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Abstract. This paper presents an operational reconstruction technique
of most stream ciphers. We primarily expose it for key-stream genera-
tors which consist of several linear feedback shift registers combined by
a nonlinear Boolean function. It is shown how to completely recover the
different feedback polynomials and the combining function, when the
algorithm is totally unknown. This attack only requires the knowledge
of some ciphertexts, which may be generated from different secret keys.
Estimates of necessary ciphertext length and experimental results are
detailed.
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1 Introduction

Stream ciphers are an important class of cipher systems. They are widely used by
the world’s militaries and governmental offices. They also are very often used in
industrial encryption products. The success of stream ciphers comes from the fact
that they are very easy to build: they need only few logic gates in VLSI circuitry.
They are therefore particularly appropriate to embedded systems (satellites for
example) or to the systems for which maintenance is either impossible or very
difficult. Moreover, their use is particularly well-suited when errors may occur
during the transmission because they avoid error propagation.

In a binary additive stream cipher, the ciphertext is obtained by adding
bitwise the plaintext to a pseudo-random sequence called the running-key (or the
key-stream). The running-key is produced by a pseudo-random generator whose
initialization is the secret key shared by the users. Most practical designs of
pseudo-random generators center around linear feedback shift registers (LFSRs)
combined by a nonlinear Boolean function. Different variants can actually be
found: clock-controlled systems, filter generators, multiplexed systems...[13]. We
here focus on the most common class of combination generators depicted in
Figure 1.
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Fig. 1. Additive stream cipher using a combination generator

The other very important aspect is that the designs are often secret and
contrary to block ciphers, generally no public evaluation is possible. Although
such stream ciphers may be vulnerable to some attacks [11,7,6], cryptanalysis
becomes much harder when the algorithm is unknown. During World War II,
US cryptanalysts had to face this problem with the Japanese PURPLE ma-
chine [8]: they reconstructed it before cryptanalysing it. This paper presents
a similar approach and a reconstruction technique of stream ciphers allowing,
from ciphertexts only, complete recovering of the unknown algorithm. By al-
gebraic and statistical results, all the cryptographic primitives constituting the
system (the LFSR characteristics and the combining function) can be recovered.
After this reconstruction step, the LFSR initializations can be found by classical
correlation attacks [11,7,6,1].

The reconstruction has been conducted on the following basis and assump-
tions:

– The system is a combination generator. Most practical designs use combining
functions with up to 5 or 7 variables (i.e., registers). In this paper we will
only consider additive stream ciphers but generalization to other combining
functions can be envisaged with suitable modifications.

– We use only ciphertexts, possibly generated from different secret keys. Each
of them, however, must be of a realistic length.

– We know the plaintext encoding (or at least some of its statistical parame-
ters) and the linguistic group of the plaintext language.

– We accept very long computing time since work is done only once (and for
all) and as long as it remains far lower than the life of the algorithm itself.

This paper is organized as follows. Section 2 presents the theoretical tools we use
in the reconstruction. In Section 3, we show how to recover the LFSRs and we
give some simulation results. We precisely analyze the complexity of this attack
and we estimate the number of required ciphertext bits. Section 4 focuses on the
combining function recovering.



Ciphertext only Reconstruction of Stream Ciphers 167

2 Theoretical Background

2.1 Linear Feedback Shift Register Sequences

A linear feedback shift register of length L is characterized by a univariate
polynomial P over F2 of degree L, called the feedback polynomial, P (x) =
1 +

∑L
i=1 piX

i. It associates to any L-bit initialization (st)1≤t≤L a sequence
(st)t>0 defined by the L-th order linear recurrence relation.

st+L =
L∑

i=1

pist+L−i, t ≥ 0 .

Most applications use a primitive feedback polynomial since this ensures that
the periods of all sequences produced by the LFSR are maximal.

We now recall some well-known properties on LFSR sequences. In the follo-
wing, S(P ) denotes the set of all sequences produced by the LFSR with feedback
polynomial P .

Proposition 1. [15,5,14] Let P and Q be two non constant polynomials over F2.
Then we have

– {(ut + vt)t>0, u ∈ S(P ), v ∈ S(Q)} = S(R) where R is the least common
multiple of P and Q.

– {(utvt)t>0, u ∈ S(P ), v ∈ S(Q)} = S(R) where deg(R) ≤ deg(P )deg(Q).
Equality holds if and only if at least one of the polynomials P and Q has
only simple roots and all products αβ are distinct for all α and β such that
P (α) = 0 and Q(β) = 0 in a common splitting field. This condition is notably
satisfied if P and Q have coprime orders.

Proposition 2. [9, Th. 8.53] Let P and Q be two non constant polynomials
over F2. Then S(P ) is a subset of S(Q) if and only if P divides Q.

This proposition implies that if a sequence s is generated by a LFSR with feed-
back polynomial P , then it satisfies the recurrence relations (or parity-check
equations) corresponding to PQ for any Q ∈ F2[X].

For a given feedback polynomial P of degree L, we focus on all recurrence
relations corresponding to the multiples of P of weight d, where d is small.
A similar approach is used in fast correlation attacks [11,1,7]. The following
formula (see e.g. [1]) provides an approximation of the average number m(d)
of multiples Q of P which have weight d and degree at most D, Q(X) = 1 +∑d−1

j=1 Xij :

m(d) ' Dd−1

(d− 1)!2L
. (1)
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2.2 Boolean Functions for Stream Ciphers

A Boolean function with n variables is a function from the set of n-bit words,
Fn

2 , into F2. Such a function can be expressed as a unique polynomial in x1, . . . ,
xn, called its Algebraic Normal Form (ANF):

f(x1, . . . , xn) =
∑

u∈Fn
2

auxu, au ∈ F2

where u = (u1, . . . , un) and xu = xu1
1 xu2

2 . . . xun
n . The coefficients au of the ANF

can be obtained from the Möbius transform of f [10]:

au =
⊕
x�u

f(x) (2)

where ⊕ denotes the addition over F2 and α � β describes the partial ordering
on the Boolean lattice. This means that α � β if and only if αi ≤ βi for all
1 ≤ i ≤ n.

The Walsh-Hadamard transform of a Boolean function f refers to the Fourier
transform of the corresponding sign function, x 7→ (−1)f(x):

∀u ∈ Fn
2 , χ̂f (u) =

∑
x∈Fn

2

(−1)f(x)(−1)u·x

where u · x denotes the usual scalar product. The Walsh coefficient χ̂f (u) then
estimates the Hamming distance between f and the affine function u · x + ε,
ε ∈ F2, both seen as Reed-Muller codewords [10].

A Boolean function is obviously completely characterized by its Walsh spec-
trum. The coefficients of the algebraic normal form of f can then be computed
from its Walsh coefficients as follows.

Proposition 3. Let f be a Boolean function with n variables and let (au)u∈Fn
2

denote the coefficients of its algebraic normal form, i.e.,

f(x1, . . . , xn) =
∑

u∈Fn
2

auxu .

Then we have, for all u ∈ Fn
2 , au = 2wt(u)−1

(
1− 1

2n

∑
v�ū χ̂f (v)

)
mod 2 where

ū denotes the bitwise completion to 1 and wt(u) is the Hamming weight of u,
i.e., the number of its non-zero components.

Proof. From Equation (2) we have for any u ∈ Fn
2

au =
∑
x�u

f(x) mod 2 =
∑
x�u

1
2

(
1− (−1)f(x)

)
mod 2

= 2wt(u)−1 − 1
2

∑
x�u

(−1)f(x) mod 2
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Since the normalized Fourier transform is involutive, we have

∀x ∈ Fn
2 , (−1)f(x) = 2−n

∑
v∈Fn

2

χ̂f (v)(−1)v·x .

By combining these relations, we deduce that

au = 2wt(u)−1 − 2−n−1
∑
x�u

∑
v∈Fn

2

χ̂f (v)(−1)v·x mod 2

= 2wt(u)−1 − 2−n−1
∑

v∈Fn
2

χ̂f (v)

∑
x�u

(−1)v·x

 mod 2 .

The set Eu = {x ∈ Fn
2 , x � u} is a linear subspace of Fn

2 of dimension wt(u).
Its orthogonal, E⊥

u , satisfies E⊥
u = Eū. It follows that∑

x�u

(−1)v·x =
{

2wt(u) if v ∈ Eū,
0 otherwise.

We then obtain that, for all u ∈ Fn
2 ,

au = 2wt(u)−1 − 2−n−1+wt(u)
∑
v�ū

χ̂f (v) mod 2 .

This proposition will be used in the attack for recovering the algebraic normal
form of the combining function.

It is well-known that a combining function must fulfill some criteria to yield
a cryptographically secure combination generator (see e.g. [3]). Most notably,
combination generators are vulnerable to “divide-and-conquer” attacks, called
correlation attacks [17]. These techniques fail when the combining function has
a high correlation-immunity order [16].

Definition 1. A Boolean function is t-th order correlation-immune if the pro-
bability distribution of its output is unaltered when any t input variables are
fixed.

This property equivalently asserts that the output of f is statistically indepen-
dent of any linear combination of t input variables. Correlation-immunity can
be characterized by the Walsh spectrum of the function [18]: f is t-th order
correlation-immune if and only if

∀u ∈ Fn
2 , 1 ≤ wt(u) ≤ t, χ̂f (u) = 0 .

Since any t-th order correlation-immune function is k-th order correlation-im-
mune for any k ≤ t, we call correlation-immunity order of a function f the highest
integer t such that f is t-th order correlation-immune. Note that the correlation-
immunity order of a function with n variables can not exceed (n−1). This comes
from Parseval’s relation: ∑

u∈Fn
2

(χ̂f (u))2 = 22n .
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This equality also points out the existence of a trade-off between the correlation-
immunity order and the nonlinearity of a function.

3 Recovering the LFSRs

We now show how the key-stream generator depicted in Figure 1 can be recon-
structed from the knowledge of some ciphertext bits.

In the rest of the paper we use the following notation. n denotes the number
of constituent LFSRs. Li and Pi denote the length and the feedback polynomial
of the i-th LFSR and si refers to the generated sequence. The sequences y, m
and c respectively correspond to the key-stream, to the plaintext and to the
ciphertext. When dealing bitwise, we use t as index time.

The plaintext is assumed to be the output of a binary memoryless source
with P [mt = 0] = p0 6= 1

2 . All commonly used coding scheme (ASCII, Murray,
CCITTx . . . ) satisfy this hypothesis. Moreover, the value of p0 is supposed to
be known. Practical values of p0 are usually greater than 0.6.

The first step of the reconstruction consists in recovering the feedback poly-
nomials of the constituent LFSRs.

3.1 Statistical Model

We first point out that the knowledge of a sequence s which is correlated with
the ciphertext sequence provides some information on the feedback polynomials
of the constituent LFSRs.

Proposition 4. Let s be a binary sequence. If P [ct = st] 6= 1/2 then there exists
a Boolean function g with n variables such that s = g(s1, . . . , sn). Moreover, we
have P [ct = st] = 1−p0−pg+2p0pg where pg = P [f(x1, . . . , xn) = g(x1, . . . , xn)].

Proof. We obviously have

P [ct = st] = P [yt = st]P [mt = 0] + P [yt = st ⊕ 1]P [mt = 1]

= 1− p0 − P [yt = st] + 2p0P [yt = st] .

By hypothesis, p0 6= 1/2. Thus P [ct = st] 6= 1/2 implies that P [yt = st] 6= 1/2.
Since y = f(s1, . . . , sn), the sequences y and s are statistically independent if
s is statistically independent of (s1, . . . , sn). It follows that P [yt = st] = 1/2
unless s = g(s1, . . . , sn) for some Boolean function g. In this case, we have

P [yt = ct] = P [f(x1, . . . , xn) = g(x1, . . . , xn)] .

Note that some variables may not appear in the algebraic normal form of g.
If s is such that P [ct = st] 6= 1/2 we deduce from the previous proposition and

from Proposition 1 that the feedback polynomial of s is related to the feedback
polynomials P1,. . . ,Pn.
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Corollary 1. Let S(Q) denote the set of all sequences generated by Q ∈ F2[X].
If there exists s ∈ S(Q) such that P [ct = st] 6= 1/2, then there exists a divisor Q′

of Q and a Boolean function g such that Q′ is derived from P1,. . . ,Pn and from
g as described in Proposition 1.

This result leads to the following algorithm for recovering some information on
P1, . . . ,Pn. Let Q be a subset of F2[X]. For each Q ∈ Q, we determine whether
S(Q) contains a sequence which is correlated with the ciphertext. If such a
sequence exists, Q provides some information on P1,. . . ,Pn. We here choose for
Q the set of all polynomials of F2[X] of weight d and of degree at most D having
the following form Q(X) = 1+

∑d−1
j=1 Xij . Recall that the degree of the feedback

polynomial of the product of two sequences si and sj is usually much higher than
the degree of the feedback polynomial of si + sj . If the upper-bound D on the
degree of the examined polynomials is well-chosen, the polynomials Q detected
by the algorithm then correspond to the case where the combining function g is
linear. For g(x) = u·x, any feedback polynomial of s = g(s1, . . . , sn) is a multiple
of lcmi∈supp(u)Pi where supp(u) = {i, ui = 1}. Since all feedback polynomials
are usually primitive, we have lcmi∈supp(u)Pi =

∏
i∈supp(u) Pi in most practical

situations. Moreover, we have

P [ct = st] =
1
2

+
(2p0 − 1)

2n+1 χ̂f (u) . (3)

Example 1. We consider the combination generator described by Geffe [4]. It
consists of three LFSRs combined by the Boolean function f(x1, x2, x3) = x1x2+
x2x3 + x1. Assume that the feedback polynomials of the constituent LFSRs are
randomly chosen primitive polynomials and that their lengths are respectively
L1 = 15, L2 = 17 and L3 = 23. Let c be the ciphertext sequence obtained by
adding the output of Geffe generator to a plaintext with p0 6= 0.5. Let Q be the
set of all polynomials of weight 4 and of degree at most 10000. For all Q ∈ Q,
we determine whether S(Q) contains a sequence which is correlated with c. We
deduce from Formula (1) that, for a randomly chosen polynomial P of degree L,
Q contains a multiple of P of weight 4 if L ≤ 37. Our algorithm is then expected
to detect multiples of P1, P2, P3 and P1P2. Note that P2 can not be detected by
the algorithm since the Walsh coefficient χ̂f (0, 1, 0) vanishes.

A simple method for determining whether S(Q) contains a sequence which is
correlated with c consists in computing the parity-check equation corresponding
to Q for the ciphertext bits. The efficiency of this procedure strongly depends
on the weight of Q.

Theorem 1. Let Q be a polynomial in F2[X] of weight d having the following
form Q(X) = 1 +

∑d−1
j=1 Xij with i1 < i2 < . . . < id−1 . For a given ciphertext

subsequence (ct)t<N we consider the binary sequence (zt)id−1≤t<N defined by

zt = ct ⊕
d−1⊕
j=1

ct−ij
.
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Then the random variable Z =
∑N−1

t=id−1
(−1)zt has a Gaussian distribution with

mean value M = ±(N−id−1)(2ε)d and with variance σ2 = (N−id−1)(1−(2ε)2d)
where ε = maxs∈S(Q) |P [ct = st]− 1

2 |.
Proof. Let s ∈ S(Q) be such that |P [ct = st]− 1

2 | is maximal. Let p = P [ct = st].
For all t, we decompose ct as ct = st⊕ et where P [et = 1] = 1−p. Then we have

P [zt = 1] = P [ct ⊕
d−1⊕
j=1

ct−ij
= 1] = P [et ⊕

d−1⊕
j=1

et−ij
= 1]

since s satisfies the recurrence relation because s ∈ S(Q). This implies that
zt = 1 if and only if the number of indexes i ∈ {t, t− i1, . . . , t− id−1} such that
ei = 1 is odd. Therefore we have

P [zt = 1] =
d∑

`=0,` odd

(
d

`

)
(1− p)`pd−`

=
1
2

[
d∑

`=0

(
d

`

)
(1− p)`pd−` −

d∑
`=0

(
d

`

)
(p− 1)`pd−`

]

=
1
2
[
1− (2p− 1)d

]
.

The random variable Z can now be expressed as Z = (N − id−1)−2
∑N

t=id−1
zt .

All random variables zt are independent and identically distributed. Due to the
central limit theorem [2], the random variable

∑N
t=id−1

zt for large values of
(N − id−1) can be assumed to have a Gaussian distribution with mean value
(N − id−1)P [zt = 1] and variance (N − id−1)P [zt = 1]P [zt = 0]. It follows that
Z has a Gaussian distribution with mean value

M = (N − id−1)(1− 2P [zt = 1]) = (N − id−1)(2p− 1)d

and with variance

σ2 = 4(N − id−1)P [zt = 1]P [zt = 0] = (N − id−1)(1− (2p− 1)d)(1 + (2p− 1)d)

= (N − id−1)(1− (2p− 1)2d) .

If all sequences in S(Q) are statistically independent of c, Z has Gaussian dis-
tribution with mean value 0 and variance (N − id−1) since ε = 0 in this case.

We now want to distinguish between two hypotheses:

– H0: for all s ∈ S(Q), P [ct = st] = 1
2 .

– H1: there exists s ∈ S(Q) such that P [st = ct] 6= 1
2 .

We use a decision threshold T , T > 0, for discriminating hypotheses H0 and
H1. If |Z| < T , H0 is kept; if |Z| ≥ T , H1 is accepted. The minimum number
of required ciphertext bits, N , depends on the number of wrong decisions that
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we allow. This number corresponds to the probability for a false alarm, Pf =
P [|Z| ≥ T | H0]. The decision threshold is determined by the probability for
a non-detection, Pn = P [|Z| < T | H1]. Let Φ denotes the normal distribution
function,

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−x2

2

)
dx .

Then we have

Pf = P [|Z| ≥ T | H0] = 2Φ

(
−T√

N − id−1

)
.

Similarly the probability for a non-detection is given by

Pn = P [|Z| < T | H1] =
1√
2π

∫ T −M
σ

−T −M
σ

exp
(
−x2

2

)
dx

= Φ

(
T −M

σ

)
− Φ

(−T −M

σ

)
= Φ

(
T − |M |

σ

)
− Φ

(−T − |M |
σ

)
since M is not necessarily positive. In most cases, Φ(−T−|M |

σ ) is much smaller
than Pn and than Φ(T−|M |

σ ). Then this latter will approximate Pn. The prede-
termined value of Pn fixes the choice for the threshold:

T = |M |+ Φ−1(Pn)σ = (N − id−1)(2ε)d + Φ−1(Pn)
√

(N − id−1)(1− (2ε)2d) .

Similarly, the predetermined probability for a false alarm gives the minimum
value of (N − id−1):

N − id−1 =

(
T

Φ−1(1− Pf

2 )

)2

.

After different attempts to tune up the best values for Pf and Pn, we choose
Pf = 2−20 and Pn = 10−3. In practical situations the known ciphertext sequence
does not consist of a large number of consecutive bits. The attacker has access
to some ciphertext blocks of reasonable lengths. These ciphertexts may be pro-
duced with different keys, i.e., with different LFSR initializations. Theorem 1
can nevertheless be adapted to this more realistic situation.

Corollary 2. Let Q be a polynomial in F2[X] of weight d having the following
form Q(X) = 1 +

∑d−1
j=1 Xij with i1 < i2 < . . . < id−1 . For nc ciphertexts

ck, 1 ≤ k ≤ nc, of respective lengths LC(k), we consider the binary sequence
(zk

t )id−1≤t<LC(k),1≤k≤nc
defined by

zk
t = ck

t ⊕
d−1⊕
j=1

ck
t−ij

.
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Then the random variable

Z =
nc∑

k=1

LC(k)−1∑
t=id−1

(−1)zk
t

has a Gaussian distribution with mean value

M = ±(2ε)d
nc∑

k=1

(LC(k)− id−1)

and with variance

σ2 = (1− (2ε)2d)
nc∑

k=1

(LC(k)− id−1)

where ε = maxs∈S(Q) |P [ct = st]− 1
2 |.

The following algorithm then examines all polynomials of degree at most D and
of weight d, and it detects all polynomials Q in this set such that there exists
s ∈ S(Q) with |P [st = ct]− 1/2| ≥ εmin.

Algorithm
For each (d− 1)-tuples (i1, . . . , id−1) such that 0 < i1 < . . . < id−1 < D

N ←∑nc

k=1(LC(k)− id−1).
T ← N(2εmin)d − 3

√
N(1− (2εmin)2d).

Z ← 0.
For each ciphertext block (ck

t )0≤t<LC(k) where LC(k) > id−1

for each t from id−1 to LC(k)− 1
z ← ck

t ⊕
⊕d−1

j=1 ck
t−ij

.
Z ← Z + (−1)z.

If |Z| ≥ T , store 1 +
∑d−1

j=1 Xij and the value of Z.

Some gcd computations on the obtained polynomials provide the primitive
factors which are detected several times. These primitive factors are expected to
be the feedback polynomials of the constituent LFSRs.

3.2 Complexity Analysis

We now discuss the choice of the input parameters d, D and εmin.
Recall that we aim at recovering multiples of polynomials

∏
i∈T Pi, T ⊂

{1, . . . , n} such that |P [ct =
⊕

i∈T si
t]− 1/2| ≥ εmin. According to Formula (3),

these subsets T are characterized by

|2p0 − 1|
2n+1 |χ̂f (1T )| ≥ εmin
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where the i-th component of 1T equals 1 if and only if i ∈ T . It is well-known
that all Walsh coefficients of a Boolean function f with n variables are divisible
by 4, unless f has degree n. This case is here dismissed since such a function
cannot be balanced. Choosing

εmin =
|2p0 − 1|

2n−1 (4)

then ensures to detect all polynomials
∏

i∈T Pi such that χ̂f (1T ) 6= 0. In most
practical situations, the number of variables n does not exceed 7.

We now assume that our search can be restricted to all products
∏

i∈T Pi of
degree at most Lmax. This means that we suppose that all feedback polynomials
P1,. . . ,Pn can be recovered from all products

∏
i∈T Pi such that χ̂f (1T ) 6= 0

and
∑

i∈T Li ≤ Lmax. Note that Lmax should obviously be greater than the
maximum length of all constituent LFSRs. A polynomial of degree Lmax is then
recovered by our algorithm if it divides at least one polynomial of weight d and
of degree at most D. We deduce from Formula (1) that the minimum possible
value for D is approximatively

D = (d− 1)!
1

d−1 2
Lmax
d−1 . (5)

This also implies that the attack can only use ciphertext blocks of length at
least LC with

LC ≥ (d− 1)!
1

d−1 2
Lmax
d−1 . (6)

Moreover, we want the probability for a false alarm in the algorithm to be less
than 2−20. This implies that (

∑nc

k=1 LC(k))− ncD ≥
(

T
5

)2
. By replacing T by

its value, we obtain the following condition

Nt − ncD ≥ 1
25

(
(Nt − ncD)(2εmin)d − 3

√
(Nt − ncD)(1− (2εmin)2d)

)2

where Nt =
∑nc

k=1 LC(k) is the total ciphertext length. We deduce that

Nt − ncD ≥
(
5 + 3

√
1− (2εmin)2d

)2

(2εmin)2d
. (7)

It finally follows that the total ciphertext length should satisfy

Nt ≥ nc(d− 1)!
1

d−1 2
Lmax
d−1 +

(
5 + 3

√
1− (2εmin)2d

)2

(2εmin)2d
. (8)

This value is minimal if nc = 1, i.e., if all known ciphertext bits are consecutive.
In this case, the minimum length of the ciphertext sequence required by the
reconstruction is

Nt = min
d

(d− 1)!
1

d−1 2
Lmax
d−1 +

(
5 + 3

√
1− (2εmin)2d

)2

(2εmin)2d

 . (9)
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This formula points out that the optimal value of d increases with Lmax. Figure 2
shows how Nt and the optimal value of d vary with εmin, for Lmax = 70.

1

1e+10

1e+20

1e+30

0.02 0.04 0.06 0.08

Nt

εmin

Lmax = 70

d = 3
d = 4
d = 5

Fig. 2. Minimum ciphertext length required for Lmax = 70

In most practical situations, all ciphertext blocks have roughly the same
length LC. The number nc of such ciphertext blocks required by the reconstruc-
tion is then

nc ≥
(
5 + 3

√
1− (2εmin)2d

)2

(2εmin)2d(LC − (d− 1)!
1

d−1 2
Lmax
d−1 )

. (10)

We then use the algorithm with the value of d which minimizes this formula.
The number of operations performed by the algorithm is roughly

Dd−1

(d− 1)!
d(Nt − ncD) .

Using equations (5) and (8), we obtain the following complexity

d2Lmax

(
5 + 3

√
1− (2εmin)2d

)2

(2εmin)2d
.

Another method for recovering the feedback polynomials of the LFSRs con-
sists in examining all polynomials of degree at most Lmax and in computing the
corresponding parity-check equations on the ciphertext sequence. A similar ana-
lysis applies to this attack. We here have to choose D = Lmax and d ' Lmax/2
since the average weight of a polynomial of degree Lmax is roughly Lmax/2. With
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these parameters, Formula (7) provides the minimum ciphertext length required
by this second attack:

N ′
t = Lmax +

(
5 + 3

√
1− (2εmin)Lmax

)2

(2εmin)Lmax
.

We easily see that this number is much larger that the number of ciphertext bits
required by our attack (see Formula (8)). Moreover, the number of operations
performed by this second attack is roughly

d2Lmax

(
5 + 3

√
1− (2εmin)Lmax

)2

2(2εmin)Lmax
.

Our attack is then much more efficient than the enumeration of all polynomials
of degree Lmax.

3.3 Simulation Results

We consider the following toy example of combination generator. Three LFSRs
are combined by the majority function f(x1, x2, x3) = x1x2 + x1x3 + x2x3 . The
feedback polynomials are respectively

P1(x) = 1 + x2 + x4 + x5 + x6 + x8 + x9 + x10 + x11 + x13 + x15

P2(x) = 1 + x2 + x4 + x5 + x6 + x8 + x9 + x10 + x11 + x13 + x14 + x15 + x17

P3(x) = 1 + x + x7 + x8 + x10 + x12 + x15 + x16 + x17 + x20 + x21 + x22 + x23

The output of this combination generator is used for encrypting a plaintext
with p0 = 0.70. We take εmin = 0.1; this value corresponds to Formula (4)
with n = 3. We applied our algorithm with parameters D = 3, 620 and d = 3
(which is the optimal value for these parameters). We used 170 ciphertext blocks
of length 10,000 (i.e., around 1,200 ASCII characters). Note that Formula (10)
gives nc = 157. Exactly 263 trinomials have been detected by our algorithm. All
of these trinomials are divisible by one of the feedback polynomials. This means
that the effective probability for a false alarm is zero. Moreover, all multiples
of P1, P2 and P3 of degree at most 3,620 have been detected (see Table 1). This

Table 1. Detected polynomials for the toy example

d P1 P2 P3 Total
Nb. of detected polynomials 3 208 53 2 263

Exact nb. of multiples 3 208 53 2 263

simulation required roughly one week on a DEC alpha workstation at 433 MHz.
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We also checked our attack on the same example where P1 was replaced by

1+x+x3+x6+x7+x8+x13+x16+x19+x20+x25+x26+x27+x28+x29+x31+x33 .

We here used 6,109 ciphertext blocks of length 10,000. The optimal parameters
are here D = 5, 910 and d = 4. For these values, all multiples of P1, P2 and P3,
of weight 4 and degree at most D have been detected.

4 Recovering of the Combining Function

A method for recovering the combining function was developed in [12] but it
requires the knowledge of all LFSR initializations. Moreover, this technique relies
on Siegenthaler’s correlation attack; its complexity is then exponential in the
lengths of the constituent LFSRs. We now show how to bypass these limitations
and to practically reconstruct the combining function.

The number of variables of the combining function is derived from the pre-
vious step of our attack. Moreover, the previous analysis also provides an esti-
mation of some Walsh coefficients of the combining function. Suppose that some
multiples of weight d of

∏
i∈T Pi, T ⊂ {1, . . . , n}, have been detected by our

algorithm. For any such multiple, the mean value of the estimator Z equals
N(2p− 1)d, where p = P [ct = st] with s = g(s1, . . . , sn) and g(x) = 1T · x. The
values of Z obtained for all detected multiples of

∏
i∈T Pi therefore provides an

estimation of probability p. Using Formula (3), we can then compute the value
of the corresponding Walsh coefficient, χ̂f (1T ). This value is rounded to the clo-
sest multiple of 4, since all the Walsh coefficients are divisible by 4 for balanced
functions.

If
∏

i∈T Pi has degree L greater than Lmax, no multiple was detected by the
algorithm. We then choose a higher value of d satisfying

(d− 1)!
1

d−1 2
L

d−1 ≤ LC .

We then compute all multiples of
∏

i∈T Pi of weight d and degree at most LC,
and the corresponding values of Z. We deduce the involved Walsh coefficient as
previously seen.

Example 2. In the toy example, the values of the estimator Z obtained for each
multiple of weight 3 of P1 provide

P [ct = st] = 0.6003 .

Formula (3) gives the approximation: χ̂f (1, 0, 0) = 4.01. Similarly, we obtain the
following information during the first step:

χ̂f (0, 1, 0) = χ̂f (1, 0, 0) = 4 χ̂f (0, 0, 0) = 0 .
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For each detected Pi we compute some multiples of weight 5 and of degree at
most 10,000 for each product PiPj . Although all of these products were poten-
tially detectable, no one was detected; we then deduce that

χ̂f (1, 1, 0) = χ̂f (1, 0, 1) = χ̂f (0, 1, 1) = 0 .

Similar simulations for d = 7 allow to find the remaining coefficient:

χ̂f (1, 1, 1) = −4 .
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