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X. CONCLUSIONS

We have presented deconvolution viewpoint for studying DFA New Algorithm for Finding Minimum-Weight Words in

domain decoding algorithms and applied it to obtain an alternativg | inear Code: Application to McEliece’s Cryptosystem
exposition of decoding algorithms for 2-D BCH codes. Some modifi- and to Narrow-Sense BCH Codes of Lengtts11
cations to efficiently implement Blahut's decoding algorithm for 2-D
BCH codes are suggested. It is shown that the modified algorithm Anne Canteaut and Florent Chabaud

requires at most half the number of passes compared to Blahut's

original decoding algorithm. Improved versions of Blahut’s decoding ) o o ) ) )
algorithms are given for correction of random and burst errors. Error-~Pstract—An algorithm for finding minimum-weight words in large lin-

. - . . ear codes is developed. It improves all previous attacks on the public-key
correcting capability of the class of 2-D BCH codes is determin ptosystems based on codes and it notably points out some weaknesses

and it is shown that Blahut's decoding algorithms correct up to thei McEliece’s cipher. We also determine with it the minimum distance of
error-correcting capability. We have also given mixed spectral asdme BCH codes of lengtrs11.
time-domain implementation of 2-D BCH decoding algorithms and Index Terms—BCH codes, decoding algorithm, error-correcting codes,
compared various decoding algorithms for the class of 2-D BCkicEliece’s cryptosystem, minimum weight.
codes with respect to computation and implementation complexities.

Some specialized class of 2-D BCH codes along with their decod-

ing algorithms based on the idea of this correspondence, are given in . INTRODUCTION
[8]. These results will be communicated separately in a forthcomingAlthough determining the weights of any linear binary code is an
paper. NP-complete problem [1], the general problem of finding a codeword

of weight bounded by a prescribed integer in a linear code is not
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proved to be NP-hard. It seems most unlikely that a polynomial- This algorithm can also be used for decoding up to the correction
time algorithm for solving it exists. However, it does not imply thatapability t = L"%‘J. If a messager is composed of a codeword
no general algorithm which runs faster than the exhaustive seandrrupted by an error vecter of weightw < ¢, e can be recovered
can be discovered. Finding an efficient algorithm for computing with this algorithm since it is the only minimum-weight word in the
minimum-weight word in a linear code has in fact some importatinear codeC & =. Decoding ann, k]-linear code then comes down
consequences both in cryptography and in coding theory. Suchtarfinding the minimum-weight codeword in &n, & + 1]-code.
algorithm actually constitutes an attack against a whole class ofSince the main motivation of such a research is to attack
cryptosystems which rely on the hardness of decoding or on findiMgEliece’s cryptosystem, most of the previous works are described
a minimum-weight codeword in a large linear code with no visiblas decoding algorithms. But they can easily be transformed in order
structure. The most famous are McEliece and Niederreiter publio- solve the problem of finding a codeword of low weight. The
key systems [2], [3]—which are equivalent from the security poirfirst algorithm given by McEliece himself in his first security
of view—and the identification schemes proposed by Stern [4] and bgalysis of his cryptosystem [2] is equivalent to the information
Veéron [5]. This class of public-key systems is at the moment the ordgt decoding procedure. It was later improved by Lee and Brickell
alternative to the common algorithms based on number theory whi@h. Independently, Leon [8] and Stern [9] also gave some algorithms
resists the cryptanalysis. Twenty years after the fundamental pafr solving this problem.

of Diffie and Hellman, public-key cryptography has in fact become

dangerously dependent on only two problems: integer factoring agd The Probabilistic Method

discrete logarithm. Studying the security of these systems based o

algebraic error-correcting codes therefore seems essential in ord htw will be found is obvious i itable algorithm b
to anticipate a possible important progress in factoring methods, p1gntw witi be found IS obviously not a suitable algorithm because
the probability that the weight of a random codeword will ke

example. Any improvement of the algorithms for finding a minimum:- . . . .
weight word in a general linear code consequently conditions the V€Y sm_al_l. Itis then necessary to bla_s this random selection by
security of these cryptosystems and it delimits the parameters whit I_y examining cc_)dgwords verifying a given property SO that t_helr
could make them insecure. The motivations for searching for such ﬁ'ght will be a priori small, fqr example, codewords Whlc.h vanish
algorithm in coding theory are slightly different. This mainly aimg " 2 randomly chosen coordinate subset. The prgblem IS t_herefore
at verifying or at establishing some conjectures on the minimum flnd_a tradeoff b_etween the number of operations requw_gd f_or
distance of some particular linear codes. For instance, there rching S.l.JCh particular godewords and the success probability, i.e.,
e probability that the weight of such a codeword will be

several well-known families of codes for which only a lower boun . o
Y All algorithms for finding short codewords use therefore the

on the minimum distance is known. It is then of great interest to thod: th in fact lizati f th -k
determine whether such a bound is tight and to detect a specﬁ me method. fhey are in 1act generalizations ot the well-known

behavior of some of these codes regarding their weight distributidﬂ.Ormation set decoding method.

N = . i
Among such families of codes we especially focus here on tl}el‘et A = {L,---,n} be the set of all coordinates. For any subset
Lo of N, G = (V,W)r denotes the decomposition of matiix onto
primitive narrow-sense BCH codes. I that 3 — () dW = (G hereG. is th
In this correspondence we present a new probabilistic algorithn% al meanf _t(_’g’e’ an = (G))jen\r, whereG, is the
for finding minimum-weight words in any linear code. It associate’s column of matrixcr. I . .
efinition 1: Let I be ak-element subset a¥. I is an information

a heuristic proposed by Stern and an iterative procedure stemmin

from linear programming. We give a very precise analysis of the for the codeC if and only if G = (Idx,Z); is a systematic

complexity of this algorithm which enables us to optimize thgenerator matrix fot’. The complementary sef, = N\1, is called

. - . edundancy set.
arameters it depends upon. Hence our algorithm is to our knowle t%: . . .
b P P 9 0% rom now on we index the rows ¢f with T sinceG = (Idy, Z);

the best procedure for decoding without using the structure of the . ; .
code. Section Il describes our algorithm for binary codes but it cou'0 a:n%t:rr;fr;tor matrix for the code and we denoteZbythe ith row

be generalized to linear codes over GF (see [6]). Using Markov o . . .
cha?n theory we show in Section IlI how(to co[rr1|)oute th?e number of The basic |d§a proposed _by I__ee and_ Bnckel_l [7] consn;ts n
elementary operations it requires; this enables us to determine Eﬂgdo_m_ly selecting at each _|terat|on an |nformat!on_Eeand n
parameters which minimize this theoretical running time. We the amining all codewords having at mqshonzero bits in/, where
give in Section IV some experimental results for decoditig, 128]- the parametep usue_tlly equalsl_or 2 These codewords actually
binary linear codes which validate the earlier theoretical approac rrespond to the linear combinations of at mpstows of the

Section V is dedicated to the specific problems of decoding aﬁarrespondlng systematlc gengrator ma(M"”’Z).I' —_—
finding a minimum-weight codeword in a randdm ]-binary code. Instead of computing the weight of all these linear combinations,

Two applications of our algorithm are finally discussed: we point o hich is a time-consuming procedure, Leon [8] suggested that this

its consequences for the security of some cryptosystems based® t r|thnf1 Sho‘:.ld be ;'rSt :pplleclj t(t)' a:LpuP ctur%d cfdelt:omp?sed
error-correcting codes like McEliece public-key system, and we gi\? € information setand a selectiort. of o redundant posttions,

new results for the true minimum distance of some narrow-sen erefi is small-—no more than 2.0 positions for_ coc_ies of length
BCH codes of lengtr11. arounds00 or 1000. When a low-weight codeword in this punctured

code is found the total weight of the corresponding word of the initial
codeC is then computed.
The probabilistic algorithm proposed by Stern [9] is slightly
different but it was shown to give the best results [10]. It also consists
As usualwt (x) will denote the Hamming weight of the binaryin randomly choosing at each iteration an information Eethich
word . is split into two parts/; and I, of same size, and a subsét of
Let C be a linear binary code of length, dimensionk, and 4 redundant positions. We only examine codewoatdeerifying the
minimum distancel about which nothing is known but a generatofollowing property:
matrix. We now develop an algorithm for finding a word of weight
w in C wherew is close tod. wt (¢j7,) = wt(er,) =p andwt (¢jz) =0 1)

numerating randomly selected codewords in hope that one of

Il. DESCRIPTION OF THEALGORITHM
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until we find such a particular codeword whose restriction.JorL
has weightw — 2p.

