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followed by addition which is completed in one clock unit time. The
DFT is computed using a systolic cell described in [15]. For IBA-1
and IBA-2 the computation of the common connection polynomial is
done by processing rows or columns serially. The computations of the
connection polynomials for individual rows or columns in the case of
Blahut’s 2-D burst error correction are done concurrently. Except for
the MSTD, the B-M algorithm works in the spectral domain. For the
MSTD, the time-domain B-M algorithm is employed and in this case
all computations of the B-M algorithm for rows or columns are done
concurrently. To simplify the matters, conjugacy constraints and fast
computation algorithms for DFT are not taken into account. Table I
shows the complexity comparison.

Both IBA-1 and IBA-2 show improvements in computational sav-
ings and decoding delay over BA-1 and BA-2, respectively. Relative
improvement in the case of IBA-1 is more apparent compared to
the improvement in the case of IBA-2. The IBA-1 has the smallest
delay of all and the least hardware requirement. Since the IBA-1
requires simple control circuitry, it is preferable for small values of
t andn. The IBA-2 has the smallest number of computations of all
and marginally higher delay than the IBA-1. Hardware complexity
of the IBA-2 is greater compared to the IBA-1. Therefore, the IBA-
2 is preferable for large values oft andn. The MSTD has a larger
number of computations compared to the IBA-2 and the longest delay
of all. The MSTD may be used for moderate values oft andn, if the
decoding delay is not stringent. It is to be noted that as the MSTD
has to do 1-D DFT computation of either all the rows or columns,
the time-domain implementation of the B-M algorithm for 2-D BCH
decoding is not as advantageous as the time-domain implementation
in the 1-D case.

X. CONCLUSIONS

We have presented deconvolution viewpoint for studying DFT
domain decoding algorithms and applied it to obtain an alternative
exposition of decoding algorithms for 2-D BCH codes. Some modifi-
cations to efficiently implement Blahut’s decoding algorithm for 2-D
BCH codes are suggested. It is shown that the modified algorithm
requires at most half the number of passes compared to Blahut’s
original decoding algorithm. Improved versions of Blahut’s decoding
algorithms are given for correction of random and burst errors. Error-
correcting capability of the class of 2-D BCH codes is determined
and it is shown that Blahut’s decoding algorithms correct up to their
error-correcting capability. We have also given mixed spectral and
time-domain implementation of 2-D BCH decoding algorithms and
compared various decoding algorithms for the class of 2-D BCH
codes with respect to computation and implementation complexities.

Some specialized class of 2-D BCH codes along with their decod-
ing algorithms based on the idea of this correspondence, are given in
[8]. These results will be communicated separately in a forthcoming
paper.
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A New Algorithm for Finding Minimum-Weight Words in
a Linear Code: Application to McEliece’s Cryptosystem

and to Narrow-Sense BCH Codes of Length

Anne Canteaut and Florent Chabaud

Abstract—An algorithm for finding minimum-weight words in large lin-
ear codes is developed. It improves all previous attacks on the public-key
cryptosystems based on codes and it notably points out some weaknesses
in McEliece’s cipher. We also determine with it the minimum distance of
some BCH codes of length511.

Index Terms—BCH codes, decoding algorithm, error-correcting codes,
McEliece’s cryptosystem, minimum weight.

I. INTRODUCTION

Although determining the weights of any linear binary code is an
NP-complete problem [1], the general problem of finding a codeword
of weight bounded by a prescribed integer in a linear code is not
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proved to be NP-hard. It seems most unlikely that a polynomial-
time algorithm for solving it exists. However, it does not imply that
no general algorithm which runs faster than the exhaustive search
can be discovered. Finding an efficient algorithm for computing a
minimum-weight word in a linear code has in fact some important
consequences both in cryptography and in coding theory. Such an
algorithm actually constitutes an attack against a whole class of
cryptosystems which rely on the hardness of decoding or on finding
a minimum-weight codeword in a large linear code with no visible
structure. The most famous are McEliece and Niederreiter public-
key systems [2], [3]—which are equivalent from the security point
of view—and the identification schemes proposed by Stern [4] and by
Véron [5]. This class of public-key systems is at the moment the only
alternative to the common algorithms based on number theory which
resists the cryptanalysis. Twenty years after the fundamental paper
of Diffie and Hellman, public-key cryptography has in fact become
dangerously dependent on only two problems: integer factoring and
discrete logarithm. Studying the security of these systems based on
algebraic error-correcting codes therefore seems essential in order
to anticipate a possible important progress in factoring methods, for
example. Any improvement of the algorithms for finding a minimum-
weight word in a general linear code consequently conditions the
security of these cryptosystems and it delimits the parameters which
could make them insecure. The motivations for searching for such an
algorithm in coding theory are slightly different. This mainly aims
at verifying or at establishing some conjectures on the minimum
distance of some particular linear codes. For instance, there are
several well-known families of codes for which only a lower bound
on the minimum distance is known. It is then of great interest to
determine whether such a bound is tight and to detect a specific
behavior of some of these codes regarding their weight distribution.
Among such families of codes we especially focus here on the
primitive narrow-sense BCH codes.

In this correspondence we present a new probabilistic algorithm
for finding minimum-weight words in any linear code. It associates
a heuristic proposed by Stern and an iterative procedure stemming
from linear programming. We give a very precise analysis of the
complexity of this algorithm which enables us to optimize the
parameters it depends upon. Hence our algorithm is to our knowledge
the best procedure for decoding without using the structure of the
code. Section II describes our algorithm for binary codes but it could
be generalized to linear codes over GF(q) (see [6]). Using Markov
chain theory we show in Section III how to compute the number of
elementary operations it requires; this enables us to determine the
parameters which minimize this theoretical running time. We then
give in Section IV some experimental results for decoding[256; 128]-
binary linear codes which validate the earlier theoretical approach.
Section V is dedicated to the specific problems of decoding and
finding a minimum-weight codeword in a random[n; k]-binary code.
Two applications of our algorithm are finally discussed: we point out
its consequences for the security of some cryptosystems based on
error-correcting codes like McEliece public-key system, and we give
new results for the true minimum distance of some narrow-sense
BCH codes of length511.

II. DESCRIPTION OF THEALGORITHM

As usualwt (x) will denote the Hamming weight of the binary
word x.

