear that the set of functions which satisfy the hypothesis

of Theorem V.4 £ even) contains all bent functions and also

EI . some functions whose Fourier spectrurfis £2(m12)/2} But
> Fh) =2 (33)  we have also the following.
=1

Proposition V.5: For every evernm > 6, there existsf €
ﬁ‘r" satisfying the hypothesis of Theorem V.4, whose Fourier
transform takes on exactly the three magnitudeg(™+2)/2,

and this property holds for ang + ¢ and its decomposition,
which implies that the values occurring in the Fourier spectru
of eachh; are (by applying Lemma B.2)

and2m/2,
* if m is 0dd, {0, +2(m=1/2}je., h; is three-valued al- Proof: Letm = 2t; we identify the elements dFfy’ with
most-optimal; the ordered pairgz, y) wherez = (zy, ..., 2;) andy =
« if m is even, eithe{ £2(m~2)/2} (i.e., h; is bent) or con- (¥1, .., y). Chooseg € B, in Maiorana—McFarland class
tained in{0, £2(m~2)/2 £2m/2}__ith £(h;) = 2™/2.  of bent functions in the form
According to Lemma B.2, the sum in (33) for evenis either g(z, y) =z -y + k(y)
2m~2 x 4 0r 2™ 4+ 0 x 3. If one h; is bent this sum is always ) o
9m=2 » 4 implying that all; are bent too. wherek is some function i3;. SetW = {(x, y) |z1 = 22 =

Similarly, if onel; is three-valued almost-optimal, the value8} and
of its Fourier transform are if0, £2™/2}, Since the value _ _

L+ : T, y)=xxe+g(z, y) = x1202 + 2 -y + k(y).
2m=2 never appears, the sum in (33) is always+ 0 x 3 im- e y) 1wz +9(, ) 2 4 )
plying that this property holds for all;. Moreover, for any3 As remarked above, for aryc W we haveD. f = D.g. Since

4 g is bent thenD. f is balanced. Now remark that
F(f+ea) =D Flhi+0) =427 +0x 3 =+27/ :

i=0 Fla,y) = (@1 + )@ +u) v va + Y iy + k().
for some/; so f is bent. Now suppose that tlig are neither i=3
bent nor three-valued almost-optimal; then the values appearifig;s, f is linearly equivalent to the function
in their Fourier spectra afie +2("~2/2 and+2™/2. We know
that the number of times value2(™~2)/2 occurs is the same for o
eachh; (by using (33) and Lemma B.2 as above), and Parseval’s T1d2 T YLyt z_: @i i+ k(y).
relation settles the case of the two other magnitudes. O =3

t

We see by exchangingy, andy; that f is linearly equivalent to

Note that there exist some functioffssuch that allh; are the function

three-valued almost-optimal aryfdis not.

/ — .
Example V.5: Form = 7, we consider Fl@ y) =2y + 5@ vz s, 02,

Fxn, ..., 1) =wewrhy(ze, - ., @) It is a simple matter to check that, it > 6, there exists a
Y SRR functionk(y) such that72(f’ + ¢.(z) + ¢u(y)) takes at least

+ (1 +we)urha(zs, ..., w5) once each value dfo, 272, 2" }—whereyp,(r) = a - = and

+x6(1 +@7)ha(w1, ...y 5) @y(z) = b -y in B,. Take for instancé&(y) = y1 %> ys. Then

+ (14 z6) (L4 z7)hy(zy, ..., 75) f'(@, y) + al@) +@u(y)

where
hi(zxy, ..., x5) = 210223 + 2124 + ToT5 - Z ziyitai) | +aaya(l+ys) +azvat+b-y.
i=1,3, ...t

hg(ﬂ?l, e 375) =X1T2 + X324 .

ha(z1, -, T5) =T2w3 + 2475 Since

]7/4(.751, caey .7}5) =X1T2X3 + X1X4X5 + T2T3 + T2T4 + T3T5. Z (—]_)Ei:l,z,m,t z; (yitaq) 750

Although all functiongh; are three-valued almost-optimdl,s 1,23, 2 €F;

not: the coefficientsF(f + ¢, ) belong to if and only ify; = a; foreveryi =1, 3, ..., £, we deduce:
{0, +8, +16, +24, +32, +40}. F(f' + ¢alx) + ou(y))

Moreover,D, f is balanced for 23 values efe F. =420 Y (—p)meelites)esvatbaye

Remark V.6: Take any bent functiorf on F'" (m even), any w22 CE

(m — 2)-dimensional subspadd” of F3' and anya € F3'. |If a3 = 0, then we obtaint2?; if a3 =1, a2 =0, andb> =0, we
Then the Boolean functiop = f + 1,,w, wherel, - de- obtain£2'™!; and ifaz =1, a2 #0, or by # 0 we obtain0. The
notes the indicator of the flat+ W, satisfies the hypothesis of proof is complete. O
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Remark V.7: There exist three-valued almost-optimal func- < fisthree-valued almost-optimal and ang V is a linear

tions with . variables,m odd, which do not satisfy the hy- structure off;
potheses of Theorem V.4. For example, o= 7, the function cE;=V.
f(@1, oo, ®7) = 2203 + Tawe + T5T7 + T1T6T7 Proof: We proceed as in the previous proofiiis a linear

+xsTer7 + ToT3TeTT + TaT5TET7  SpPace forf, thenV(f) > 22m+2_If, moreover,f is almost-
optimal thenV(f) = 22™+2 which means thaf is three-valued

is three-valued almost-optimal. It has exactly 14 nonbalance . -
o : almost-optimal. Now compute the sum-of-squares indicator
derivatives, which are alD. f for

V() = FADuf) + Y FUDaf)

e € {e1, ea, e3) U {eyq, eq, e3). —~ et
a a

Open Problem V.2:Find some general property for a func- = 2%t 4 Z F*(Dof)
tion f such thatD, f is balanced when € W, a # 0, where agVv
W has codimensio8. providing E; = V..
Conversely, assume thal; = V. Thus,E; U {0} contains
a subspace of codimensi@nsayW. In accordance with The-

On the other hand, we consider the set of nonbaé'remVA,ﬁ(f):2<m+2)/2 and the values of the Fourier trans-
anced derivatives. Recall that, fgr € B,,, E is the set form of £ lie in {0, £2m/2, £2(m+2/2} (f cannot be bent).

{c € FY'|F(D.f) = 0} and Ej is the complementary setyye can assume that?(f) = 2"+2. By using (27), taking
F3' \ Ey. In this section, we consider the rank &f. For g _ y7 (a+W)witha € V, a # 0, we obtain

clarity, we first indicate an obvious property. ) )
. F +Ff +9a) =2(F(Dof)+ F(D,
Lemma V.5:Let » be the rank of£'s. Thenr < m means () (f + ) _2,(n+(1 O‘Z__ D (L)) 34
that there is a subspadé of dimensionr such thatz + V' is - +27(Daf) (34)
contained inE; foralla ¢ V. where0 < |F(D, f)| £ 2™. ThenF (D, f) = £2™. Note that

Itis natural to first consider the small valuesrofas a direct thiS Property holds for any € V. So we have proved that

application of our previous results, we are able to characterize?/most-optimal and that it has anye V' as linear structure,
the functions which correspond to the cases 2. completing the proof. -

D. The Nonbalanced Derivatives

Remark V.8:Note that we are not able to give the Fourier
spectrum of any almost-optimal function which has a linear
space of dimensiom whenm is even. Actually, this problem

Corollary V.4: Let m be an odd integern. > 3, f € B,,,
ande € F3'. Then the following properties are equivalent:

« fis almost-optimal and is a linear structure of; is equivalent to the determination of Fourier spectrum of al-
« fisthree-valued almost-optimal ands a linear structure most-optimal functions oB,,, ; (see the next example).
if ; Example V.6: There exist almost-optimal (non-three-valued)
* By = {0, e}. functions of degred for oddm > 5. For instance, forn = 5,
Proof: If f has a linear structure the(f) > 22™+! (see the function
Lemma II.1). Suppose that, moreovégrjs almost-optimal. In g(x1, ..., T3) = T3T5 + ToTy + T1T2T3 + ToT3T4T5

accordance with Proposition V.2, the only possibilityisf) = = _ ) )
22m+1 which means (whetf is almost-optimal) thaf is three- 1S given in [23]. Its Fourier transform takes all the values in

valued almost-optimal. Sinc&2(Dof) = F2(D.f) = 22™, {0, +4, +8}. Note that in the decomposition gfwith respect

we deduce to the subspace defined by = 0 is z224, a quadratic compo-
nent of g (see Proposition V.4). Moreover, one can check that
V(f)= Z FAD,f) E, is a subspace of dimensian
acf{0,e} Now consider the function of six variables
providing F2(D, f) = 0 for a ¢ {0, ¢}, according to (6). f(@1, ..o, @) = g(z1, ..o, T5) + 6.

Assume now that; = {0, e}. Clearly, the setZ; U {0}
contains a subspace of codimensibrSo we apply Theorem
V.2 and deduce thaf is three-valued almost-optimal. Since

It is clear that(0, ..., 0, 1) is a linear structure of and it is
easy to check that the set of values appearing in the Fourier
spectrum off is {0, £8, £16}.
F2(f) = F(Dof) + F(D.f) The previous corollaries were partially proved in [34] where
L om . the authors study the cas¢s; = 1, 2, ..., 6. Generally, it

then(D. f) = 2", completing the proof. = seems difficult to characterizg such thatE_f is a linear space

Corollary V.5: Letm be an even integem, >4, andf € B,,,.  of dimensionk for somek (see [10]). When the rank df; is
Let V be some linear space of dimensiarThen the following 3, we can give the next property but cannot describe the case
properties are equivalent: #E; = 8—examples are easily obtained (see Example V.6).

« fis almost-optimal and any € V is a linear structure  Corollary V.6: Let f € B, and assume that the rank bf
of f; is 3.
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If #E_f < 8 thenE contains all nonzero elements of some where(hy +4, ho+4£+¢) is the decomposition of + ¢,

subspace of codimensi@i So Theorem V.4 can be applied. /is a linear function in3,,_; ande is constant;
_ Proof: SetE’s = E, U {0}. Assume that the cardinality i) for every linear functior? in B,,_1, at least one term in
of £y is strictly less tharg. Let (e, ez, e3) be linearly inde- the pair(F(hy + £), F(hy + £)) is zero;
pendentinE; by completing, we have a basis,, ..., ¢,,) of i
F3 suchtha®¥ = (ey, ..., e,) is contained irE}. But there

is somen, a linear combination ofes, ez, e3), which is in £7,. B
So the subspadd’ U (a + W), of codimensior is contained £(f) = maxgﬁ(hl)’ £(ha))
in £, O N(f) = 22 min(Af(hs), A(hs))

Note that, for anyt, there exist some functiong such that and

E; has rankt (such functions can be constructed recursively, V(f) =V(h) + V(ha).

by taking partially bent functions). Hence, this property does

not seem to be significant. It nevertheless induces some simpli- Proof: SinceF(f) = F(hi)+F(h2), we have, according
fications on the decompositions of the function, as shown in th@ Theorem V.5

next theorem.

N 2 _ 2 2 _ 2
Theorem V.5:Suppose thak' is contained if¥, a subspace FAN) = F(h) + Fo(he) = (F(h) + F(h2))”

of dimensiont, 1 < ¢ < m. Considering notation of Theorem . )
V.1, let{ho|a € V} be the decomposition of with respectto 1hUS, F(h1)F(he) = 0 providing eitherF(h;) = 0 or

W, then we have F(hz2) = 0—where both can be zero. This property holds when
. we considerf + ¢z for any 8 € F3' and the decomposition
i) E F*(he) = F*(f). Moreover, of f + ¢ which is actually of the fornfh, + £, ho + £ + ),
acV where £ is linear ande is constant. We obviously have that
L) < Z £2(ha); F2(hy + £ + &) = F?(hy + £). Then i) and ii) are clearly
gt proved and the values & f) and A ( f) given in iii) are easily
deduced.
i) F2(f + ¢o) = F2(f) foranya € W+ and the Fourier ~ Now we compute’(f), by using (7) and the previous proper-
spectrum off cannot have more thali magnitudes. ties. We denote by.,,,_; the set of all linear functions i§,,,_; .

N — We then deduce
Proof: Leta € W--. Any ¢ € H,, does not belong tV,

sincee - o = 1. It follows thatD, f is balanced for alt € H,. m _ 4
We deduce from Lemma V.3 th#®(f + ¢.) = F2(f). Thus, 2"V(f) = Zm F + o)
applying Theorem V.1, we obtain ek

Yo P 4wa) =27 () =277 Y Frh). = Y (FPla+H+F(ha+l+e)

£CLyy—1,eCF2

acWt acV
2 2 2
It follows that =2 Z (F2(h + &) + F(ha + 0))
€Ly 1
2 _ 2
;E:V Fha) = FAF). =2 S (FHh 40 + Fhs + 1))
JASY P
This property holds for any +¢g, 8 € F3', sinceD.(f +¢3) —9 (9m=1y(p gm=1lyyp
is balanced as soon d3. f is balanced. The upper bound on B ( Viha) + U 2))
L2(f) is obviously deduced. Take apye F'5'; then we obtain, =2 (V(h1) + V(h2))
as above
completing the proof. O

FHf 4+ 0p4a) = FAf +¢p) o
Example V.7:Let f € B, such thatD, f is a linear noncon-
for all « € W. This implies that the Fourier spectrum pf stant function, for some. So it is clear thaD. D, f is constant
cannot have more thati magnitudes. O for anye.
SetD, f = ¢, and recall tha#d,, denotes the kernel af,,.

Several corollaries can be deduced. We study, for instange A . i
the case wheré” has codimensioi. fs clear thatD.D,f = 1ifand only ife ¢ H,. Thus, ac

cording to Proposition 11.5D. f is balanced for any ¢ H,.
Corollary V.7: Assume thalf € B, is such that’; c H,, Thisimplies thatt; C H,. Itis very easy to construct such a
some subspace of codimensibnDenote by(hi, h2) the de- function f. For instance,
composition off with respect taH,,. Then we have

i) forany s € Fy' f(@1, .o #5) = 217273 + 217374 + T2T5

F2f +¢p) = max(F2(hy + £), F*(ha + £)) is such thatD, f, a = (0, 0, 0, 0, 1), is equal taz,.
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Remark V.9:For any bent functiory we haveE; = {0}. of the space of linear functiods, | b € F3'} (Wherep, = 0).
Hence,f satisfies the hypothesis of Theorem V.5 for dyy The number of hyperplanes @' containing&; is equal to

For such a function, Theorem V.5 i), becomes 2™m~7—1. Thus, the cardinality oB is 2™~ (by addingy). We
Z Fhy) = 2™ implying 27" < Z L2(hy). then have™ — 2™~ functionsy,,, u # 0, such that,(a) = 1
= - v for somea € &;. But for suchy,,, we have

Note that the property on the left holds for afiy- ¢ 3 and the Do(f+¢u)=Dof+1=1

corresponding decomposition.Wfhas dimension or 2 we can implying that f + ¢, is balanced. Thereforef, + ¢, + 1 is
apply Lemmas B.1 and B.2. So we obtain again some resul§janced too providing at al™+! — 22+1 zero values in the
given by Theorem V.3 and V.4. Fourier spectrum of . We have proved that any balanced func-
tion f + ¢, is such that: # 0 (sinceu ¢ B). This contradicts
APPENDIX | that f itself is balanced. O

We briefly recall some properties of quadratic functions.
More can be found in [22, Ch. 15] and [15]. In this appendix, APPENDIX ||
f denotes a Boolean function of degrzef m variables. The | emma B.1:Let m be an integern > 0, and letX andY’

associated symplectic foraf f is the mapping fron{F5)* 10 pe two integers. Then the conditidf? + Y2 = 2+! implies
F
? o if miseventhen? =Y? =2

(u, v) = f(0) + f(u) + f(v) + flu+v) « if m is odd thenX? = 2m+1 andY" = 0 or vice versa.
where(u, v) € (F5")2. Thekernelof U is defined as follows: Proof: This lemma can be proved by induction, as it is
& ={ue FPNve F: Uy, v) = 0}. shoyv_n in [34], b_ut this resu!t was first stated and proven by Ja-
. e , cobi in 1828. His proof relies on the fact that the number of
Thg set;is aFQ—subs_pace af'y 9fd|men3|0rm—2h, where solutions(X1, ..., Xi) € Z* of the equation
2h is therank of . This rank satisfies 5 2
Xi+-+X; =N (35)

* 1 < h < m/2for evenm, and
* 1 <h<(m-—1)/2foroddm.

is exactly the coefficienty of z¥ in the expansion of*, where

f iz f 4 9 P—
Obviously, £,y = & for any linear functionf. The 0= Z T o=l 2

Fourier spectrum off (and thus the weight distribution s

of the coerespondinéc c(osétlf + R(1, m)) %nly depends In 1828, Jacobi proved that (see [35] and [36])

on h (cf. [22, p. 441]). For such a coset, the weights are

{2’"—1(, 2’"[—1 igm—h—]l)} and the corresponding numgbers of 0¥ =1+4 Z Z 1- Z

Codewords{zrn-l—l _22h-|—17 22h}. N=1 \d|N,d=1mod 4 d|N, d=3 mod 4
So the quadratic functions are three-valued untessm /2 ~ Which means that the number of solutions of (35) satisfies

for evenm. In this case, the function is bent and its Fourier

spectrum is{+2"/2},

1] 2N

* ifthere exists a divisaf of V, d = 3 mod 4, which occurs
in N to an odd power, theay = 0;
Proposition A.1: An elementa is in & if and only if the . else

function D, f is constant. The subspa€e is the linear space

of f. cn =4 > 1-— > 1

Moreover, f is balanced if and only if there is € £; such d|N, d=1 mod 4 d|N, d=3 mod 4
thatD,f = 1. ,
Proof: Note thatD, f is constant if and only if Then we haves~+1 = 4; this means that for our casé&/(=
2m+l and X; > 0 for all ¢), the only solutions are the ones
f)+ flatv)=e presented in the lemma. O
for all v, wheree denotes a constant—eith@or 1. Buta € &

Lemma B.2:Let m be an integern > 1, and letX, Y, Z
and7 be four integers. Then the condition

X2 +Y2+Z2+T2:2n1+2

means

fO)+ fla)=f(v)+ flat+v) Vv
or, equivalently,D, f(v) = D, f(0), for all v. This proves the i

first sentence of the proposition. mplies
If D,f = 1 for somea then f is balanced (see Proposi- -« if m is even, then eitheK2 = Y2 = Z2 =72 = 2™ or
tion I1.5). Conversely, suppose thatis balanced. Denote by X2 =92m+2andY? = 722 = T? = (;

the dimension ofj_c. Recallthat = m—2h andthatthenumber | it .. is odd, thenX2 = Y2 = 9m+1 gndZ = T = 0.
of 0’s in the Fourier spectrum of is equal to2™+! — 22/+1,

Note thatf cannot be bent, so that the dimensioi pfs at least Proof: In the same way, this result can be obtained by in-
1. We assume that for anye &, a # 0, D, f = 0 and we are duction, but was stated by Jacobi in 1828 since we have
going to prove that this is impossible. Define the subspace — 148 Z -

— s

B={p|& C Kergy} s>1,4f6
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wheres runs through all positive integers which are not multi- [18]
ples of4. Then we have,~+: = 24; Jacobi then proved that

. i 19]
for our case, the solutions presented in the lemma are the oniy

ones.

O
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