369

C. Description of the Iterative Algorithm
Using this iterative procedure then leads to the following algorithm:

All codewords which satisfy condition (1) can easily be constructed

from the systematic generator matix = (Idy, Z)r:
e randomly split the rows ofZ into two subsetsZ; and Z-
corresponding td; and I3;
« randomly select @-element subsek of the redundant sef;

Initialization:

Randomly choose an information setand apply a Gaussian elimi-
nation in order to obtain a systematic generator mdtfik., Z);.
Until a codeword of weight w will be found:

+ for each linear combinatiof, of p rows of matrixZ,, compute . randomly split! in two subsetd; and I where|I| = |k/2]

Aqjr; _ o _ and |Iz| = [k/2]. The rows ofZ are then split in two parts
+ for each linear combination of p rows of matrixZ., compute Z, and Zs;
Asi; .

randomly select ar-element subseL of .J;

for each linear combination of p rows of matrixZ,, compute
Aq|z and store all these values in a hash table wftrentries;

« for each linear combinatiof. of p rows of matrixZ,, compute
A5, and store all these values in a hash table @itrentries;
using the hash table consider all pairs of linear combinations
(A1, Az) such thatA|;, = Ay|;, and check whethewt ((A1 +

o if Ayjz = Ayz, check whethewwt ((A1 4+ A2) ) = w — 2p. .
Both p ando are parameters of the algorithm.

B. The lterative Procedure

All the previous algorithms therefore explore a set of randomly '
selected information sets by performing at each iteration a Gaussian
Ao)pL) = w — 2p;

elimination on an(n x k)-generator matrix. But computing the .
complexity of these algorithms points out that their most expen-* 'andomly choose € I andu € J. Replacel with (I\{A})U
{1} by updating matrixZ according to the preceding proposi-

sive step is the Gaussian elimination. In order to avoid this time- !

consuming procedure, we here propose to choose at each step thet'on'

new information set by modifying only one element of the previous

one. This method is analogous to the one used in the simplex method

as suggested in [11]-[13]. We give here an explicit and computable expression for the work
Definition 2: Two information windowsl andI’ are close if and factor of this algorithm, i.e., the average number of elementary

only if: operations it requires. This analysis is essential for finding the values

of parametergp and ¢ which minimize the running time of the

algorithm.

IIl. THEORETICAL RUNNING TIME

X €I, 3u € N\I, such thatl’ = (I\{\}) U {u}.

As any two information sets can be joined by a sequence of cIo&e
information sets, we use this iterative method in order to find onée
which enables us to exhibit a codeword of weightThe following
proposition shows how to choose and i such thatl’ is still an
information set.

Proposition 1: Let I be an information set such that =
(Idy,Z)r is a generator matrix foC. Let be X € I, p €
andI' = (I\{\}) U {s}.

I' is an information set if and only if:y,, = 1, where Z =
(zi,5)ier jed-
Proof: Since&

Modeling of the Algorithm by a Markov Chain

The average number of iterations performed by the algorithm is not
the same as the one performed by the initial Stern’s algorithm since
the successive information sets are not independent anymore. Hence
the algorithm must be modeled by a discrete-time stochastic process.

Let ¢ be the codeword of weight) to recover andupp (¢) its
support. Letl be the information set and,, I>, and L the other
selections corresponding to thith iteration. Theith iteration can
then be represented by a random variaElewhich corresponds to
the number of nonzero bits af in I. This random variable then
takes its values in the s¢t, - - -, w}. But if this number equalgp
we have to distinguish two cases depending of whether condition (1)
is satisfied or not. The state space of the stochastic prdcéssecn

. . . is therefore

As the columns indexed by are linearly independent, and
(Gi)ien\qry are linearly independent if and only i, , = 1. O E=A{1.2p =11 U{(2p)s, Cp)r} U {2p+ 1,---, w}

As the probabilistic method only deals with the redundant part Qfhere
the systematic generator matrix, we only need a procedure to be able — ,, iff
to obtain the redundant matriz’ corresponding td’ from Z.

Proposition 2: Let I and I' be two close information windows y, — (2p)p  iff
such thatl’ = (I\N{\})U {u}. Let (Id, Z); and(Idk, Z') ;s be the
corresponding systematic generator matrices. THéris obtained X, = (2p)s iff

= (Idg, Z),, we have:
Gu = zx,,Gx + Z ZiuGi.
!

[T Nsupp(c)|=u, Vue{l,---,2p—1}U
{2p+1,---,w}

|I Nsupp(c)| = 2p and(|I; Nsupp (c)| # p
or |L Nsupp(c)| # 0)

|7, N supp (¢)| = |Iz N supp(c)| = p and

from Z by |L Nsupp (¢)| = 0.
. . ! i . . . .
vj € J, P T A The success space is théh= {(2p)s} and the failure space is
e Vi€ I'\{n}, F =l .(2p)p - wh.
— Vi e I\{\) H= g ey Definitior) _3: A stpchastic proces@(,;}ieN is aMarkov chainif
= the probability that it enters a certain state only depends on the last

state it occupied.

Proof: As I' = (I\{A}) U {u}, (Idy,Z");s is obtained by A Markov chain{ X, },cn is homogeneoui for all statesu andwv,
exchanging theith anduth columns of(Idx, Z) ;. This can be done the conditional probabilityPr [X; = v/X,;_1 = «] does not depend
by a simple pivoting operation in positigr, ), i.e., by adding the on:. This probability is then denoted b, . and, if the state spacg
Ath row of matrix Z to all other rowsZ* when the corresponding is finite, the matrixP = (P, .)...cz is called thetransition matrix
elementz;, . is not zero. O of the chain.
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Proposition 3: The stochastic processX;}.cn associated with  The only persistent space of this Markov chain, i.e., a maximal state
the algorithm is an homogeneous Markov chain. subset which cannot be left once it is entered, exactly corresponds to
Proof: The selectiond, I, I, and L corresponding to thé&h the success space Since this subset contains only one state which
iteration only depend on the previous information window sifice is an absorbing state, i.e., a state which once entered is never left,
I,, and L are randomly chosen. We then have forilind for all this chain is by definition an absorbing chain.
(wo ur, -+, u;) € € A basic property of absorbing Markov chains with a finite state
space is that, no matter where the process starts, the probability that
the process is in an absorbing state aftesteps tends td asn tends
=Pr[Xi =wi/Xi-1 =wi—1].  to infinity. We then deduce that our algorithm converges.
Furthermore, this probability does not depend on the iteration. Hen el) Expected Number of lterationsThe absorbing chain property
there exists a matri® such that also enables us to compute the average number of iterations per-
formed by the algorithm. For any finite absorbing chain we can define
Vi eN, Y(u,v) € £, Pr[X; =v/X, 1 =u]=P,,. O itsfundamental matrix introduced by Kemeny and Snell [14].
Proposition 5 [14]: If {X }:en is a finite absorbing Markov chain
The Markov chai X; }ien is therefore completely determined byyith transition matrix P, and () is the substochastic matrix corre-
its initial probability vectorro = (Pr[Xo = u])ues and its transition gponding to transitions among the transient states—the nonpersistent
matrix P. Both of these quantities can be easily determined as tates—i.e.() = (Pu.v)uver then(Id— Q) has an invers called

PrX; =ui/Xim1 = wi—1, Xico = ui—2, -, Xo = uo]

successive information sets differ from only one element. the fundamental matrix of the chain and
Proposition 4: The transition matrix P of the homogeneous
Markov chain associated with the algorithm is given by R= Z Q" =(Id—Q)".
P k—u n—k—(w—u) u_ w-—u m=0
o k n—k E"on—k’ The average number of iterations performed by the algorithm can

for all w € E\{(2p)s, (2p)r} then be deduced from the fundamental matrix.

P u_on—k—(w—wu) for all 5 1 Theorem 1: The expectation of the number of iteratiods re-
wuml = X n—k ’ orallu#2p+ quired until { X; };cn reaches the success stédp)s is given by
k— w—u
Puusr = k x ——  foralluz2p—1 E(N)=> mo(u) Y Ru.
P,,=0, forallv & {u—1,u,u+1} ueF ver
where R is the corresponding fundamental matrix.
Tk=2p n—k—(w-2p) Proof:
Pepypenp = (1= 0) | =5 % p—" .
) 2 w—2p E(N)=) nPr[X, € SandX, 1 € F]
+ — n=0
k n—k .
I2p+1 n—k—(w—-(2p+1) _ R
Paysrioms = (1— ) pk o (n - k( 1 ,)} = ZO ZOPI [X, € SandX,_, € F.
. 2p—1 w—2p—1) : P
Poyi opyp = (1= J) (k ) p—" Applying Fubini’'s theorem, we get
2p+1 n—k—(w—-2p+1 _
Popti,pys =10 P — X ( A( r+ 1) E(N) = Z Z Pr[X, € S andX, ; € F]
k n—Fk m=0 n=m+1
Jk=02p—-1) w—-(2p-1) b
PBop1,op) = /#{ - x —— =Y Pr[X, €7
m=0
—2p n—k—(w—-2p) 2p w-—2p oo
P . = ol AN 4
(2p)F.(2p)s fj|: X " + A X — _ Z Z Z Pr[X, = /X0 = u]
Pops.ons =1 m=0ueF veF
P(QP)S-,“ = (). for all w # (2[))5 _ Z W(J(u) Z Z(Qm)u,v
where ueF vEF m=0
P = ™ (U Ru,,u~ D
9= P (X, = Cpls/IT Osupp (0] = 2 2™ 2

ucF veEF

CHGE) () . . .

= - n"k . 2) Variance of the Number of IterationsThe fundamental matrix
(k/‘_?) ( - ) also gives the variance of the number of iterations, which esti-
mates the deviation from the average work factor of the effective

The initial probability vectorr, is - - . .
P y o computational time required by the algorithm.

GG . _ , Theorem 2: The variance of the number of iterations required
mo(u) = ) it u & {(2p)e, (2p)s} until {X,},en reaches a success state is given by:

(1= (p) (Ko VIN) =3 mol 2Rus = Bu) Bu(N

o) = L) ()= 32 000 3@ 80 Ba)
> 2

‘6 ‘“/‘ 77.—‘”/‘

i ) (s wn)
k ueF
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whereé; ; is the Kronecker symbol anl,, (V) is the average number B. Average Number of Operations by Iteration

of iterations performed by the process when it starts in stafee., We now give an explicit expression of the average number of

operations performed at each iteration.
Eu(N) = Z Ruo- 1) There are exactl{ff) linear combinations of rows of matrix
ver Z, (respectively Z,); computing each of them on a-bit
selection and putting it in the hash table requipes binary

Proof: Let E,(N?) denote the expectation of the random additions.

variable N* when the process starts in stateWe then have 2) The average number of collisions, i.e., the average number
- of pairs (A1, Az) such that(A: + A2), = 0 is equal to
k/2\2
E.(N*) =) »’Pr[X, € Sand X, € F/Xo = u] (Zpic,) For each collision we perforrBp — 1 additions of
n=1 (n — k — o)-bit words for computing A1 + A2)n, and a
_ Zpu,u n Z Zpu,v(n"' 1)? weight checking.

3) We needlx’(p(kf) + 27) more operations to performthe
dynamic memory allocation wher€ is the size of a computer
word (K = 32 or 64).

vES vEF n=1
x Pr[X,, e Sand X, € F/Xo = v]

- Z P, .+ Z iP“*UEU((N +1)%) 4) For updati?g matrixZ according to Proposition 2 we haye to
e S add row Z" to all other rowsZ* when z;,, = 1. Assuming
oo that the average weight of colunf, is k/2, the work factor
=Y Puvt Y Y Puo(Bo(N?*) +2E,(N) + 1) involved in this procedure igk(n — k).
ves vEF n=1 Hence the average number of elementary operations performed at
= . . each iteration is
=14 > > Puu(Eo(N?)+2E,(N)). 2
vEF n=1 l-/z ( P )
Qp,a :21}0’ » +2p(/t—k—0’) 90
Let # and#, respectively, denote the vectoig, (N?)),ex and
(E.(N))uex. The matrix form of the last equation is then LK <p <k’/2> n 20> n k('nz— k) @

z=1+07+2Qn Proposition 7: Suppose that the number of codewords of weight
w is A,. The overall work factor required by the algorithm is
where () is the restriction of the transition matri® to the failure

states. Using the definition of the fundamental matrix, we therefore Wpo = .o E(N) 3)
obtain Auw
where E(N) is given by Theorem 1 anf?,, , by (2).
T=Id-Q)"'2Qa+1) Since each term in the previous expression can be explicitly
— 2RO + . computed, we are now able to determine the parameteand o

which minimize the work factor required by the algorithm when
o the size of the code and the weight of the searched codeword
SinceR = 3 Q", we have are given. Such a theoretical expression of the work factor is
n=0 commonly used to assess the efficiency of an algorithm and to
o decide whether a given problem is computationally feasible. It is also
RQ = Z Q"=R-1d applied to the automatic optimization of the parameters. But computer
n=1 architectures, implementations, and compiler optimizations introduce
some variations in the effective number of elementary operations
and # = (2R — Id)a. The final result is then deduced from theperformed at each iteration that cannot be evaluated in a precise way.
equation The sharpest optimization can then only be performed by replacing
in (3) the theoretical value of2, , by the effective average CPU
E(N?) = ng[(2R — Id)7). O time of an iteration.

3) Distribution of the Iteration NumberBesides the average iter- IV. EXPERIMENTAL RESULTS FORDECODING
ation number we often want to estimate the probability that the RaNDOM [256, 128]-BINARY CODES
algorithm will succeed after a fixed number of iterations. But the |n order to check the correctness of our modeling we have
approximation given by the Tchebychev's inequality is usually veryerformaed a great number of simulations for a small problem:
rough. A much more precise evaluation is obtained by raising t'ﬁl%coding a randonj256, 128, 29]-binary code, i.e., recovering
transition matrix of the Markov chain to the corresponding powegn error vector of weightl4. For each set of parameters 1000
We actually have: computations have been made on a DEC alpha 3000/900 workstation.
Proposition 6: Let P be the transition matrix of the Markov chainThe results given in Table | confirm the validity of the previous
associated with the algorithm. # = L~"AL, whereA is a diagonal theory: the experimental average number of iterations is very close
matrix, then the probability that the algorithm will succeed after tg the result obtained by modeling with a Markov chain. Furthermore,
iterations is given by the parameters which minimize the theoretical work factor are optimal
. in practice as well. Decoding a randoj256, 128, 29]-code then
Z 7o (u) (LAY L) (205 requires around 2 s. In the same way, decodifig &, 256, 57]-code
uweE requires around 9 h on our computer.



372 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 1, JANUARY 1998

TABLE |
EXPERIMENTAL RESULTS FORDECODING RANDOM [256, 128, 29]-BINARY CODES
theoretical | experimental average
parameters theoretical average average deviation | CPU
work factor | iteration iteration % time
log, (W) number number (s)
p=1,0=5 27.37 3961 4072 +2.80 2.76
p=1,0=6 26.80 4045 3985 -1.48 2.11
p=1,0=7 26.51 4139 4190 +1.23 2.07
p=1,0=28 26.56 4244 4338 +2.21 2.13
p=10=9 26.95 4362 4417 +1.26 2.90
p=2,0=10 29.80 432 433 +0.35 13.84
p=20=11 29.04 442 470 +6.51 13.00
p=2,0=12 28.51 454 446 -1.76 12.13
p=2,0=13 28.37 466 487 +4.51 17.70
p=2,0=14 28.68 480 508 +5.83 29.40
TABLE 1l 130
OPTIMAL PARAMETERS FOR DECODING RANDOM [, 12/ 2]-BINARY CODES 120
code [64,32,7] | [128,64,15] | [256,128,29] | [512,256,57] | [768,384,85] 1o -
t 3 7 14 28 42 100
optimal p=1 p=1 p=1 p=1 p=2 90
parameters o=4 o==6 o=7 oc=9 =17 80
0
work factor || 21539 919.36 926.51 940.48 954.55 10g2(W"”t)60 =
[1024,512,113] | [1536,768,170] | [2048,1024,226] :2
56 84 112 0
p=2 p=2 p=2 20
o=18 o=19 o=20
10
968.51 996.87 9125.50 e ! : - : N !
128 256 512 768 1024 1280 1536 2048

length of the code

Fig. 1. Evolution of the theoretical work factor with optimized parameters

for decoding randonin, n R]-binary codes.
V. EXpLICIT APPROXIMATION OF THE WORK

FACTOR FOR RANDOM BINARY CODES

Proposition 7 precisely estimates the computational cost for decod-
ing and for finding a minimum-weight codeword once the parameters
of the algorithm are optimized. But computing the average number
of iterations with the transition matrix of the Markov chain is not
very practical especially since this computation has to be performed
for many different parameters. It would then be desirable to have
an explicit formula which gives the work factor of the optimized
algorithm as a function of the size of the code. Hence we establish
here an approximation of this work factor for two classical problems: o ,
decoding a random linear binary code up to its correction capability 128256 512 7§§ngchlgf2;1hc L2 1536 2048
and searching for a minimum-weight word in such a code. These
results notably allow to immediately determine whether trying tbig. 2. Influence of parametegs and o on the work factor for decoding
decode or to find a minimum-weight word in a given code is realisti@ndom[n. n/2]-binary codes.
or not.

W
]0g2(v_yl:;)

Furthermore, we see in Fig. 3 thatR) is close to the entropy

function H»(R) multiplied by a fixed coefficient, where
We first consider the problem of decoding a random linear binary

code of length: and dimensiork up to its error-correcting capability, Hy(w) = —log,(x) — (1 — x)logy (1 — ).
which is obtained by the Gilbert—Varshamov bound. Note that theApproximation 1: The theoretica| Work factor required for de_
code we consider for computing the work factor is [ank + 1]-  coding a randonn, nR]-binary code can be approximated by the
code. Table Il gives the optimal parameters of the algorithm and th@lowing formula:
corresponding work factors required for decoding some codes with
expansion rateR = k/n = 0.5.
We see in Fig. 1 that, for a fixed expansion rdte log, (V)
linearly depends om when parameters and s are optimized and B. Finding Minimum-Weight Codewords
that the work factor can be written in the forf,,, ~ 2m*(/D+° We now give an approximation of the theoretical complexity of the
Fig. 2 shows how parametegs and o act on the work factor algorithm for recovering a word of weighitin a randon», k]-binary
involved in decoding a randoni:, n/2] code: if they are not code, wherel equals the Gilbert—Varshamov bound. We assume that
optimized,log, (W) does not linearly depend on any more. all these codes contain exactly one minimum-weight word. Table

A. Decoding Random Linear Codes

W ~ 2naH2(H)+b

opt wherea = 5.511 10~ andb = 12.
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0.055 a — c O
0_55 0.055H, —| 0.12 0.12FT5(R + 0.03125) — |
0.1 i
0.04
0.08 -
a 003 ¢
0.06 4
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0.04 g
0.0t \| 0.02 i
1 1 Il 1 1 1 1 1 1 L
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/ R=k/n R=k/n

Fig. 3. Evolution of coefficient: versusk = k/n. Fig. 5. Evolution of coefficient: versuskR = k/n.

This class contains both McEliece’s and Niederreiter’s ciphers and
some zero-knowledge identification schemes like the one proposed
by Stern.

TABLE 111
OPTIMAL PARAMETERS FOR FINDING A MINIMUM -WEIGHT
WORD IN RANDOM [n, n/2]-BINARY CODES

code [64,32,7] | [128,64,15] | [256,128,29] A. McEliece’s and Niederreiter's Cryptosystems
optimal p=1 p=1 p=1 McEliece’s cryptosystem uses as a secret key a linear binary code
parameters og=4 =25 o="1 . . . . :
chosen in a familyl' of [n, k]-linear codes with error-correcting
work factor | 91793 575,55 210,65 capability ¢ for which an efficient decoding algorithm is known. In
his original paper [2], McEliece proposed to choose this secret code
[384’17922’43] [512’25’62’57] [640’??(]2’7]} among the irreducible binary Goppa codes of lenidi?4, dimension
p: p: p__ 524, and minimum distancé01.
o =14 o=15 o =16
* Private key: it is composed of arin, k]-linear binary code”
25577 27072 28578 chosen in the family’, a randon¥ x k binary invertible matrix

S, and a random x n permutation matrixP.

« Public key: it consists of thek x » matrix G’ defined by
G' = SGP whereG is a generator matrix of the secret code
C. Matrix G' is then a generator matrix for anotHer, k]-linear
code(’ which is equivalent tc’.

« Encryption: the ciphertext corresponding to tlebit message
m is x = mG' + e, wheree is a randomn-bit error vector of
weight ¢.

« Decryption: the decryption procedure consists in computing
+P~" =mSG+eP~! and using a fast decoding algorithm for
C to recovernS. The message is then given by= (m$)S~*.

A ciphertext in McEliece’s cryptosystem then corresponds to a
word of the public cod&”’ with ¢ corrupted positions.

Niederreiter proposed a dual version of this system [3] where the
public key is a parity-check matrikl’ of a codeC’ equivalent to the
Fig. 4. Evolution of the theoretical work factor with optimized parametersecret code. A plaintext: is here am-bit vector of weightt and the
for finding a minimum-weight word in randori, nR]-binary codes. associated ciphertext corresponds to the syndrome sof relatively

. SRR
Il now gives the optimal parameters of the algorithm for finding & the public codex = mH".

minimum-weight word in some randofn, = /2]-linear binary codes. Niederreiter initia]ly proposed to. use as a secret f:ode either
As for the decoding probleriog, (Woy:) linearly depends om the [104, 24, 32]-binary code obtained by concatenation of the

for a fixed expansion rat& = k/n (see Fig. 4). If this work factor [S> 4. 4]-binary extended Hamming code wittji8, 6, §]-punctured
is written in the formW,,, =~ 2709+ Fig. 5 shows that(R) is Reed-Solomon code over GF), or a[30, 12, 19] Reed—-Solomon

closest to the translated entropy functieHs (R + Ro). code over GK31). The parameters of both of these codes are
Approximation 2: The theoretical work factor required for finding©Pviously too small for the cryptosystem to be secure as shown by

a minimum-weight word in a randorfu, »R]-binary code can be Brickell and Odlyzko [15]. o , L
approximated by the following formula: 1) Comparisons Between McEliece’s and Niederreiter's Systems:

. neH o (Rt Ro)+d McEliece’s and Niederreiter's cryptosystems are actually equivalent

Wopt =2 from the security point of view when set up for corresponding choices
of parameters [16]. But for given parameters Niederreiter's cipher
presents many advantages.

« It allows a public key in systematic form at no cost in security,
whereas this would reveal a part of the plaintext in McEliece’s
system. The public key in Niederreiter's systemis ther k) /n

Our algorithm constitutes the most efficient known attack against times smaller than in McEliece’s version.

the class of public-key cryptosystems based on the hardness of The systematic form of the public matri¥’ and the low
decoding or on finding a minimum-weight word in a large code. weight of vectorm significantly reduce the computational cost

log, (Wop)
40

1 1 1 1 1

64 128 256 512 768
length of the code

wherec = 0.12, d = 10, and Ry = 3.125 1072,

VI. APPLICATION TO THE CRYPTOSYSTEMS
BASED ON ERRORCORRECTING CODES
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TABLE IV
COMPARISON OF THE PERFORMANCE OF MCELIECE'S, NIEDERREITER'S AND RSA RuBLIC-KEY CIPHERS
McEliece Niederrciter RSA
[1024,524,101] | [1024,524,101] 1024-bit modulus
binary code binary code | public exponent = 17
public-key size 67,072 bytes | 32,750 bytes 256 bytes
number of information bits
transmitted per encryption 512 276 1024
transmission rate 51.17 % 56.81 % 100 %
number of binary operations
performed by the encryption 514 50 2,402
per information bit
number of binary operations
performed by the decryption 5,140 7,863 738,112
per information bit

involved in the multiplication ofm by the public matrix. The determine from two generator matrices whether they correspond to
encryption then requires around ten times less binary operati@tuivalent codes and then to recover the permutation. This algorithm
in Niederreiter's system than in McEliece’s one (see Table IVEan be applied when the automorphism group of the code is trivial.
« Its transmission rate, i.e., the number of information symboRinding the permutation between tjt000, 500]-equivalent binary
divided by the number of transmitted symbols, equals codes then requires around 2 s on a workstation DEC 500/266 and
noting that the codes are not equivalent is even faster.

10g2((7§)) The third condition is the most restrictive: it actually dismisses
n—k many families of codes. For example, generalized Reed—Solomon
. - codes are not convenient because their structure can be recovered us-
whereas it equalsk/n for McEliece’s system. For

ing Sidelnikov—Shestakov algorithm [19]; concatenated codes which
“were initially suggested by Niederreiter are not appropriated either
20], [21]. But the family of irreducible Goppa codes is well-suited

such systems insofar as there actually exists no algorithm which
able to compute the characteristic parameters of a Goppa code
m one of its permuted generator matrix. This class can even be

[1024, 524, 101]-binary codes its value is then 56.8% in
stead of 51.2%.

« Another disadvantage of McEliece’s cryptosystem is that it |
easy to recover the plaintext if it has been encrypted twice wi}]é\
the same key (see [17]). Niederreiter’s cipher is, on the contrarﬁz0

deterministi_c since encrypting a given plaintext always leads E%ended to al[1024, 524, 101]-binary Goppa codes defined by a
the same ciphertext. monic square-free polynomial of degré@ in GF(1024)[X] which
A precise evaluation of the complexity of the encryption and deas no root in GF1024). The cardinality ofl" is then2**%-5.
cryption procedures for both of these systems is given in [17,n the case the used family of codes satisfies the above properties,
ch. 2]. Table IV sums up their characteristics when they botfje equivalent codé’ defined by the public key presents no particular

use [1024, 524, 101]-binary codes. We give for information thestrycture; recovering a plaintext from the corresponding ciphertext
values corresponding to the RSA system with a 1024-bit modulygen comes down to decoding any linear code.

n = pg when the public exponent i$7—we here suppose that
RSA encryption and decryption uses Karatsuba's method for large ] o
integer multiplication. These results finally show that it is preferabfé: Stérn’s Public-Key Identification Scheme
to use the version proposed by Niederreiter. They also point outStern presented at Crypto’93 [4] a public-key identification scheme
that this public-key system runs much faster than the RSA. Its mairhich relies on the hardness of finding a small-weight codeword of a
disadvantages are the size of the public key and the lack of relagden syndrome. This scheme uses/ank]-random linear code over
signature scheme. GF(2). All users share a fixed parity-check matiik for this code

2) Cryptanalysis MethodsThere are mainly two guidelines to and an integer slightly below the expected value for the minimal
cryptanalyze McEliece’s cryptosystem: distance of a random linear code. Each user receives a secret key

« recover the original structure of the secret code from a generatowhich is ann-bit vector of weightw. His public key is then

(or parity-check) matrix of an equivalent code; the syndromesH®. Any user can identify himself to another one

« decode the public code which has no visible structure. by proving he knows; without revealing it, thanks to an interactive

The first class of attacks imposes some conditions on the family %qro-knowledge protocol. The minimal parameters proposed by Stern

secret code§. It must in fact satisfy the following properties. aren = 512, k = 256, andw = 56. _ .
Veron [5] also proposed a dual version of this scheme similar to

1 Fo_r given length, dlmen5|_on, and mlnlmal_dlstance, the famllIQ?IcEliece’s original approach: it uses a generator matrix of the code

L'is Ia_rg_e enough_to av0|d_any _enumeratlon. . . instead of a parity-check matrix. He then suggested a new choice
2) An efficient decodlnng algorithm IS known for th|§ famlly._ of the parameters in order to reduce the number of transmitted bits:
3) A generator or parity-check matrix of a permutation equaleplt — 512 k = 120 andw = 114

code gives no information about the structure of the secret ' ' '

code, that means the fast decoding algorithm requires some

parameters of the secret code besides a generator migtrix C. Work Factor Required by Our Algorithm for the Cryptanalysis
The first condition on the size df aims at protecting the system Table V gives the optimal parameters and the number of binary
from the attack which consists in enumerating all the elements gferations involved in an attack of the previous cryptosystems.
I" until a code equivalent to the public code is found. This can Weryptanalyzing McEliece’s cipher with its original parameters then
performed with an algorithm due to Sendrier [18] that is able tequires2°'? binary operations. This new attack is certainly still
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TABLE V 55 T T T T T 45.21
WORK FACTOR REQUIRED FOR CRYPTANALYZING SOME
PuBLIC-KEY SysTEMS BASED ON ERRORCORRECTING CODES sl 1 gner
cryptosystem McEliece Stern Véron
code [1024,524] | [512,256] | [512,120) 5 b 1 1o
w 50 56 114 h C;U
p=2 p=2 p=2 logy (Wop) (months)
optimal parameters o =18 o=15 o=13 b2 - 565
average number
of iterations 9.85 10" | 2.16 10" | 1.74 10'? 51 - 2.83
standard deviation of
the number of iterations || 9.85 10! | 2.16 10 | 1.74 10'? " | . ) . )
0.02 0.04 0,06 0.08 0.1 0.12
work factor 964.2 269.9 9612 snceess rate (%)

Fig. 6. Computational effort required for cryptanalyzing McEliece’s cryp-
tosystem as a function of the rate of messages successfully decrypted: the

unfeasible but it runs 128 times faster than Lee-Brickell's attadkPU time is given for ten workstations DEC alpha 500/266 in parallel.
[7]. These results also show that reducing the size of the public key

by using some codes of length less thEi24 is not conceivable:

decoding g512, 260]-binary Goppa code up to its error-correcting %6 1 ' ' . T T . ¥
capability, for instance, requires on®y/°-! binary operations.

A simple method for speeding up the cryptanalysis is to parallelize
the attack by performing several decodings together as suggested in %
[10] and [22]. But the more decodings are performed together, the a5
more operations have to be done in each iteration. The obtained ga@Q(Wm)
is then not very important. Another approach consists in parallelizing 54
the algorithm itself, as van Tilburg does. But this parallelization is
largely inefficient. For example, the cryptanalysis of Stern’s iden-
tification scheme using van Tilburg's sequential algorithm has an 53
average number of iterations ?f *, and an estimated work factor of o5 Lt ) ) ) ) ) ) )
2729 122, p. 93]. The parallelized instance of the same algorithm on a 0001 00015 0.002 0.0025 0003 00035 0.004 0.0045 0.005
machine with2*! dedicated circuits (which is the optimal number of succes rate (1)
circuits) need®**-* jterations an@®*-* operations [22, p. 107]. But Fig. 7. Computational effort required for cryptanalyzing Stern’s identifica-

L . . i .
distributing the sequential algorithm at’ computers would lead to &%Tkiigﬁé?i %SE% fg{;ﬁg’g(‘)’é /tzh:;'i‘;cng;”real‘_te- the CPU time is given for ten
the same result. With our algorithm, a network of 3000 computers
yields a better result.

However, the standard deviation of the number of iterations
involved in cryptanalyzing all these systems roughly equals if8 Partial Attacks on McEliece’s and Niederreiter's Cryptosystems
average. This spread implies that an unfeasible average work factokcEliece’s and Niederreiter's cryptosystems otherwise present
is not sufficient to guarantee that these cryptosystems are securgoihe weaknesses since the knowledge of a small number of bits of
is necessary to estimate the probability that our algorithm will biae plaintext is sufficient to recover it in its entirety. The knowledge
successful after a feasible number of iterations. This can be donediysome plaintext bits in McEliece’s cipher allows to accordingly
raising the transition matrix of the associated Markov chain to thheduce the dimension of the code we consider in the attack. If we
corresponding power as described in Proposition 6. We then obtaissume tha2°° binary operations is a feasible work factor, it is then
that the work factor required for decoding1®24, 524, 101]-binary possible to decode up to distan®@ a [1024, 404]-binary code with
code up to its error-correcting capability only represents 69% ofir algorithm. This means that the knowledge of 120 plaintext bits
the average work factor. And if the work factor is limited 20', (i.e., 23% of the plaintext) is sufficient to recover the whole plaintext
i.e., to10° iterations, the probability that a message in McEliece’m a reasonable time.
cipher will be decrypt ig0~*. Since 1000 iterations of the optimized A similar attack on Niederreiter's cryptosystem consists in assum-
algorithm are performed in 10 min on a workstation DEC alphig that some error positions are known by the enemy. The problem
500/266, decrypting one message out of 10000 requires two monithshen to determine the distance up to whicfl@24, 524]-binary
and 25 days with ten such computers (see Fig. 6). The proportionooide can be decoded. Table VI shows that the knowledge of 15 error
decrypted messages in a reasonable time is therefore relatively higisitions out of the 50 introduced in McEliece’s and Niederreiter's
as long as the enemy has a few ten fast workstations. systems enables us to recover the plaintext. This small proportion

A similar study shows that the parameters proposed in Stermistably implies that generating the error vector with a noisy channel
identification scheme make it much more secure (see Fig. 7). Aninsecure if this provides some errors whose weight is too small.
eleven-month computation time on ten DEC alpha 500/266 enables
us to recover the secret key of a user in only one case out of 100 000.

This only implies that the lifetime of the keys must be less tha- Optimization of the Parameters Used in McEliece’s Cryptosystem
one year. The parameters proposed ko significantly reduce the  Adams and Meijer [23] have already noticed that using binary
number of transmitted bits in each identification procedure but th€oppa codes of length024 whose dimension i524 as proposed by
impose a much shorter lifetime of the keys since 56 days on ten MtEliece did not maximize the work factor of Lee—Brickell's attack.
our workstations are sufficient to find the secret key of a user witlle now refine these parameters and we replace them by those which
a probability greater tham/3500. maximize the work factor of our algorithm, i.en, = 1024, k =

55.5

45.21

- CPU
(months)

22.61

11.30
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If the minimum distance oB(n, §) equals its designed distance
then the BCH bound is reached for @l(iin, 1h6) [26].
Using the inclusion relations between BCH codes and punctured

Code [1024,524] [512,260]
error-correcting capability 50 28 Reed—Muller codes, Kasami and Lin [27] proved that for all
accessible decoding distance 35 37 1 <i<m-—s-—2, where0 < s < m — 2i, the intersection
p=2 p=2 of the BCH code of lengtl2™ — 1 and designed distance
average work factor o=18 9¥9| o=15 9501 §=2mms—l _gm—s—i=1 _ 1 with the punctured Reed—Muller

code of orders + 2 contains a word of weight.
] * Helgert and Stinaff [28] exhibited a codeword of weighor
614, t = 41. The corresponding average work factor of the attack 5 1 1 in some shortened codes 8f(n. 5).

is then 2(?6'0~ ) ) _ _  Augot and Sendrier [29] found some particular codewords of
As noticed in Section V, the maximum work factor required for  \yeight 5 or § + 1 among the idempotents aB(n.§), i.e.,

finding a m?nimum-weight word in a binary code is maximum when  the words whose coefficients of the locator polynomial lay in
the expansion rate of the code equbf2. The parameters proposed GF(2).

by Stern are therefore optimal from this point of view. Some methods also allow to show that the minimum distance of

some BCH codes is greater than its designed distance:

» Kasami and Tokura [30] combined the inclusion of some BCH
codes in a punctured Reed-Muller code and the divisibility of
In this section we apply our algorithm to the narrow-sense BCH  the weights of Reed-Muller codes. They therefore proved that

codes of length511 since only a lower bound on the minimum some BCH codes have minimum distarce 2 andé + 4.

distance is known for this famous class of cyclic codes. These. Augot, Charpin and Sendrier [24] found some cases where the

codes have been intensively studied since 1959 and some sufficient BCH bound is not reached by exhibiting some contradictions in
conditions for this lower bound to be reached have been exhibited. the Newton identities.

But there is still no general method able to find their true minimurg¢ tor pinary primitive BCH codes it is usually conjectured that the

distance. Quite recently, Augot, Charpin, and Sendrier [24] completgfle minimum distance does not exce®d 4.

the table which gives the minimum distance of BCH codes of length per [24] the minimum distance was still unknown for 12 narrow-

255, but for the lengtfb11 the true minimum distance of 12 narrow-ganse BCH codes of lengtfi 1. We have then tried to find with our

sense BCH codes is still unknown. In this context improving th&lgorithm a word of weight equal to the designed distahcer to

knowledge of the minimum distance of relatively short BCH code(§_|_ 1 in these codes and we have obtained the following result.

is a challenge. This is then a good way for testing the efficiency of thagrem 3: The minimum distance of the narrow-sense BCH

such and such algorithm. But the main interest of any new numerigaqeg of lengti511 with designed distanc& € {29, 37, 41,43, 51,
result is to suggest some important conjectures. 87} equalss. S

We here only consider primitive binary narrow-sense BCH codes.” proof: In each of these codes we found a word of weight1.
Letg = 2", n = 2" —1, anda be a primitiventh root of unity - ringing a4 codeword of weight + 1 is in fact easier than finding

in GF,(‘{),' — . one of weighté since the number of codewords of weight 1
Definition 4: The primitive binary narrow-sense BCH code ofis (n — 5)/(5 + 1) times greater than the number of codewords

lengthn = 2™ —1 and designed distancg denoted byB(n.6),  of weight &. Let o be a primitive element in GR°) defined by
is the largest binary cyclic code of lengthhaving zeros o’ + a* + 1 = 0. The support of these codewords consists of the

«, o ot valuesa’ for the following exponents.
i . 5 =29

VIl. TRUE MINIMUM -DISTANCE OF BINARY
NARROW-SENSE BCH CODES OF LENGTH 511

This construction immediately leads to a bound on the minimum
distanced of B(n,6), named the BCH-boundi > 4. This bound
is actually very strong since it is generally reached: the smallest
primitive narrow-sense BCH code whose minimum distance is greater 317, 347, 354, 368, 369, 412, 415, 423,
than its designed distance I3(127, 29) and it is the only one for ' ' /
this length. 431, 494, 498)

It is well known that the automorphism group of an extended , ¢ _ 3+
primitive binary BCH code contains the affine group on GF);

(26, 31, 38, 51, 64, 72, 112, 126, 139, 142,
157, 188, 222, 227, 265, 270, 301, 306, 307,

we then have the following proposition.
Proposition 8: Let (Ao, -+, A,,) be the weight distribution of a
primitive binary BCH code of length. Then we have for all index
(n +1-— 2.}')‘4%71 = QjAQ]'.

This notably implies that ifB(2™ — 1, ) contains a word of even
weightw then it contains a word of weight — 1.

(4, 13, 27, 48, 56, 94, 102, 103, 115, 118,
132, 149, 152, 159, 197, 202, 215, 232, 240,
249, 250, 251, 290, 324, 327, 349, 359, 360,
367, 383, 396, 423, 461, 493, 494, 499,

504, 509)

From the particular structure of BCH codes we can deduce that* ¢ = 41:

the designed distance is reached for several infinite classes of codes.
e Farr [25, p. 259] deduced from the Hamming bound that the

minimum distance ofB(2™ — 1,2t + 1) equals its designed

distance if
L+l m —
z<2 , 1) > 2,
7

=0

(9, 20, 30, 37, 38, 42, 43, 53, 66, 68,

83, 93, 95, 106, 108, 110, 111, 175, 185,
202, 234, 250, 262, 270, 321, 342, 362, 363
379, 382, 385, 401, 402, 410, 426, 436, 462,
467, 478, 482, 499, 507)
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TABLE VII
BCH Cobes OF LENGTH 511

n k 6 d  argument in n k 6 d argument  in
511 502 3 3 H [31] 511 241 73 73 PS(7,1)  [26]
493 5 5 H [31] 238 5 >75 - -
484 7 7 H [31] 229 17 >77 - -
475 9 9 H [31] 220 719 79 D [24]
466 11 11  RM(6) [27] 211 83 83 D [24]
457 13 13 R [28] 202 8 >85 - -
448 15 15  RM(15) [27] 193 87 87 *k ok
439 17 17 BES |24 184 91 91 D 24
430 19 19 D [24] 175 93 95 # 4-DI [30]
421 21 21 PS(73,3) [26] 166 95 95 RM(3) |27
412 23 23 RM(5) [27] 157 103 103 D [24]
403 25 25 R [28] 148 107 > 107 - -
394 27 27 RM(5) [27] 139 109 111 # 4-DI [30]
385 29 29 - o 130 111 111 RM(3)  [27]
376 31 31 RM(4) [27] 121 117 119 # 4-DI [30]
367 35 35 PS(73,5) [26] 12 119 119 RM(3) [27]
358 37 37 . xox 103 123 127 ## NI [24)
349 39 39 1D [24] 94 125 127 # 4-DY [30]
340 41 41 . o 85 127 127 RM(2)  [27]
331 43 43 ok Fk 76 171 171 ES [24]
322 45 45 D [24] 67 175 175 BES  [24]
313 47 47  RM(4) [27] 58 183 183 ES  [24]
304 51 51 ok Fok 49 187 187 ES [24]
295 53 53 NI [24] 40 191 191 RM(2) [27]
286 55 bb RM(4) [27] 31 219 219 PS(7,3)  [26]
277 57 57 D [24] 28 223 223 RM(2) [27]
268 59 >59 - - 19 239 239 RM(2) [27]
259 61 >61 - - 10 255 255 RM(1) [27]
250 63 63 RM(3) [27]
# d=6+2
#H# d=6+4
Kk new result
H Hamming bound
ES exhaustive search
D idempotent
NI contradiction in Newton’s identities
RM(s)  intersection with the punctured.sth-order Reed-Muller code
R code shortening

PS(n2, 62) product subcode: n = niny, § = 1,6,
where B(ns, ;) has minimum distance equal to &;
4-DI 4-divisibility of RM(4) since B(511,6) is included
in the punctured Reed-Muller code of order 4 for all § > 85

e b = 43: e b = 8T:
(0, 16, 35, 38, 56, 57, 58, 80, 82, 87, (18, 19, 23, 25, 27, 43, 50, 51, 64, 70,
115, 134, 147, 148, 156, 165, 167, 190, 196, 73, 77, 81, 88, 96, 101, 102, 116, 117, 143,
206, 229, 240, 242, 258, 269, 284, 295, 296, 146, 152, 158, 163, 165, 166, 173, 179, 192, 193,
309, 317, 321, 322, 324, 325, 326, 361, 375, 195, 197, 199, 203, 210, 212, 225, 230, 240, 244,
394, 405, 418, 429, 444, 460, 492) 252, 263, 272, 283, 287, 290, 292, 293, 295, 297,

301, 306, 320, 323, 327, 330, 339, 353, 361, 382,
383, 392, 394, 400, 411, 414, 417, 421, 432, 436
446, 453, 459, 461, 466, 474, 475, 476, 480, 481,
483, 487, 489, 492, 503, 504, 505, 510).

e 6 = 51:

(6, 10, 11, 17, 22, 54, 57, 64, 76, 79,
85, 87, 93, 97, 101, 121, 122, 139, 140, 144,
154, 171, 177, 182, 198, 258, 287, 290, 294, 299

- Table VII gives the list of all narrow-sense BCH codes of length
= 4 4 7 37

309, 313, 333, 335, 350, 359, 361, 369, 370, 371, 511, their minimum distance, and the way they were found.

395, 399, 405, 412, 435, 437, 452, 469, 474, 488, As shown in Section V, the computation time for finding a

491, 508) minimum-weight codeword increases when the expansion rate of
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the code is closer td/2. Finding a word of weights + 1 on [14] J. Kemeny and J. SnelKinite Markov Chains New York: Springer-

a DEC alpha 3000/900 workstation actually required less than 1 Verlag, 1960. ) , i
min for B(511, 29), three days forB(511, 37), and between one [15] E. Brickell and A. Odlyzko, “Cryptanalysis: A survey of recent results,

_ . . in Comtemporary Cryptology—The Science of Information Int
and three weeks fof € {41, 43, 87}. A word of weight52 in Simmons, Ed. B,I\Iewy%ork:glyEEE Press, 1992, pp. 501-540. egety

B(511, 52) was found after 50 days on 35 SPARC 5 workstationgi6] Y. Li, R. Deng, and X. Wang, “On the equivalence of McEliece’s and
A comparison of these computation times with the theoretical work  Niederreiter's public-key cryptosystemdEEE Trans. Inform. Theoty
factor of the algorithm points out that the number of minimum-weight _ vol- 40, pp. 271-273, 1994.

. . . . . - 1 A. Canteaut, “Attaques de cryptosgeiesa mots de poids faible et
words in these codes is very high. For instance only 35377 lteratloH‘g construction de fonctions-résilientes,” Ph.D. dissertation, Univ. Paris

were performed for finding a word of weigh¥0 in B(511, 29) 6, 1996.
whereas?.10'® would be necessary if this code contained only ongi8] N. Sendrier, “An algorithm for finding the permutation between two
minimum-weight word. equivalent binary codes,” Tech. Rep. RR-2853, INRIA, Apr. 1996.

; ; PP 9] V. Sidelnikov and S. Shestakov, “On cryptosystems based on general-
A second remark is that we did not succeed in finding a world ized Reed-Solomon codesDiskret. Mat, vol. 4. pp. 57—63, 1992.

of wgight 107 or 108 in B_(511, 107) after 3 months whereas the [20] N. Sendrier, “On the structure of a randomly permuted concatenated
algorithm should run 10 times faster than B(511, 87). We then code,” NEUROCODE 94—Livre dessungs P. Charpin, Ed., INRIA,

conclude that either the BCH bound is not reached for this code or 1994, pp. 169-173.
the number of minimum-weight codewords is very small. This secori@l] N. Sendrier, *On the structure of a randomly permuted concatenated

L code,” Tech. Rep. RR-2460, INRIA, Jan. 1995.
assumption is moreover supported by a result due to Aegal [24] [22] J. van Tilburg, “Security-analysis of a class of cryptosystems based

proving that the minimum-weight codewordsBf2™ —1,2™ % —1) on linear error-correcting codes,” Ph.D. dissertation, Tech. Univ. Eind-
are those of the punctured Reed—Muller code of same length and order hoven, Eindhoven, The Netherlands, 1994.
2. This implies that the minimum-weight codewords in a primitivd23] C. Adams and H. Meijer, “Security-related comments regarding

_ ; ; McEliece’s public-key cryptosystem,” inAdvances in Cryptol-
narrow-sense BCH code become scarcer when the designed distance 0gy—CRYPTO'87C. Pomerance, Ed. New York: Springer-Verlag,

is close to2™~? -1 1087, pp. 224-228,

These results finally suggest that the only BCH codes of lengfh4] D. Augot, P. Charpin, and N. Sendrier, “Studying the locator polynomial
511 for which the BCH bound may be not reached are those whose of minimum weight codewords of BCH codeslEEE Trans. Inform.
designed distance is close 1@7. Theory vol. 38, pp. 960-973, 1992. .

[25] F. MacWilliams and N. Sloan&;he Theory of Error-Correcting Codes
Amsterdam, The Netherlands: North-Holland, 1977.
ACKNOWLEDGMENT [26] T.Kasami, S. Lin, and W. Peterson, “Some results on cyclic codes which
are invariant under the affine group,” Tech. Rep. AFCRL-66-622, Air
The authors wish to thank H. Chabanne who initiated this work  Force Cambridge Res. Labs., Bedford, MA, 1966.

and N. Sendrier for enriching discussions. They would also like {871 T. Kasami and S. Lin, “Some results on the minimum weight of

thank the anonymous referees for many helpful suggestions which ggzn_'g\g BS;ZCOdeS'"'EEE Trans. Inform. Theoryvol. IT-18, pp.

considerably improved this paper. [28] H. Helgert and R. Stinaff, “Shortened BCH codekgEE Trans. Inform.
Theory vol. IT-19, pp. 818-820, 1973.
REFERENCES [29] D. Augot and N. Sendrier, “Idempotents and the BCH bounBEE

Trans. Inform. Theoryvol. 40, pp. 204-207, 1994.

[1] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherentin{30] T.Kasamiand N. Tokura, “Some remarks on BCH bounds and minimum
tractability of certain coding problems/EEE Trans. Inform. Theory weights of primitive binary BCH codes/EEE Trans. Inform. Theory
vol. IT-24, pp. 384-386, 1978. vol. IT-15, pp. 408-413, 1969.

[2] R. McEliece, “A public-key cryptosystem based on algebraic coding31] E. Farr, unpublished.
theory,” Jet Propulsion Lab. DSN Progress Rep., pp. 114-116, 1978.

[3] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding
theory,” Probl. Contr. and Inform. Theorwol. 15, pp. 159-166, 1986.

[4] J. Stern, “A new identification scheme based on syndrome decoding,”
in Advances in Cryptology—CRYPTO;93. Stinson, Ed. New York:
Springer-Verlag, 1993, pp. 13-21.

[5] P. Véron, “Probéme SD, Oprateur Trace, sémas d’identification et
codes de Goppa,” Ph.D. dissertation, Univ. de Toulon et du Var, 1995.

[6] F.Chabaud, Recherche de performance dans I'algorithmique des corps-
finis. Applicationsa la cryptographie,” Ph.D. dissertation, Ecole Poly-
technique, 1996.

[7] P. Lee and E. Brickell, “An observation on the security of McEliece’s
public-key cryptosystem,” inAdvances in Cryptology—EUROCRYPT
'88, C. Gunter, Ed. New York: Springer-Verlag, 1988, pp. 275-280.

[8] J. Leon, “A probabilistic algorithm for computing minimum weights of
large error-correcting codes|EEE Trans. Inform. Theoryol. 34, pp.
1354-1359, 1988.

[9] J. Stern, “A method for finding codewords of small weight,"Qoding
Theory and Applicationss. Cohen and J. Wolfmann, Eds. New York:
Springer-Verlag, 1989, pp. 106-113.

[10] F. Chabaud, “On the security of some cryptosystems based onerror-
correcting codes,” imdvances in Cryptology—EUROCRYPT,'#4 De
Santis, Ed. New York: Springer-Verlag, 1994, pp. 131-139.

[11] J. Omura, “lterative decoding of linear codes by a modulo-2 linearpro-
gramm,” Discr. Math, no. 3, pp. 193-208, 1972.

[12] J.van Tilburg, “On the McEliece public-key cryptosystem,’Advances
in Cryptology—CRYPTO'88&. Goldwasser, Ed. New York: Springer-
Verlag, 1988, pp. 119-131.

[13] A. Canteaut and H. Chabanne, “A further improvement of the work fac-
tor in an attempt at breaking McEliece’s cryptosystem,EIdROCODE
94—Livre des BSunes P. Charpin, Ed., INRIA, 1994.