Let C be a linear binary code of lengthn, dimensionk, and
minimum distanced about which nothing is known but a generator
matrix. We now develop an algorithm for finding a word of weight
w in C wherew is close tod.

This algorithm can also be used for decoding up to the correction
capability t = b d�1

2
c. If a messagex is composed of a codeword

corrupted by an error vectore of weightw � t, e can be recovered
with this algorithm since it is the only minimum-weight word in the
linear codeC � x. Decoding an[n; k]-linear code then comes down
to finding the minimum-weight codeword in an[n; k + 1]-code.

Since the main motivation of such a research is to attack
McEliece’s cryptosystem, most of the previous works are described
as decoding algorithms. But they can easily be transformed in order
to solve the problem of finding a codeword of low weight. The
first algorithm given by McEliece himself in his first security
analysis of his cryptosystem [2] is equivalent to the information
set decoding procedure. It was later improved by Lee and Brickell
[7]. Independently, Leon [8] and Stern [9] also gave some algorithms
for solving this problem.

A. The Probabilistic Method

Enumerating randomly selected codewords in hope that one of
weightw will be found is obviously not a suitable algorithm because
the probability that the weight of a random codeword will bew
is very small. It is then necessary to bias this random selection by
only examining codewords verifying a given property so that their
weight will be a priori small, for example, codewords which vanish
on a randomly chosen coordinate subset. The problem is therefore
to find a tradeoff between the number of operations required for
searching such particular codewords and the success probability, i.e.,
the probability that the weight of such a codeword will bew.

All algorithms for finding short codewords use therefore the
same method: they are in fact generalizations of the well-known
information set decoding method.

Let N = f1; � � � ; ng be the set of all coordinates. For any subset
I of N , G = (V;W )I denotes the decomposition of matrixG onto
I, that meansV = (Gi)i2I andW = (Gj)j2NnI , whereGi is the
ith column of matrixG.

Definition 1: Let I be ak-element subset ofN . I is an information
set for the codeC if and only if G = (Idk; Z)I is a systematic
generator matrix forC. The complementary set,J = NnI, is called
a redundancy set.

From now on we index the rows ofZ with I sinceG = (Idk; Z)I
is a generator matrix for the code and we denote byZi the ith row
of matrix Z.

The basic idea proposed by Lee and Brickell [7] consists in
randomly selecting at each iteration an information setI and in
examining all codewords having at mostp nonzero bits inI, where
the parameterp usually equals1 or 2. These codewords actually
correspond to the linear combinations of at mostp rows of the
corresponding systematic generator matrix(Idk; Z)I .

Instead of computing the weight of all these linear combinations,
which is a time-consuming procedure, Leon [8] suggested that this
algorithm should be first applied to a punctured codeC

0 composed
of the information setI and a selectionL of � redundant positions,
where� is small—no more than 20 positions for codes of length
around500 or 1000. When a low-weight codeword in this punctured
code is found the total weight of the corresponding word of the initial
codeC is then computed.

The probabilistic algorithm proposed by Stern [9] is slightly
different but it was shown to give the best results [10]. It also consists
in randomly choosing at each iteration an information setI which
is split into two partsI1 and I2 of same size, and a subsetL of
� redundant positions. We only examine codewordsc verifying the
following property:

wt (cjI ) = wt (cjI ) = p andwt (cjL) = 0 (1)
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until we find such a particular codeword whose restriction onJnL

has weightw � 2p.
All codewords which satisfy condition (1) can easily be constructed

from the systematic generator matrixG = (Idk; Z)I :

• randomly split the rows ofZ into two subsetsZ1 and Z2

corresponding toI1 and I2;
• randomly select a�-element subsetL of the redundant setJ ;
• for each linear combination�1 of p rows of matrixZ1, compute
�1jL;

• for each linear combination�2 of p rows of matrixZ2, compute
�2jL;

• if �1jL = �2jL, check whetherwt ((�1+�2)jJnL) = w� 2p.

Both p and� are parameters of the algorithm.

B. The Iterative Procedure

All the previous algorithms therefore explore a set of randomly
selected information sets by performing at each iteration a Gaussian
elimination on an(n � k)-generator matrix. But computing the
complexity of these algorithms points out that their most expen-
sive step is the Gaussian elimination. In order to avoid this time-
consuming procedure, we here propose to choose at each step the
new information set by modifying only one element of the previous
one. This method is analogous to the one used in the simplex method
as suggested in [11]–[13].

Definition 2: Two information windowsI andI 0 are close if and
only if:

9� 2 I; 9� 2 NnI; such thatI 0 = (Inf�g) [ f�g:

As any two information sets can be joined by a sequence of close
information sets, we use this iterative method in order to find one
which enables us to exhibit a codeword of weightw. The following
proposition shows how to choose� and � such thatI 0 is still an
information set.

Proposition 1: Let I be an information set such thatG =

(Idk; Z)I is a generator matrix forC. Let be � 2 I, � 2 J ,
and I 0 = (Inf�g) [ f�g.
I 0 is an information set if and only ifz�;� = 1, where Z =

(zi;j)i2I;j2J .
Proof: SinceG = (Idk; Z)I , we have:

G� = z�;�G� +

i2Inf�g

zi;�Gi:

As the columns indexed byI are linearly independent,G� and
(Gi)i2Inf�g are linearly independent if and only ifz�;� = 1.

As the probabilistic method only deals with the redundant part of
the systematic generator matrix, we only need a procedure to be able
to obtain the redundant matrixZ 0 corresponding toI 0 from Z.

Proposition 2: Let I and I 0 be two close information windows
such thatI 0 = (Inf�g)[f�g. Let (Idk; Z)I and(Idk; Z 0)I be the
corresponding systematic generator matrices. ThenZ 0 is obtained
from Z by

• 8j 2 J 0 z0�;j = z�;j
• 8i 2 I 0nf�g;

— 8j 2 J 0nf�g z0i;j = zi;j + zi;�z�;j

— z0i;� = zi;�:

Proof: As I 0 = (Inf�g) [ f�g; (Idk; Z
0)I is obtained by

exchanging the�th and�th columns of(Idk; Z)I . This can be done
by a simple pivoting operation in position(�; �), i.e., by adding the
�th row of matrixZ to all other rowsZi when the corresponding
elementzi;� is not zero.

C. Description of the Iterative Algorithm

Using this iterative procedure then leads to the following algorithm:

Initialization:
Randomly choose an information setI and apply a Gaussian elimi-
nation in order to obtain a systematic generator matrix(Idk; Z)I .
Until a codeword of weight w will be found:

• randomly splitI in two subsetsI1 andI2 wherejI1j = bk=2c

and jI2j = dk=2e. The rows ofZ are then split in two parts
Z1 and Z2;

• randomly select a�-element subsetL of J ;
• for each linear combination�1 of p rows of matrixZ1, compute
�1jL and store all these values in a hash table with2� entries;

• for each linear combination�2 of p rows of matrixZ2, compute
�2jL and store all these values in a hash table with2� entries;

• using the hash table consider all pairs of linear combinations
(�1;�2) such that�1jL = �2jL and check whetherwt ((�1 +

�2)jJnL) = w � 2p;
• randomly choose� 2 I and� 2 J . ReplaceI with (Inf�g) [

f�g by updating matrixZ according to the preceding proposi-
tion.

III. T HEORETICAL RUNNING TIME

We give here an explicit and computable expression for the work
factor of this algorithm, i.e., the average number of elementary
operations it requires. This analysis is essential for finding the values
of parametersp and � which minimize the running time of the
algorithm.

A. Modeling of the Algorithm by a Markov Chain

The average number of iterations performed by the algorithm is not
the same as the one performed by the initial Stern’s algorithm since
the successive information sets are not independent anymore. Hence
the algorithm must be modeled by a discrete-time stochastic process.

Let c be the codeword of weightw to recover andsupp (c) its
support. LetI be the information set andI1, I2, andL the other
selections corresponding to theith iteration. Theith iteration can
then be represented by a random variableXi which corresponds to
the number of nonzero bits ofc in I. This random variable then
takes its values in the setf1; � � � ; wg. But if this number equals2p
we have to distinguish two cases depending of whether condition (1)
is satisfied or not. The state space of the stochastic processfXigi2NNN
is therefore

E = f1; � � � ; 2p� 1g [ f(2p)S ; (2p)F g [ f2p+ 1; � � � ; wg

where
Xi = u iff jI \ supp (c)j = u; 8u 2 f1; � � � ; 2p� 1g[

f2p+ 1; � � � ; wg

Xi = (2p)F iff jI \ supp (c)j = 2p and(jI1 \ supp (c)j 6= p

or jL \ supp (c)j 6= 0)

Xi = (2p)S iff jI1 \ supp (c)j = jI2 \ supp(c)j = p and
jL \ supp (c)j = 0:

The success space is thenS = f(2p)Sg and the failure space is
F = f1; � � � ; (2p)F ; � � � ; wg.

Definition 3: A stochastic processfXigi2NNN is a Markov chainif
the probability that it enters a certain state only depends on the last
state it occupied.

A Markov chainfXigi2NNN is homogeneousif for all statesu andv,
the conditional probabilityPr [Xi = v=Xi�1 = u] does not depend
on i. This probability is then denoted byPu;v and, if the state spaceE
is finite, the matrixP = (Pu;v)u;v2E is called thetransition matrix
of the chain.
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Proposition 3: The stochastic processfXigi2NNN associated with
the algorithm is an homogeneous Markov chain.

Proof: The selectionsI, I1, I2, andL corresponding to theith
iteration only depend on the previous information window sinceI1,
I2, andL are randomly chosen. We then have for alli and for all
(u0; u1; � � � ; ui) 2 E

Pr[Xi = ui=Xi�1 = ui�1; Xi�2 = ui�2; � � � ; X0 = u0]

= Pr [Xi = ui=Xi�1 = ui�1]:

Furthermore, this probability does not depend on the iteration. Hence
there exists a matrixP such that

8i 2 ; 8(u; v) 2 E
2
; Pr [Xi = v=Xi�1 = u] = Pu;v:

The Markov chainfXigi2NNN is therefore completely determined by
its initial probability vector�0 = (Pr [X0 = u])u2E and its transition
matrix P . Both of these quantities can be easily determined as two
successive information sets differ from only one element.

Proposition 4: The transition matrixP of the homogeneous
Markov chain associated with the algorithm is given by

Pu;u =
k � u

k
�
n� k � (w � u)

n� k
+
u

k
�
w � u

n� k
;

for all u 2 Enf(2p)S ; (2p)Fg

Pu;u�1 =
u

k
�
n� k � (w� u)

n� k
; for all u 6= 2p+ 1

Pu;u+1 =
k � u

k
�
w � u

n� k
; for all u 6= 2p� 1

Pu;v = 0; for all v =2 fu� 1; u; u+ 1g

P(2p) ;(2p) = (1� �)
k � 2p

k
�
n� k � (w� 2p)

n� k

+
2p

k
�
w � 2p

n� k

P2p+1;(2p) = (1� �)
2p+ 1

k
�
n� k � (w� (2p+ 1))

n� k

P2p�1;(2p) = (1� �)
k � (2p� 1)

k
�
w � (2p� 1)

n� k

P2p+1;(2p) = �
2p+ 1

k
�
n� k � (w� (2p+ 1))

n� k

P2p�1;(2p) = �
k � (2p� 1)

k
�
w � (2p� 1)

n� k

P(2p) ;(2p) = �
k � 2p

k
�
n� k � (w� 2p)

n� k
+

2p

k
�
w � 2p

n� k

P(2p) ;(2p) = 1

P(2p) ;u = 0; for all u 6= (2p)S

where

� = Pr [Xi = (2p)S=jI \ supp (e)j = 2p]

=

2p

p

k�2p

k=2�p

k

k=2

n�k�w+2p

�

n�k

�

:

The initial probability vector�0 is

�0(u) =

w

u

n�w

k�u

n

k

; if u 62 f(2p)F ; (2p)Sg

�0((2p)F) =
(1� �) w

2p

n�w

k�2p

n

k

�0((2p)S) =
� w

2p

n�w

k�2p

n

k

:

The only persistent space of this Markov chain, i.e., a maximal state
subset which cannot be left once it is entered, exactly corresponds to
the success spaceS. Since this subset contains only one state which
is an absorbing state, i.e., a state which once entered is never left,
this chain is by definition an absorbing chain.

A basic property of absorbing Markov chains with a finite state
space is that, no matter where the process starts, the probability that
the process is in an absorbing state aftern steps tends to1 asn tends
to infinity. We then deduce that our algorithm converges.

1) Expected Number of Iterations:The absorbing chain property
also enables us to compute the average number of iterations per-
formed by the algorithm. For any finite absorbing chain we can define
its fundamental matrix introduced by Kemeny and Snell [14].

Proposition 5 [14]: If fXigi2 is a finite absorbing Markov chain
with transition matrixP , andQ is the substochastic matrix corre-
sponding to transitions among the transient states—the nonpersistent
states—i.e.,Q = (Pu;v)u;v2F then(Id�Q) has an inverseR called
the fundamental matrix of the chain and

R =

1

m=0

Q
m = (Id�Q)�1:

The average number of iterations performed by the algorithm can
then be deduced from the fundamental matrix.

Theorem 1: The expectation of the number of iterationsN re-
quired untilfXigi2 reaches the success state(2p)S is given by

E(N) =
u2F

�0(u)
v2F

Ru;v

whereR is the corresponding fundamental matrix.
Proof:

E(N) =

1

n=0

nPr [Xn 2 S andXn�1 2 F ]

=

1

n=0

n�1

m=0

Pr [Xn 2 S andXn�1 2 F ]:

Applying Fubini’s theorem, we get

E(N) =

1

m=0

1

n=m+1

Pr [Xn 2 S andXn�1 2 F ]

=

1

m=0

Pr [Xm 2 F ]

=

1

m=0 u2F v2F

Pr [Xm = v=X0 = u]

=
u2F

�0(u)
v2F

1

m=0

(Qm)u;v

=
u2F

�0(u)
v2F

Ru;v:

2) Variance of the Number of Iterations:The fundamental matrix
also gives the variance of the number of iterations, which esti-
mates the deviation from the average work factor of the effective
computational time required by the algorithm.

Theorem 2: The variance of the number of iterationsN required
until fXigi2 reaches a success state is given by:

V (N) =
u2F

�0(u)
v2F

(2Ru;v � �u;v)Ev(N)

�

u2F

�0(u)Eu(N)

2
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where�i;j is the Kronecker symbol andEu(N) is the average number
of iterations performed by the process when it starts in stateu, i.e.,

Eu(N) =
v2F

Ru;v :

Proof: Let Eu(N
2) denote the expectation of the random

variableN2 when the process starts in stateu. We then have

Eu(N
2) =

1

n=1

n
2Pr [Xn 2 S andXn�1 2 F=X0 = u]

=
v2S

Pu;v +
v2F

1

n=1

Pu;v(n+ 1)2

� Pr [Xn 2 S andXn�1 2 F=X0 = v]

=
v2S

Pu;v +
v2F

1

n=1

Pu;vEv((N + 1)2)

=
v2S

Pu;v +
v2F

1

n=1

Pu;v(Ev(N
2) + 2Ev(N) + 1)

= 1 +
v2F

1

n=1

Pu;v(Ev(N
2) + 2Ev(N)):

Let �x and �n, respectively, denote the vectors(Eu(N
2))u2F and

(Eu(N))u2F . The matrix form of the last equation is then

�x = �1 +Q�x + 2Q�n

whereQ is the restriction of the transition matrixP to the failure
states. Using the definition of the fundamental matrix, we therefore
obtain

�x = (Id�Q)�1(2Q�n+ �1)

= 2RQ�n+ �n:

SinceR =
1

n=0

Qn, we have

RQ =

1

n=1

Q
n = R� Id

and �x = (2R � Id)�n. The final result is then deduced from the
equation

E(N2) = �0[(2R� Id)�n]:

3) Distribution of the Iteration Number:Besides the average iter-
ation number we often want to estimate the probability that the
algorithm will succeed after a fixed number of iterations. But the
approximation given by the Tchebychev’s inequality is usually very
rough. A much more precise evaluation is obtained by raising the
transition matrix of the Markov chain to the corresponding power.
We actually have:

Proposition 6: Let P be the transition matrix of the Markov chain
associated with the algorithm. IfP = L�1�L, where� is a diagonal
matrix, then the probability that the algorithm will succeed afterN

iterations is given by

u2E

�0(u)(L
�1�NL)u;(2p) :

B. Average Number of Operations by Iteration

We now give an explicit expression of the average number of
operations performed at each iteration.

1) There are exactlyk=2
p

linear combinations ofp rows of matrix
Z1 (respectivelyZ2); computing each of them on a�-bit
selection and putting it in the hash table requiresp� binary
additions.

2) The average number of collisions, i.e., the average number
of pairs (�1;�2) such that(�1 + �2)jL = 0 is equal to
( )
2

. For each collision we perform2p � 1 additions of
(n � k � �)-bit words for computing(�1 + �2)jJnL and a
weight checking.

3) We needK(p k=2

p
+ 2�) more operations to performthe

dynamic memory allocation whereK is the size of a computer
word (K = 32 or 64).

4) For updating matrixZ according to Proposition 2 we have to
add rowZ� to all other rowsZi when zi;� = 1. Assuming
that the average weight of columnZ� is k=2, the work factor
involved in this procedure is1

2
k(n � k).

Hence the average number of elementary operations performed at
each iteration is


p;� = 2p�
k=2

p
+ 2p(n� k � �)

k=2

p

2

2�

+K p
k=2

p
+ 2� +

k(n� k)

2
: (2)

Proposition 7: Suppose that the number of codewords of weight
w is Aw. The overall work factor required by the algorithm is

Wp;� =

p;�E(N)

Aw

(3)

whereE(N) is given by Theorem 1 and
p;� by (2).
Since each term in the previous expression can be explicitly

computed, we are now able to determine the parametersp and �
which minimize the work factor required by the algorithm when
the size of the code and the weightw of the searched codeword
are given. Such a theoretical expression of the work factor is
commonly used to assess the efficiency of an algorithm and to
decide whether a given problem is computationally feasible. It is also
applied to the automatic optimization of the parameters. But computer
architectures, implementations, and compiler optimizations introduce
some variations in the effective number of elementary operations
performed at each iteration that cannot be evaluated in a precise way.
The sharpest optimization can then only be performed by replacing
in (3) the theoretical value of
p;� by the effective average CPU
time of an iteration.

IV. EXPERIMENTAL RESULTS FORDECODING

RANDOM [256; 128]-BINARY CODES

In order to check the correctness of our modeling we have
performaed a great number of simulations for a small problem:
decoding a random[256; 128; 29]-binary code, i.e., recovering
an error vector of weight14. For each set of parameters 1000
computations have been made on a DEC alpha 3000/900 workstation.
The results given in Table I confirm the validity of the previous
theory: the experimental average number of iterations is very close
to the result obtained by modeling with a Markov chain. Furthermore,
the parameters which minimize the theoretical work factor are optimal
in practice as well. Decoding a random[256; 128; 29]-code then
requires around 2 s. In the same way, decoding a[512; 256; 57]-code
requires around 9 h on our computer.
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TABLE I
EXPERIMENTAL RESULTS FOR DECODING RANDOM [256; 128; 29]-BINARY CODES

TABLE II
OPTIMAL PARAMETERS FORDECODING RANDOM [n; n=2]-BINARY CODES

V. EXPLICIT APPROXIMATION OF THE WORK

FACTOR FOR RANDOM BINARY CODES

Proposition 7 precisely estimates the computational cost for decod-
ing and for finding a minimum-weight codeword once the parameters
of the algorithm are optimized. But computing the average number
of iterations with the transition matrix of the Markov chain is not
very practical especially since this computation has to be performed
for many different parameters. It would then be desirable to have
an explicit formula which gives the work factor of the optimized
algorithm as a function of the size of the code. Hence we establish
here an approximation of this work factor for two classical problems:
decoding a random linear binary code up to its correction capability
and searching for a minimum-weight word in such a code. These
results notably allow to immediately determine whether trying to
decode or to find a minimum-weight word in a given code is realistic
or not.

A. Decoding Random Linear Codes

We first consider the problem of decoding a random linear binary
code of lengthn and dimensionk up to its error-correcting capability,
which is obtained by the Gilbert–Varshamov bound. Note that the
code we consider for computing the work factor is an[n; k + 1]-
code. Table II gives the optimal parameters of the algorithm and the
corresponding work factors required for decoding some codes with
expansion rateR = k=n = 0:5.

We see in Fig. 1 that, for a fixed expansion rateR, log2(W )

linearly depends onn when parametersp and� are optimized and
that the work factor can be written in the formWopt ' 2na(R)+b.

Fig. 2 shows how parametersp and � act on the work factor
involved in decoding a random[n; n=2] code: if they are not
optimized,log2(W ) does not linearly depend onn any more.

Fig. 1. Evolution of the theoretical work factor with optimized parameters
for decoding random[n; nR]-binary codes.

Fig. 2. Influence of parametersp and � on the work factor for decoding
random [n; n=2]-binary codes.

Furthermore, we see in Fig. 3 thata(R) is close to the entropy
functionH2(R) multiplied by a fixed coefficient, where

H2(x) = �x log2(x)� (1� x) log2(1� x):

Approximation 1: The theoretical work factor required for de-
coding a random[n; nR]-binary code can be approximated by the
following formula:

Wopt ' 2naH (R)+b
; wherea = 5:511 10�2 andb = 12:

B. Finding Minimum-Weight Codewords

We now give an approximation of the theoretical complexity of the
algorithm for recovering a word of weightd in a random[n; k]-binary
code, whered equals the Gilbert–Varshamov bound. We assume that
all these codes contain exactly one minimum-weight word. Table
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Fig. 3. Evolution of coefficienta versusR = k=n.

TABLE III
OPTIMAL PARAMETERS FOR FINDING A MINIMUM -WEIGHT

WORD IN RANDOM [n; n=2]-BINARY CODES

Fig. 4. Evolution of the theoretical work factor with optimized parameters
for finding a minimum-weight word in random[n; nR]-binary codes.

III now gives the optimal parameters of the algorithm for finding a
minimum-weight word in some random[n; n=2]-linear binary codes.

As for the decoding problemlog2(Wopt) linearly depends onn
for a fixed expansion rateR = k=n (see Fig. 4). If this work factor
is written in the formWopt ' 2nc(R)+d, Fig. 5 shows thatc(R) is
closest to the translated entropy functioncH2(R+ R0).

Approximation 2: The theoretical work factor required for finding
a minimum-weight word in a random[n; nR]-binary code can be
approximated by the following formula:

Wopt ' 2ncH (R+R )+d

wherec = 0:12, d = 10; andR0 = 3:125 10�2:

VI. A PPLICATION TO THE CRYPTOSYSTEMS

BASED ON ERROR-CORRECTING CODES

Our algorithm constitutes the most efficient known attack against
the class of public-key cryptosystems based on the hardness of
decoding or on finding a minimum-weight word in a large code.

Fig. 5. Evolution of coefficientc versusR = k=n.

This class contains both McEliece’s and Niederreiter’s ciphers and
some zero-knowledge identification schemes like the one proposed
by Stern.

A. McEliece’s and Niederreiter’s Cryptosystems

McEliece’s cryptosystem uses as a secret key a linear binary code
chosen in a family� of [n; k]-linear codes with error-correcting
capability t for which an efficient decoding algorithm is known. In
his original paper [2], McEliece proposed to choose this secret code
among the irreducible binary Goppa codes of length1024, dimension
524, and minimum distance101.

• Private key: it is composed of an[n; k]-linear binary codeC
chosen in the family�, a randomk�k binary invertible matrix
S, and a randomn � n permutation matrixP .

• Public key: it consists of thek � n matrix G0 defined by
G0 = SGP whereG is a generator matrix of the secret code
C. Matrix G0 is then a generator matrix for another[n; k]-linear
codeC0 which is equivalent toC.

• Encryption: the ciphertext corresponding to thek-bit message
m is x = mG0 + e, wheree is a randomn-bit error vector of
weight t.

• Decryption: the decryption procedure consists in computing
xP�1 = mSG+eP�1 and using a fast decoding algorithm for
C to recovermS. The message is then given bym = (mS)S�1.

A ciphertext in McEliece’s cryptosystem then corresponds to a
word of the public codeC0 with t corrupted positions.

Niederreiter proposed a dual version of this system [3] where the
public key is a parity-check matrixH 0 of a codeC0 equivalent to the
secret code. A plaintextm is here ann-bit vector of weightt and the
associated ciphertextx corresponds to the syndrome ofm relatively
to the public code,x = mH 0t.

Niederreiter initially proposed to use as a secret code either
the [104; 24; 32]-binary code obtained by concatenation of the
[8; 4; 4]-binary extended Hamming code with a[13; 6; 8]-punctured
Reed–Solomon code over GF(16), or a [30; 12; 19] Reed–Solomon
code over GF(31). The parameters of both of these codes are
obviously too small for the cryptosystem to be secure as shown by
Brickell and Odlyzko [15].

1) Comparisons Between McEliece’s and Niederreiter’s Systems:
McEliece’s and Niederreiter’s cryptosystems are actually equivalent
from the security point of view when set up for corresponding choices
of parameters [16]. But for given parameters Niederreiter’s cipher
presents many advantages.

• It allows a public key in systematic form at no cost in security,
whereas this would reveal a part of the plaintext in McEliece’s
system. The public key in Niederreiter’s system is then(n�k)=n
times smaller than in McEliece’s version.

• The systematic form of the public matrixH 0 and the low
weight of vectorm significantly reduce the computational cost
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TABLE IV
COMPARISON OF THEPERFORMANCE OFMCELIECE’S, NIEDERREITER’S, AND RSA PUBLIC-KEY CIPHERS

involved in the multiplication ofm by the public matrix. The
encryption then requires around ten times less binary operations
in Niederreiter’s system than in McEliece’s one (see Table IV).

• Its transmission rate, i.e., the number of information symbols
divided by the number of transmitted symbols, equals

log
2
( n

t
)

n� k

whereas it equals k=n for McEliece’s system. For
[1024; 524; 101]-binary codes its value is then 56.8% in-
stead of 51.2%.

• Another disadvantage of McEliece’s cryptosystem is that it is
easy to recover the plaintext if it has been encrypted twice with
the same key (see [17]). Niederreiter’s cipher is, on the contrary,
deterministic since encrypting a given plaintext always leads to
the same ciphertext.

A precise evaluation of the complexity of the encryption and de-
cryption procedures for both of these systems is given in [17,
ch. 2]. Table IV sums up their characteristics when they both
use [1024; 524; 101]-binary codes. We give for information the
values corresponding to the RSA system with a 1024-bit modulus
n = pq when the public exponent is17—we here suppose that
RSA encryption and decryption uses Karatsuba’s method for large
integer multiplication. These results finally show that it is preferable
to use the version proposed by Niederreiter. They also point out
that this public-key system runs much faster than the RSA. Its main
disadvantages are the size of the public key and the lack of related
signature scheme.

2) Cryptanalysis Methods:There are mainly two guidelines to
cryptanalyze McEliece’s cryptosystem:

• recover the original structure of the secret code from a generator
(or parity-check) matrix of an equivalent code;

• decode the public code which has no visible structure.

The first class of attacks imposes some conditions on the family of
secret codes�. It must in fact satisfy the following properties.

1) For given length, dimension, and minimal distance, the family
� is large enough to avoid any enumeration.

2) An efficient decoding algorithm is known for this family.
3) A generator or parity-check matrix of a permutation equivalent

code gives no information about the structure of the secret
code, that means the fast decoding algorithm requires some
parameters of the secret code besides a generator matrixG0.

The first condition on the size of� aims at protecting the system
from the attack which consists in enumerating all the elements of
� until a code equivalent to the public code is found. This can be
performed with an algorithm due to Sendrier [18] that is able to

determine from two generator matrices whether they correspond to
equivalent codes and then to recover the permutation. This algorithm
can be applied when the automorphism group of the code is trivial.
Finding the permutation between two[1000; 500]-equivalent binary
codes then requires around 2 s on a workstation DEC 500/266 and
noting that the codes are not equivalent is even faster.

The third condition is the most restrictive: it actually dismisses
many families of codes. For example, generalized Reed–Solomon
codes are not convenient because their structure can be recovered us-
ing Sidelnikov–Shestakov algorithm [19]; concatenated codes which
were initially suggested by Niederreiter are not appropriated either
[20], [21]. But the family of irreducible Goppa codes is well-suited
to such systems insofar as there actually exists no algorithm which
is able to compute the characteristic parameters of a Goppa code
from one of its permuted generator matrix. This class can even be
extended to all[1024; 524; 101]-binary Goppa codes defined by a
monic square-free polynomial of degree50 in GF(1024)[X] which
has no root in GF(1024). The cardinality of� is then2498:5.

In the case the used family of codes satisfies the above properties,
the equivalent codeC0 defined by the public key presents no particular
structure; recovering a plaintext from the corresponding ciphertext
then comes down to decoding any linear code.

B. Stern’s Public-Key Identification Scheme

Stern presented at Crypto’93 [4] a public-key identification scheme
which relies on the hardness of finding a small-weight codeword of a
given syndrome. This scheme uses an[n; k]-random linear code over
GF(2). All users share a fixed parity-check matrixH for this code
and an integerw slightly below the expected value for the minimal
distance of a random linear code. Each user receives a secret key
s which is ann-bit vector of weightw. His public key is then
the syndromesHt. Any user can identify himself to another one
by proving he knowss without revealing it, thanks to an interactive
zero-knowledge protocol. The minimal parameters proposed by Stern
aren = 512, k = 256, andw = 56.

Véron [5] also proposed a dual version of this scheme similar to
McEliece’s original approach: it uses a generator matrix of the code
instead of a parity-check matrix. He then suggested a new choice
of the parameters in order to reduce the number of transmitted bits:
n = 512, k = 120, andw = 114.

C. Work Factor Required by Our Algorithm for the Cryptanalysis

Table V gives the optimal parameters and the number of binary
operations involved in an attack of the previous cryptosystems.
Cryptanalyzing McEliece’s cipher with its original parameters then
requires264:2 binary operations. This new attack is certainly still
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TABLE V
WORK FACTOR REQUIRED FOR CRYPTANALYZING SOME

PUBLIC-KEY SYSTEMS BASED ON ERROR-CORRECTING CODES

unfeasible but it runs 128 times faster than Lee–Brickell’s attack
[7]. These results also show that reducing the size of the public key
by using some codes of length less than1024 is not conceivable:
decoding a[512; 260]-binary Goppa code up to its error-correcting
capability, for instance, requires only240:1 binary operations.

A simple method for speeding up the cryptanalysis is to parallelize
the attack by performing several decodings together as suggested in
[10] and [22]. But the more decodings are performed together, the
more operations have to be done in each iteration. The obtained gain
is then not very important. Another approach consists in parallelizing
the algorithm itself, as van Tilburg does. But this parallelization is
largely inefficient. For example, the cryptanalysis of Stern’s iden-
tification scheme using van Tilburg’s sequential algorithm has an
average number of iterations of257:0, and an estimated work factor of
2
72:9 [22, p. 93]. The parallelized instance of the same algorithm on a

machine with231 dedicated circuits (which is the optimal number of
circuits) needs243:5 iterations and258:5 operations [22, p. 107]. But
distributing the sequential algorithm on214 computers would lead to
the same result. With our algorithm, a network of 3000 computers
yields a better result.

However, the standard deviation of the number of iterations
involved in cryptanalyzing all these systems roughly equals its
average. This spread implies that an unfeasible average work factor
is not sufficient to guarantee that these cryptosystems are secure: it
is necessary to estimate the probability that our algorithm will be
successful after a feasible number of iterations. This can be done by
raising the transition matrix of the associated Markov chain to the
corresponding power as described in Proposition 6. We then obtain
that the work factor required for decoding a[1024; 524; 101]-binary
code up to its error-correcting capability only represents 69% of
the average work factor. And if the work factor is limited to251,
i.e., to 10

8 iterations, the probability that a message in McEliece’s
cipher will be decrypt is10�4. Since 1000 iterations of the optimized
algorithm are performed in 10 min on a workstation DEC alpha
500/266, decrypting one message out of 10 000 requires two months
and 25 days with ten such computers (see Fig. 6). The proportion of
decrypted messages in a reasonable time is therefore relatively high
as long as the enemy has a few ten fast workstations.

A similar study shows that the parameters proposed in Stern’s
identification scheme make it much more secure (see Fig. 7). An
eleven-month computation time on ten DEC alpha 500/266 enables
us to recover the secret key of a user in only one case out of 100 000.
This only implies that the lifetime of the keys must be less than
one year. The parameters proposed by V´eron significantly reduce the
number of transmitted bits in each identification procedure but they
impose a much shorter lifetime of the keys since 56 days on ten of
our workstations are sufficient to find the secret key of a user with
a probability greater than1=3500.

Fig. 6. Computational effort required for cryptanalyzing McEliece’s cryp-
tosystem as a function of the rate of messages successfully decrypted: the
CPU time is given for ten workstations DEC alpha 500/266 in parallel.

Fig. 7. Computational effort required for cryptanalyzing Stern’s identifica-
tion scheme as a function of the success rate: the CPU time is given for ten
workstations DEC˜alpha 500/266 in parallel.

D. Partial Attacks on McEliece’s and Niederreiter’s Cryptosystems

McEliece’s and Niederreiter’s cryptosystems otherwise present
some weaknesses since the knowledge of a small number of bits of
the plaintext is sufficient to recover it in its entirety. The knowledge
of some plaintext bits in McEliece’s cipher allows to accordingly
reduce the dimension of the code we consider in the attack. If we
assume that250 binary operations is a feasible work factor, it is then
possible to decode up to distance50 a [1024; 404]-binary code with
our algorithm. This means that the knowledge of 120 plaintext bits
(i.e., 23% of the plaintext) is sufficient to recover the whole plaintext
in a reasonable time.

A similar attack on Niederreiter’s cryptosystem consists in assum-
ing that some error positions are known by the enemy. The problem
is then to determine the distance up to which a[1024; 524]-binary
code can be decoded. Table VI shows that the knowledge of 15 error
positions out of the 50 introduced in McEliece’s and Niederreiter’s
systems enables us to recover the plaintext. This small proportion
notably implies that generating the error vector with a noisy channel
is insecure if this provides some errors whose weight is too small.

E. Optimization of the Parameters Used in McEliece’s Cryptosystem

Adams and Meijer [23] have already noticed that using binary
Goppa codes of length1024 whose dimension is524 as proposed by
McEliece did not maximize the work factor of Lee–Brickell’s attack.
We now refine these parameters and we replace them by those which
maximize the work factor of our algorithm, i.e.,n = 1024; k =
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TABLE VI
ACCESSIBLE DECODING DISTANCE

614; t = 41. The corresponding average work factor of the attack
is then 2

66:0.
As noticed in Section V, the maximum work factor required for

finding a minimum-weight word in a binary code is maximum when
the expansion rate of the code equals1=2. The parameters proposed
by Stern are therefore optimal from this point of view.

VII. T RUE MINIMUM -DISTANCE OF BINARY

NARROW-SENSE BCH CODES OF LENGTH 511

In this section we apply our algorithm to the narrow-sense BCH
codes of length511 since only a lower bound on the minimum
distance is known for this famous class of cyclic codes. These
codes have been intensively studied since 1959 and some sufficient
conditions for this lower bound to be reached have been exhibited.
But there is still no general method able to find their true minimum
distance. Quite recently, Augot, Charpin, and Sendrier [24] completed
the table which gives the minimum distance of BCH codes of length
255, but for the length511 the true minimum distance of 12 narrow-
sense BCH codes is still unknown. In this context improving the
knowledge of the minimum distance of relatively short BCH codes
is a challenge. This is then a good way for testing the efficiency of
such and such algorithm. But the main interest of any new numerical
result is to suggest some important conjectures.

We here only consider primitive binary narrow-sense BCH codes.
Let q = 2

m, n = 2
m
� 1, and� be a primitiventh root of unity

in GF(q).
Definition 4: The primitive binary narrow-sense BCH code of

length n = 2
m
� 1 and designed distance�, denoted byB(n; �),

is the largest binary cyclic code of lengthn having zeros

�; �2; . . . ; ���1:

This construction immediately leads to a bound on the minimum
distanced of B(n; �), named the BCH-bound:d � �. This bound
is actually very strong since it is generally reached: the smallest
primitive narrow-sense BCH code whose minimum distance is greater
than its designed distance isB(127; 29) and it is the only one for
this length.

It is well known that the automorphism group of an extended
primitive binary BCH code contains the affine group on GF(2

m
);

we then have the following proposition.
Proposition 8: Let (A0; � � � ; An) be the weight distribution of a

primitive binary BCH code of lengthn. Then we have for all indexj

(n+ 1� 2j)A2j�1 = 2jA2j :

This notably implies that ifB(2
m � 1; �) contains a word of even

weightw then it contains a word of weightw � 1.
From the particular structure of BCH codes we can deduce that

the designed distance is reached for several infinite classes of codes.

• Farr [25, p. 259] deduced from the Hamming bound that the
minimum distance ofB(2

m � 1; 2t + 1) equals its designed
distance if

t+1

i=0

2
m � 1

i
> 2

mt:

• If the minimum distance ofB(n; �) equals its designed distance
then the BCH bound is reached for allB(hn; h�) [26].

• Using the inclusion relations between BCH codes and punctured
Reed–Muller codes, Kasami and Lin [27] proved that for all
1 � i � m � s � 2, where0 � s � m � 2i, the intersection
of the BCH code of length2m � 1 and designed distance
� = 2

m�s�1 � 2
m�s�i�1� 1 with the punctured Reed–Muller

code of orders + 2 contains a word of weight�.
• Helgert and Stinaff [28] exhibited a codeword of weight� or
� + 1 in some shortened codes ofB(n; �).

• Augot and Sendrier [29] found some particular codewords of
weight � or � + 1 among the idempotents ofB(n; �), i.e.,
the words whose coefficients of the locator polynomial lay in
GF(2).

Some methods also allow to show that the minimum distance of
some BCH codes is greater than its designed distance:

• Kasami and Tokura [30] combined the inclusion of some BCH
codes in a punctured Reed-Muller code and the divisibility of
the weights of Reed-Muller codes. They therefore proved that
some BCH codes have minimum distance� + 2 and� + 4.

• Augot, Charpin and Sendrier [24] found some cases where the
BCH bound is not reached by exhibiting some contradictions in
the Newton identities.

But for binary primitive BCH codes it is usually conjectured that the
true minimum distance does not exceed� + 4.

After [24] the minimum distance was still unknown for 12 narrow-
sense BCH codes of length511. We have then tried to find with our
algorithm a word of weight equal to the designed distance� or to
� + 1 in these codes and we have obtained the following result.

Theorem 3: The minimum distance of the narrow-sense BCH
codes of length511 with designed distance� 2 f29; 37; 41; 43; 51;
87g equals�.

Proof: In each of these codes we found a word of weight�+1.
Finding a codeword of weight� + 1 is in fact easier than finding
one of weight� since the number of codewords of weight� + 1

is (n � �)=(� + 1) times greater than the number of codewords
of weight �. Let � be a primitive element in GF(29) defined by
�9 + �4 + 1 = 0. The support of these codewords consists of the
values�i for the following exponents.

• � = 29:

(26; 31; 38; 51; 64; 72; 112; 126; 139; 142;

157; 188; 222; 227; 265; 270; 301; 306; 307;

317; 347; 354; 368; 369; 412; 415; 423;

431; 494; 498)

• � = 37:

(4; 13; 27; 48; 56; 94; 102; 103; 115; 118;

132; 149; 152; 159; 197; 202; 215; 232; 240;

249; 250; 251; 290; 324; 327; 349; 359; 360;

367; 383; 396; 423; 461; 493; 494; 499;

504; 509)

• � = 41:

(9; 20; 30; 37; 38; 42; 43; 53; 66; 68;

83; 93; 95; 106; 108; 110; 111; 175; 185;

202; 234; 250; 262; 270; 321; 342; 362; 363

379; 382; 385; 401; 402; 410; 426; 436; 462;

467; 478; 482; 499; 507)
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• � = 43:

(0; 16; 35; 38; 56; 57; 58; 80; 82; 87;

115; 134; 147; 148; 156; 165; 167; 190; 196;

206; 229; 240; 242; 258; 269; 284; 295; 296;

309; 317; 321; 322; 324; 325; 326; 361; 375;

394; 405; 418; 429; 444; 460; 492)

• � = 51:

(6; 10; 11; 17; 22; 54; 57; 64; 76; 79;

85; 87; 93; 97; 101; 121; 122; 139; 140; 144;

154; 171; 177; 182; 198; 258; 287; 290; 294; 299;

309; 313; 333; 335; 350; 359; 361; 369; 370; 371;

395; 399; 405; 412; 435; 437; 452; 469; 474; 488;

491; 508)

• � = 87:

(18; 19; 23; 25; 27; 43; 50; 51; 64; 70;

73; 77; 81; 88; 96; 101; 102; 116; 117; 143;

146; 152; 158; 163; 165; 166; 173; 179; 192; 193;

195; 197; 199; 203; 210; 212; 225; 230; 240; 244;

252; 263; 272; 283; 287; 290; 292; 293; 295; 297;

301; 306; 320; 323; 327; 330; 339; 353; 361; 382;

385; 392; 394; 400; 411; 414; 417; 421; 432; 436;

446; 453; 459; 461; 466; 474; 475; 476; 480; 481;

483; 487; 489; 492; 503; 504; 505; 510):

Table VII gives the list of all narrow-sense BCH codes of length
511, their minimum distance, and the way they were found.

As shown in Section V, the computation time for finding a
minimum-weight codeword increases when the expansion rate of
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the code is closer to1=2. Finding a word of weight� + 1 on
a DEC alpha 3000/900 workstation actually required less than 1
min for B(511; 29), three days forB(511; 37), and between one
and three weeks for� 2 f41; 43; 87g. A word of weight 52 in
B(511; 52) was found after 50 days on 35 SPARC 5 workstations.
A comparison of these computation times with the theoretical work
factor of the algorithm points out that the number of minimum-weight
words in these codes is very high. For instance only 35 377 iterations
were performed for finding a word of weight30 in B(511; 29)

whereas7:1015 would be necessary if this code contained only one
minimum-weight word.

A second remark is that we did not succeed in finding a word
of weight 107 or 108 in B(511; 107) after 3 months whereas the
algorithm should run 10 times faster than forB(511; 87). We then
conclude that either the BCH bound is not reached for this code or
the number of minimum-weight codewords is very small. This second
assumption is moreover supported by a result due to Augotet al. [24]
proving that the minimum-weight codewords ofB(2

m

�1; 2m�2�1)

are those of the punctured Reed–Muller code of same length and order
2. This implies that the minimum-weight codewords in a primitive
narrow-sense BCH code become scarcer when the designed distance
is close to2m�2 � 1.

These results finally suggest that the only BCH codes of length
511 for which the BCH bound may be not reached are those whose
designed distance is close to127.
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