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Abstract

A Boolean function with an even number n = 2k of variables is called bent if it is maximally
nonlinear. We present here a new construction of bent functions. Boolean functions of the form
f (x)= tr(�1xd1 + �2xd2 ), �1, �2, x ∈ F2n , are considered, where the exponents di (i = 1, 2) are of
Niho type, i.e. the restriction of xdi on F2k is linear. We prove for several pairs of (d1, d2) that f is
a bent function, when �1 and �2 fulfill certain conditions. To derive these results we develop a new
method to prove that certain rational mappings on F2n are bijective.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Bent functions are maximally nonlinear Boolean functions with an even number of vari-
ables. They were introduced by Rothaus [11] in 1976. Because of their own sake as interest-
ing combinatorial objects, but also because of their relations to coding theory (Reed–Muller
codes) and applications in cryptography (design of stream ciphers), they have attracted a
lot of research, specially in the last 10 years.

∗ Corresponding author.
E-mail address: gregor.leander@rub.de (G. Leander).

0097-3165/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcta.2005.07.009

http://www.elsevier.com/locate/jcta
mailto:gregor.leander@rub.de


780 H. Dobbertin et al. / Journal of Combinatorial Theory, Series A 113 (2006) 779–798

A complete classification of bent functions is elusive and looks hopeless. On the other
hand, many special explicit constructions are known, primary ones giving bent functions
from scratch and secondary ones building a new bent function from one or several given
bent functions. All known primary constructions of bent functions, with only one recent
exception (see [1,3]), are weakly normal (cf. [4]). Here a Boolean function with n variables,
n even, is called weakly normal (resp., normal) if it is affine (resp., constant) on some affine
subspace of dimension n/2.

In the present paper, we study traces of a linear combination of two Niho power functions.
A power function on F2n is called a Niho power function if its restriction to F2n/2 is linear.
This implies weak normality. In this way, under certain conditions, we get as our main
results (Theorems 1–3) three primary construction of bent functions. The starting point of
our proofs confirming the bent property is based on a classical theorem of Niho [9] and new
methods to handle Walsh transforms of Niho power functions from [7].

2. Preliminaries

Throughout this paper let L = F2n be a finite field of characteristic 2, where n = 2k,
and let K = F2k the subfield of L with [L : K] = 2. Like every quadratic field extension,
the field extension L/K has strong similarities with the extension C, the field of complex
numbers, over the field of real numbers R. The conjugate of x ∈ L over K will be denoted
by x, i.e.

x = x2k

.

We denote the absolute trace on L by

trL(x) =
n−1∑
i=0

x2i

, x ∈ L

and

trL/K(x) = x + x

refers to the relative trace from L onto K. Note that according to the transitivity law for the
trace function, we have

trL = trK ◦ trL/K.

The relative norm with respect to L/K is defined as

normL/K(x) = x x

and maps L onto K. The canonical additive character on L is defined as

�L(x) = (−1)trL(x).

The unit circle of L is the set

S = {u ∈ L : uu = 1}
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of all elements having relative norm 1. In other words, S is the group of (2k + 1)st roots of
unity, and therefore the order of S is 2k + 1, since L∗ is cyclic and 2k + 1 divides 2n − 1.

Note that S ∩ K = {1} and each non-zero element of L has a unique polar coordinate
representation, i.e.

x = �u

with � ∈ K∗ and u ∈ S. According to the analogy to C/R we write � = ‖x‖ for the length
and u = �(x) for the angle of x. We have 1

‖x‖ =√xx, (1)

�(x)=√x/x. (2)

2.1. Walsh transforms and bent functions

For a moment we do not require that n is even. We identify the Galois field L = F2n

with Fn
2 by choosing a base of L, considered as vector space over F2. The notion of a Walsh

transform refers to a scalar product. Thus, it is convenient to choose the basis, such that
the canonical scalar product 〈·, ·〉 in Fn

2 coincides with the scalar product in L, which is the
trace of the product

〈x, y〉 =
n∑

i=1

xiyi = trL(xy), x, y ∈ L.

A Boolean function f is a mapping from L into F2. The Walsh transform of f is defined as

f W (c) =
∑
x∈L

(−1)f (x)�L(cx), c ∈ L.

The maximal absolute values attained by f W is a measure for the linearity of f

Lin f = max
c∈L |f

W (c)|.

Obviously we have the upper bound

2n�Lin f

and it is attained if and only if f is affine. On the other hand, as a consequence of Parseval’s
equation∑

c∈L
f W (c)2 = 22n, (3)

1 The symbol
√

X stands for the inverse of the Frobenius mapping �(X) = X2, which makes sense, as we deal

with finite fields of characteristic 2. Concretely here
√

z = z2k−1
for z ∈ K = F2k .
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we have

2n/2�Lin f.

This lower bound is tight if and only if n = 2k is even. By definition f is bent if Lin f = 2k

and in this case the Walsh spectrum consist precisely of the values ±2k . The simplest
example of a bent function is

f (x) = trK(‖x‖).
The dual f ∗ of a bent function f is defined by the signs attained in the Walsh transform of f

f W (c) = (−1)f
∗
2k.

The dual of a bent function is again a bent function, and we have the rule f ∗∗ = f .

2.2. Niho power functions

We say that d (always understood modulo 2n − 1) is a Niho exponent and xd is a Niho
power function, if the restriction of xd to F2k is linear or in other words

d ≡ 2i (mod 2k − 1)

for some i < n. Without loss of generality we can assume that d is in the normalized form
with i = 0, and then we have a unique representation

d = (2k − 1)s + 1

with 2�s�2k , because here s and s′ give the same power function d on F2n iff s ≡
s′ (mod 2k + 1).

The conjugated exponent corresponding to a normalized d = (2k−1)s+1, i.e. d ′ = 2kd,
is of the same type, where s has to be replaced by 1− s (mod 2k + 1):

2kd = (2k − 1)(1− s)+ 1 (mod 2n − 1).

From this point of view we see that there are two equivalent ways to normalize a Niho
exponent. The sum of the corresponding two values for s equals 1 (modulo 2k + 1).

The inverse of a Niho exponent, if it exists, is again of Niho type: in fact, for d =
(2k − 1)s+ 1 we have gcd(d, 2n− 1) = 1 if and only if 2s− 1 is invertible modulo 2k + 1,
i.e. gcd(2s − 1, 2k + 1) = 1, and in this case

d−1 = (2k − 1)s′ + 1 (mod 2n − 1), s′ = s/(2s − 1) (mod 2k + 1),

since d((2k − 1)s′ + 1) = −2(−2ss′ + s + s′)+ 1 = 1 (mod 2k + 1).

2.3. Convention

If some s, used to define a Niho exponent as above, is written as a fraction, then this has
to be interpreted modulo 2k + 1. For instance

s = 1
2 = 2k−1 + 1.
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3. Main results

Let L = F2n and n = 2k. We consider Boolean functions

f (x) = trL(�1x
d1 + �2x

d2)

on L, for �1, �2 ∈ L, where the di = (2k − 1)si + 1, i = 1, 2, are Niho exponents. We
conjecture that if f is bent, then necessarily w.l.o.g.

d1 = (2k − 1) 1
2 + 1.

This conjecture is suggested by computer experiments. In the sequel we require this choice
of d1. Recall that here s1 = 1

2 has to be understood modulo 2k + 1, that is 1
2 = 2k−1 + 1.

Observe that d1 is cyclotomic equivalent to 2d1 = 2k + 1 and we have

xd1 = √xx = ‖x‖.
This special choice of d1 implies that replacing �1 by �′1 does not change f if (and only if)
�1 + �′1 ∈ K .

For �2 = 0, we obtain bent functions iff �1 /∈ K

f (x) = trL(�1x
d1) = trL(�1‖x‖) = trK((�1 + �1) ‖x‖),

which belong to a trivial class of bent function, the quadratic ones. It seems that there are
no more bent functions of the form f (x) = trL(�xd) with Niho exponent d.

For the following theorems we require that:

�1 + �1 = ‖�2‖.
However, this general form can easily be reduced to the case �2 = 1, as we shall see.

Theorem 1. Define

d2 = (2k − 1) 3 + 1.

If k ≡ 2 (mod 4) assume that �2 = �5 for some � ∈ L∗. Otherwise, i.e. if k �≡ 2 (mod 4),
�2 ∈ L∗ is arbitrary. Then f is a bent function with degree 2 k.

From �(d2) = �(2k+(2k−1−1)) = 1+(k−1) = k we conclude that f, as a multi-variate
binary function, has in fact degree k, the maximal degree a bent functions can attain.

Theorem 2. Suppose that k is odd. Define

d2 = (2k − 1) 1
4 + 1.

Then f is a bent function of degree 3.

2 We identify L = F2n with Fn
2 . The binary degree of the n-variate polynomials representing a function of the

form tr(�xd ), which is not identically zero, is precisely the Hamming weight �(d) of the binary representation of
d (reduced modulo 2n − 1).



784 H. Dobbertin et al. / Journal of Combinatorial Theory, Series A 113 (2006) 779–798

Observe that d2 is cyclotomic equivalent to and can be replaced by

4d2 = 2k + 3.

From �(4d2) = 3 we conclude that f has degree 3.

Theorem 3. Suppose that k is even. Define

d2 = (2k − 1) 1
6 + 1.

Then f is a bent function of degree k/2+ 1.

Note that

2d2 = (1+ 4+ 16+ · · · + 2k−2)+ 2

and therefore �(d2) = k/2+ 1 and consequently f has indeed degree k/2+ 1.

Remark 4. The preceding theorems were conjectured based on computer experiments
carried out by Canteaut, Carlet and Gaborit for k�6. Every example found by that exhaustive
search is now covered by one of our theorems. Their proofs in this paper will combine Niho’s
basic result [9] of 1972 with parts of a recent approach to handle Walsh transforms of Niho
power functions, due to Dobbertin et al. [7], (see next section) and new results on certain
rational functions inducing one-to-one mappings (see Section 5).

Remark 5. The s2 in Theorems 1–3 can be replaced by 1 − s2, resp., since this does not
change the cyclotomic class. Thus, the alternative values are

s2 = −2, 3
4 , 5

6 (mod 2k + 1),

respectively.

Remark 6. The bent functions given by the preceding theorems for the essential case
�2 = 1 do not depend on �1 and can be written as

f (x) = trK(‖x‖)+ trL(xd2) (4)

for the respective d2.

Remark 7. In general, given a bent function of the form

f (x) = trL

(
m∑

i=1

�ix
di

)

for Niho exponents di = (2k − 1)si + 1 (i = 1, . . . , m), and setting f�(x) = f (�x) for
� ∈ K we get a collection of bent functions, for � �= 0, such that

f� + f� = f�+�
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for all �, � ∈ K . Thus defining

C = {f� : � ∈ K},
we obtain a k-dimensional subcode C of the Reed–Muller code RM(r, n) of order r = deg f ,
which consists of bent functions and the zero function.

We can put the latter observation into other terms, using the notion of a vectorial bent
function. Define F : L→ K as

F(x) = trL/K

(
m∑

i=1

�ix
di

)
.

If f (x) = trL
(∑m

i=1 �ix
di
)

is bent then all component functions, i.e. functions of the form
trK(�F(x)), � ∈ K∗, are bent. In fact

trK(�F(x))= trK

(
�trL/K

(
m∑

i=1

�ix
di

))

= trK

(
trL/K

(
�

m∑
i=1

�ix
di

))

= trL

(
m∑

i=1

�i (�x)di

)

= f (�x).

Kaisa Nyberg [10] refers to the property that all component functions of a vectorial Boolean
function are bent by calling them vectorial bent functions.

Thus, for the bent functions f in (4) above one obtains, as another way to state our main
results:

Theorem 8. Let d = (2k−1)s+1 be a Niho exponent. