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Parity-Check Relations on Combination Generators
Anne Canteaut and María Naya-Plasencia

Abstract—A divide-and-conquer cryptanalysis can often be
mounted against some keystream generators composed of several
(possibly nonlinear) independent devices combined by a Boolean
function. In particular, any parity-check relation derived from
the periods of some constituent sequences usually leads to a
distinguishing attack whose complexity is determined by the bias
of the relation. However, estimating this bias is a difficult problem
since the piling-up lemma cannot be used. Here, we give two exact
expressions for this bias. Most notably, these expressions lead to a
new algorithm for computing the bias of a parity-check relation,
and they also provide some simple formulas for this bias in some
particular cases which are commonly used in cryptography,
namely resilient functions and plateaued functions. We also show
how to build parity-check relations with the highest possible bias
in some particularly relevant cases.

Index Terms—Boolean functions, parity-check relations, stream
ciphers.

I. INTRODUCTION

P ARITY-CHECK relations are extensively used in
cryptanalysis for building statistical distinguishers. For

instance, they can be exploited in divide-and-conquer attacks
against some stream ciphers which consist of several inde-
pendent devices whose output sequences are combined by a
nonlinear function. Here, we focus on such keystream gener-
ators as depicted on Fig. 1. All the constituent devices are
updated independently from each other. The only assumption
which will be used in the whole paper is that each sequence

generated by the th device is periodic with
least period .
The simplest case of a generator built according to the model

depicted in Fig. 1 is the combination generator, where all de-
vices are LFSRs. However, our work is of greater interest in
the case where the next-state functions of the constituent de-
vices are nonlinear. The eSTREAM candidate Achterbahn and
its variants [3], [2], [4], [6], [5], designed by Gammel, Göttfert,
and Kniffler, follow this design principle: all these ciphers are
actually composed of several nonlinear feedback shift registers
(NLFSRs) with maximal periods. This design is very attractive
since the use of independent devices allows to accommodate a
large internal state with a small hardware footprint.
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Fig. 1. Keystream generator composed of several independent devices com-
bined by a Boolean function.

However, if the combining function can be approximated
by a function depending on fewer variables (e.g., on the first
variables), the keystream is correlated to

a second sequence depending on the first
devices only. Exploiting such a correlation obviously requires
the computation of the second sequence . In the original at-
tack proposed by Siegenthaler [16], a set including is com-
puted by evaluating the sequences obtained for all possible ini-
tial states for the first devices. Then, a distinguishing attack
on the keystream can be performed if the attacker is able to de-
tect the correlation between and the keystream, which corre-
sponds to the correlation between and . The data complexity
and the time complexity of the attack are then completely de-
termined by the bias of the approximation of by , i.e., by the
bias of .
But, an exhaustive search for the initial states of the first

devices is intractable as soon as the combining function is
well chosen. The use of parity-check relations proposed by Jo-
hansson, Meier, and Muller [11] then aims at eliminating the
influences of some of these devices in order to make the ex-
haustive search possible. For instance, if the approximation is
linear in the first variables, the basic idea for eliminating the
influences of the first devices consists in summing the terms
of at the instants defined by all possible combinations with

-coefficients of the periods of

where . Now, a set including
this new sequence can be computed by an exhaustive search for
the initial states of devices only. The attack then aims at
detecting the correlation between the sequence obtained for the
correct initial states, and the sequence
derived from the keystream. Here, the correlation between both
sequences plays a major role since it determines the complexity
of the attack. It corresponds to the bias of

Several attacks exploiting parity-check relations [11], [9], [5]
evaluate the bias of the parity-check relation with the so-called
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piling-up lemma [13]. They assume that the bias of
corresponds to the bias of raised to the power since
contains elements. But it clearly appears that this result does
not apply since the terms
for the different values of are not independent. Actually,
Naya-Plasencia [14] and Hell and Johansson [10] have indepen-
dently pointed out that the so-called piling-up approximation is
far from being valid in some cases.
More surprisingly, since the first constituent sequences do

not influence , several approximations of may lead to the
same sequence , and the piling-up lemma may give different
values for the same bias. This situation occurred for instance in
two attacks against Achterbahn-80 presented independently by
Hell and Johansson [10] and Naya-Plasencia [14]. Both attacks
exploit a correlation between the same pair of sequences
built from the same set . But, the first attack starts from a
quadratic approximation of with bias , while the second
one starts from an affine approximation of with bias .
If the overall correlation between and is evaluated with the
piling-up lemma, it is concluded in the first case that the attack
is infeasible since its data complexity exceeds the keystream
length limitation. In the second case, the estimation of the bias
concludes to a valid attack.
From this concrete example, it clearly appears that estimating

the bias of may be a difficult problem. This issue has
been raised in [14] and [7], which have identified some cases
where the piling-up approximation holds. However, since these
equality cases are quite rare, a much more extensive study is
needed in order to evaluate the resistance of such keystream
generators to distinguishing attacks. In this paper, we first em-
phasize that, even if most attacks based on parity-check relations
use an explicit correspondence between the set and an ap-
proximation of depending on variables, the bias of
does not depend directly on this approximation. Most notably,
we show in Section II that the piling-up lemma applied to any
approximation compatible with provides a lower bound on
the bias of . Then, Section IV gives two exact expres-
sions for this bias, one involving the biases of some restrictions
of , and the other one by means of its Walsh coefficients. These
expressions lead to an algorithm for computing the bias of a
parity-check relation with a much lower complexity than the
usual approach, and they also provide some simple formulas
for this bias in some particular cases which are commonly used
in cryptography: in Section V the case when is
-resilient is treated and in Section VI the case where is a
plateaued function is considered. Most notably, in both cases,
we show how the parity-check relations with the highest bias
can be found.

II. PRELIMINARIES ON PARITY-CHECK RELATIONS

By analogy with coding theory, a parity-check relation for
a binary sequence is a linear relation between

some bits of at different instants where varies in a
fixed set and takes any value

Then, the indexes corresponding to the nonzero coefficients of
the characteristic polynomial of a linear recurring sequence pro-
vide a parity-check relation. A two-term parity-check relation

obviously corresponds to a period of the sequence.
The construction of parity-check relations mainly relies on

the following simple lemma.

Lemma 1: Let be sequences with periods
, and

Then, the binary sequence defined by

satisfies

Proof: The influence of each sequence , , in
the sum vanishes. Indeed, the set can be decomposed into two
halves

such that for any and any .
Therefore, for any , , we have

Such parity-check relations can then be generalized to the
case of a sequence of the form , where
is a nonlinear Boolean function.

Definition 2: Let be sequences and let be a
Boolean function of variables. Then, for any set

where are some non-negative integers, is
the binary sequence defined by
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In the whole paper, each corresponds to a multiple of
the least common multiple of the periods of some constituent
sequences. Moreover, for the sake of simplicity, we will assume
without loss of generality that the input variables are ordered
in such a way that each integer corresponds to a multiple
of where denotes the least period of
, and is a strictly increasing sequence of integers

with and . This notably implies that involves
the periods of the first sequences, .

Example: To illustrate our result, we will detail the following
toy example in the whole paper. We consider sequences

with least periods , and the keystream se-
quence defined by where is the following bal-
anced Boolean function of 5 variables

Then, we want to determine the bias of the sequence defined by

where . The set involves the
period of sequences and has size , i.e., .

Proposition 3: Let be sequences with least pe-
riods and

where for some integer
and and . Let be any Boolean function of
variables of the form

where each is any Boolean function of variables.
Then, for all , we have

Proof: We first observe that, for any , ,
is a period of all se-

quences , and therefore of any function
of . Then, the result directly follows

from Lemma 1 applied to the sum of the sequences

In the whole paper, we use the following notation.

Definition 4: Let be a Boolean function of variables.
Then, the bias of is

This quantity is also called the imbalance of (e.g., in [8] and
[12]) or the correlation between and the all-zero function (e.g.,
in [15]).
The underlying principle of the attack presented by Jo-

hansson, Meier, and Muller [11] consists in exhibiting a biased
approximation of the combining function which involves
input variables, and a set of instants such that the parity-check
relation vanishes. Then, the associated parity-check
relation applied to satisfies: for any

It follows that the sequence does not vanish but it may
be biased in the sense that it is not uniformly distributed when
the bits

, corresponding to the concatena-
tion of the periods of the constituent sequences, are randomly
chosen. The bias of , denoted by is then de-
fined as the bias of a Boolean function with
input variables. But, it is worth noticing that some of these

input variables are not involved in the algebraic
normal form of the function. More precisely, when contains
elements, this Boolean function contains variables corre-

sponding to each of the last sequences, and vari-
ables corresponding to each of the first sequences. Moreover,
all these variables are distinct when each is coprime with
all with . Therefore, the Boolean function
depends on

variables

Example: Let us consider and

Proposition 3 implies that the sequences are equal to
for all

with . It then appears that the bias of cannot
be directly deduced from the bias of the chosen approximation,

. Indeed, all possible approximations do not have the
same bias: we have , and

.
The bias of corresponds to the bias of the following

Boolean function:

Therefore, is a Boolean function involving
variables.

It follows from the previous discussion that, for an appro-
priate choice of , we have
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with . Actually, we will show
in Section III that is always strictly positive when
there exists some biased approximation of of the form

. Then, computing

where is the keystream for different
values of enables the attacker to distinguish the keystream
from a random sequence. The complexity of this distinguishing
attack depends on the bias of . More precisely, the time
complexity of the attack corresponds to where is the
number of elements in since the bias can be detected from
at least occurrences of the biased relation. The data com-
plexity, i.e., the number of consecutive keystream bits required
for the attack is then the maximal value which must be consid-
ered for , i.e.

III. A LOWER BOUND ON THE BIAS OF
PARITY-CHECK RELATIONS

As previously explained, the piling-up lemma does not apply
for estimating the bias of . Otherwise, this bias would
be derived from the biases of several approximations of .
Indeed, it follows from Proposition 3 that, for a given set and
for any function of the form

we have

However, we can prove that the piling-up approximation
provides a lower bound on the bias of for

any such approximation .

Theorem 5: Let be sequences with least pe-
riods , a Boolean function of variables and

. Let

where for some integer ,
and . Assume that each is coprime with all

with . Then, for any Boolean function of
variables of the form

(1)

where each is a Boolean function of variables, we
have

Proof: First, we use the fact that, for any function defined
by (1)

In the following, we extensively exploit the following result due
to Nyberg, derived from [15, Cor. 6]. For any Boolean function
of variables, we consider a decomposition of the input vari-

ables into two parts of respective sizes and . For ,
we denote by the linear function of variables defined by

and by the following Boolean function

Then, we compute

Therefore

(2)

Now, we prove by induction on that

• For , the result is a direct corollary of (2):

• Induction step: Let us now consider

and
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Then,

Therefore, (2) implies that

Example: The previous theorem provides a first explanation
of the situation detailed in the example on Page 3: the bias of any
approximation of the form

leads to a lower bound on the bias of .
We can check that the best approximation is and
satisfies . Therefore, we deduce that

.
The keypoint in the previous theorem is that pro-

vides a lower bound on the bias on the parity-check relation for
any choice of the approximation of (1). The linear approxima-
tion of by the sum of the first input variables is usually con-
sidered, but any linear approximation involving these variables
can be chosen, as stated in the next corollary. In the following,
for any , denotes the linear function of variables:

.

Corollary 6: With the notation of Theorem 5, we have

where is the subspace spanned by the first basis vectors.
It is worth noticing that this corollary leads to a positive lower
bound on the bias of the parity check relation even if the func-
tions and are not correlated (i.e., if the
Walsh coefficient of at point vanishes, where the first
coordinates of are 1 and the other are zero). This
is the first known result in such a situation; the impossibility of
deducing any estimation of the bias of the relation in such cases
has been stressed in [7, Example 1]. However, some other ap-
proximations with a higher degree may lead to a better bound.
But, since any Boolean function is completely determined by
its Walsh transform, i.e., by the biases of all its linear approx-
imations, it appears that can be computed from the
biases of the linear approximations of only.

IV. EXACT FORMULAS FOR THE BIAS OF THE
PARITY-CHECK RELATION

In some situations, especially when the designer of a gen-
erator has to guarantee that the system resists distinguishing
attacks, the previous lower bound on the bias of a parity-check
relation is not sufficient, and its exact value must be com-
puted. However, since a parity-check relation with terms
depending on sequences involves variables
where is the number of variables of , computing its bias
requires evaluations of , which is out of reach

in many practical situations. For instance, Achterbahn-128
uses a combining function of 13 variables, and the biases
of parity-check relations with 8 terms (i.e., with ) and

must be estimated; this requires operations. Here,
we give two exact expressions of the bias of a parity-check
relation, which can be computed with much fewer operations,
e.g., with evaluations of in the previous case. The first
expression makes use of the biases of the restrictions of when
its first inputs are fixed; the second one, which is related to a
theorem due to Nyberg [15], is based on the Walsh coefficients
of the combining function.

A. Expression by Means of the Restrictions of

Definition 7: Let be a Boolean function of variables and
let and be two subspaces such that
and . Then, the restriction of to the affine sub-
space , , denoted by , is the Boolean
function of variables defined by

If there is no ambiguity on the choice of , will
be denoted by .
We now assume that each is coprime with all with

. For computing the exact value of ,
we decompose according to the values of the first vari-
ables in since the other sequences , ,
are supposed to be such that is statistically inde-
pendent from for any . Amongst the other
variables , and , we can easily
see that each variable is repeated once. Indeed, for such that

we have for all if and only
if . It follows that the values of ,

and are determined by a binary ma-
trix in the following way. For each , , we denote
by the integer in such that .
The bits in the row of , , are then indexed
by the elements where

It follows that the values of all for and
can be arranged in a matrix defined by

(3)

Example: Let us consider a set composed of elements
(i.e, ) which involve the periods of sequences

Then, the elements of the 4 4 matrix are numbered as fol-
lows:
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Each of the four rows of the matrix corresponds to the
eight values , , deduced from as described by
(4) at the bottom of the page.
The definition of enables us to express the bias of

by means of the biases of the restrictions of to all
cosets of the subspace spanned by the last basis
vectors.

Theorem 8: Let be sequences with least pe-
riods , a Boolean function of variables and

. Let

where for some integer ,
and . Assume that each is coprime with all

with . Then, we have

where is the restriction of when its first inputs are
fixed and equal to the column of index of matrix .

Proof: Since the variables for and
are all independent and also independent from the variables
for , we can compute

as follows:

This result leads to Algorithm 1 for computing the exact value
of .

Algorithm 1 Computing the exact value of the bias of

Require: , an -variable Boolean function and

where for some integer ,
, and .

for all do

end for

for all do

for all from 0 to do

end for

end for

return .

Example: Let us first compute the biases of all restrictions of

when the first three vari-
ables are fixed and equal to : for , we have that

and, for , we have

Now, we compute for
with Theorem 8:

(4)
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The elements of the 3 2 matrix are numbered as follows

and Matrix is defined from by

Since when , the product

is equal to zero except if the last row of is zero. And it can be
checked that, for the 16 possible matrices which may lead to
a nonzero product, we have

Therefore, we deduce that

The precomputation step in Algorithm 1 consists in com-
puting and storing in a table the values of

where (respectively, ) denotes the linear subspace
spanned by the first basis vector (respectively, by the last

basis vector). This step requires evaluations of .
Then, for computing the bias of the parity-check relation, we
need to compute, for all , the product of pre-
computed values whose indexes are determined by the columns
of . This requires operations over integers.
This leads to an overall complexity of which
is much lower than the complexity of the trivial computation,

evaluations of . For instance, the 13-variable
function in Achterbahn-128 is 8-resilient. Estimating the bias
of a parity-check relation involving 10 input variables with 8
terms (i.e., with ) then requires operations.

B. Expression by Means of the Walsh Coefficients of

A similar exact expression for the bias of can be
obtained from the Walsh coefficients of , i.e., from all biases

, where is the subspace spanned by the
first basis vectors. As previously, for any , denotes
the -variable linear function defined by .

Theorem 9: Let be sequences with least pe-
riods , a Boolean function of variables and

. Let

where for some integer ,
and . Assume that each is coprime with all

with . Then, we have

Proof: As previously, we denote by the column of
index of any matrix . Let us compute

Now, from the definition of [see (3)], we can write

where

Since the set depends on the row only,
it follows that
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Then, we deduce

if for all
and
otherwise.

Therefore, the matrices for which the previous
sum does not vanish are exactly those which can be written as

for some . We deduce from (5) that

This expression leads to an algorithm for computing the bias
which is very similar to the one based on the biases of the restric-
tions of . But, we need to precompute and to store the Walsh
coefficients of corresponding to all elements in .

Example: The Walsh coefficients of

involving the first three variables all vanish
except

We compute for with
Theorem 9

Matrix is defined from the 3 2 matrix by

(5)

Then, we have to determine all such that all columns of
are such that is a biased approximation of . This
condition equivalently means that all coefficients in the first two
rows of must be equal to 1. Since the last row of can take
any value, we deduce that there are exactly four matrices such
that

Moreover, since the biases of all involved approximations are
equal (i.e., have same sign and magnitude), the previous product
is always equal to . We eventually deduce that

C. Combining Both Methods

By using the equivalence of previous results, we obtain the
following equality.

Proposition 10: With the notation of Theorem 8, we have

We can now combine both techniques for computing the bias
of a parity-check relation. If we build a parity-check relation
with variables, we can divide in and , where repre-
sents the variables which will be fixed by considering the restric-
tions of and the variables involved in the linear approxi-
mations. In this case, by using the vectors and considering
the first associated vectors to the fixed variables, and the
last vectors associated to the variables used for the approxi-
mations, we find the following.

Proposition 11:

where and represents the first
variables while represents the next ones.

V. COMPUTING THE BIAS WHEN

As a direct corollary of Theorem 9, we obtain the following
theorem which shows that equality holds in Corollary 6 when,
amongst all linear functions depending on the variables in-
volved in , a single one corresponds to a biased approxima-
tion of . With this theorem, we recover the value of the bias
of a parity-check relation involving the periods of input se-
quences when the resiliency order of is equal to . This
particular case of our theorem corresponds to the case identified
in [14], [7] where the piling-up approximation holds.

Theorem 12: With the notation of Theorem 9, suppose that
there exists at most one linear function with such
that . Then, we have

In particular, if is -resilient, then

where is the -bit word whose first coordinates are equal
to 1 and the other ones are equal to 0.
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Proof: Assume that is the only element in such that
may differ from zero. Then, the product involved in

Theorem 9

does not vanish if and only if for all .
Therefore, the only matrix which satisfies this condition is
defined by for all and for all . In
particular, when is -resilient, the only vector
such that may be nonzero is .

For a -resilient function, the bias of a parity-check relation
involving any inputs is given by Theorem 12 but, as
pointed out in [7], this result does not hold anymore when
involves sequences.

VI. WHEN IS A -RESILIENT PLATEAUED FUNCTION

We dedicate one section to —resilient plateaued functions
because, thanks to their particular form, they allow us to com-
pute the bias of parity-check relations in a very efficient way
even when . We will also show how to build the
parity-check relations with the highest possible bias. We will
provide an upper bound on this bias when , , and
we will finally give some illustrative examples. The notion of
plateaued functions was first defined in [17] using the Walsh
coefficients, but here we will use the following equivalent for-
mulation.

Definition 13: [17] A Boolean function is a plateaued func-
tion if the biases of all its linear approximations belongs to

.
We can then prove [1] that the bias of any biased linear

approximation of an -variable plateaued function is of the form
for some integer . This type of function is widely used

in cryptography. For instance, the Boolean functions used in
both versions of Achterbahn are plateaued. The parity-check
relations built from plateaued functions are particularly easy to
study as the bias of all their biased linear approximations have
the same magnitude.

A. How to Efficiently Compute the Bias When

We are going to consider -resilient plateaued functions.

Proposition 14: Let be a -resilient plateaued function with
for all . Let . Then, with

the notation and hypotheses of Theorem 9, we define

for all

Then, we have

Proof: We use the expression of the bias of parity-check
relations which has been introduced in Theorem 9

(6)

where all the nonzero , have the same
absolute value. For a given , the value of the product will be 0
if at least one of the appearing in it is zero, and will
be if none of them is zero. Now, we will show that, in the
case where we build parity-check relations with variables,
this product cannot equal . As previously explained, when
the product

is not zero, none is zero, implying that the Ham-
ming weight of satisfies for all

. Otherwise, as is —resilient, the bias of the corre-
sponding approximation would be zero.
Let us consider a value of , such that the corresponding

vector has Hamming weight . Let be the position
in which does not belong to the support of .
If lies in where

then , as the bit of is unchanged
and the others are necessarily 1. Similarly, if

, we have . We then deduce that,
if , the associated approximation appears
twice in the product of biases, and so the signs will be equal
two by two. As each element of weight appears
an even number of times in the product and the product has
terms, the element of weight appears also an even
number of times. Therefore, the product is always positive.

Let us recall that the variables involved in are distributed in
groups, determined by the periods appearing in
, where . When

, the biased linear approximations of correspond
to the sum of all the variables of indexes or of
all of them but one. Let be the set of index

such that . Then, we are

able to compute the exact value of when this set is
included in one of the intervals .

Proposition 15: Let be a -resilient plateaued function with
for all . Let and

With the notation and hypotheses of Theorem 9, we assume that
is included in an interval for some .

Then, we have

when is the number of biased linear approximations of
involving its first variables.

Proof: From Proposition 14, we have to compute the
number of matrices in for which we obtain
since the value of the product in (6) is determined by the
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number of possible whose all columns correspond
to biased linear approximations of .
If the linear approximations defined by the values of are

biased, then all equal 1 on all the positions in
. Now, the vectors formed by the restrictions

of to can correspond to the restrictions
on of any biased linear approximation of . The
number of possibilities for each of these restrictions is then ex-
actly the number of restrictions to of biased
linear approximations of . Therefore, we have

implying that the bias of the parity-check relation is
.

Example: The function

considered in the previous examples is a 1-resilient plateaued
with for all . And only
linear approximations of involving the first three variables are
biased: and . Then, Proposition 15 applies
since

Then, we have

More generally, we conjecture that is the highest
value we can get for any possible decomposition of with
respect to the intervals . The following example
shows that this conjecture holds for .

Example: We now give an exact formula for for in
the case of any decomposition of and any Boolean function .
Here

We decompose the rows of matrix into three blocks corre-
sponding to the three intervals , as shown
by (7) at the bottom of the page, where each element is a
column vector of size .
• Suppose that the variables in the set , which defines the
biased approximations, belong to two intervals, namely

and . Then, we can see that the only
possible correct value for all is the all-1 vector. How-
ever, any value different from the all-one vector on

imposes that the corresponding element in
equals the all-1 vector. For instance, any value of dif-
ferent from the all-one vector determines the values of
and of . Then, in this case we deduce:

• Suppose now that the variables from are distributed into
the three intervals. Then, we have

Example: Let us consider , which is
a plateaued function with 3 variables and 0-resilient. Its biased
linear approximations are , , (with bias ) and
(with bias ). We want to compute the bias for

. Using the same notation as in the
previous example, we have

implying that the correspond to

We need to compute the number of matrices such that all
four corresponds to a biased approximation of . In our
case, this equivalently means that all have Hamming
weight 1. Then, only the two matrices

satisfy the condition. We recover the previously obtained for-
mula:

The bias will then be

Based on many simulation results, we also conjecture that the
fact that is the maximal possible bias is valid for any
and not only for .

Conjecture 16: Let be a -resilient plateaued function. The
bias of any parity check relation with terms involving vari-
ables is at most where is the number of biased

(7)
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linear approximations of involving those variables and
is the associated bias.

B. Example: How to Build the Best Parity-Check Relation
With 8 Variables for a 6-resilient Plateaued Function and
Compute its Bias

We are going to consider the plateaued function of 11 vari-
ables used in Achterbahn-80, which is 6-resilient. All its bi-
ased linear approximations have bias . We want to build
parity-check relations with variables. We consider all
possible subsets with 8 variables, and, for each of them, we de-
termine the number of linear approximations can be build with
these variables, i.e., the number of subsets of 7 or 8 variables of
the considered set of 8 variables correspond to a biased linear
approximation.
As an example, we choose the following set of 8 variables:

. For the sake of simplicity, we are
going to represent each subset of by a vector in

, here in hexadecimal, where the most right bit represents
and the most left bit . The set corresponds then to .
In our case, with these variables we can build the following
approximations:

We can gather these 8 variables in 3 groups in two different
ways, corresponding to two different 8-term parity-check
relations:
• Let us first consider the following groups: ,

, and .
They define a parity-check relation built with

We observe that the variables from missing in the 3 bi-
ased approximations with 7 variables always appear in the
first group . This means that the number of times
where the product

is not zero, is equal to . Here, , implying
that the overall bias of this parity-check relation is

which coincides with the bias computed with the algorithm
described in Section VI-A. The previously used algorithm
for computing the bias of this parity check requires
computations, our algorithm computes it with a time com-
plexity of , and in this particular case, we are able to de-
duce its value from a simple equation. This is the highest
bias which can obtained for a parity-check relation build
from 8 variables for the Achterbahn-80 combination func-
tion.

• Let us now consider the case where the groups are
, and :

They define a parity check equation built with

Here, the approximation corresponds to a missing
variable from , to a missing variable from
and to a missing variable from . This will mean
that the number of times that
will be smaller than in the previous case. The final bias that
we find is as follows:

It coincides with the exact bias computed by the algorithm
in Section VI-A.
Let us now detail how we obtained . The main
idea is to look at all possible cases for the vectors ,
by decomposing them into simpler cases. For example, we
start by counting the number of cases where all the words

corresponding to the first group
differ from the all-one word. This number will be the first
term of the sum (8) below. It equals 1 since all the words
for the other groups are fixed determined if we impose that
the product is not zero. Next, we count the number of cases
where exactly three of the words
differ from the all-one word. We have four possibilities
for choosing which of the words equals the all-one word,
but a single solution for each possibility, so the second
term of the sum is 4. We continue this way. The most
complex term, which is the fifth bracket, corresponds to
the case where all the and
are equal to the all-one word. In this case, we need to
proceed recursively: we determine the number of cases
where the four words and
differ from the all-one word, where exactly three of them
differ from the all-one word This way, we can compute
and we obtain

(8)

VII. CONCLUSION

Clearly, computing the accurate values of the biases of parity-
check relations is of main importance for correctly estimating
the complexity of some attacks on combination generators. The
most direct impact of our results is the reduction of the com-
plexity for computing these biases in any case. In some par-
ticular cases, this computation is even more simplified and it
can be done with a simple formula, while the previously known
methods had an unfeasible complexity. An important result is
that the knowledge of only a fewWalsh coefficients of the com-
bination function is usually sufficient for estimating the bias
of a parity-check relation. For instance, we have established a
lower bound on the bias which provides some information even
on parity-check relations built from non-biased approximations,
and this is the first result in such a situation.
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In the case of -resilient functions, the bias of any relation
built with variables exclusively depends on the bias of the
associated linear approximation. This result can be extended to
the case of plateaued functions: for parity-check relations in-
volving variables, we have shown how the best parity-
check relations involving variables can be easily deter-
mined and how their biases can be computed.
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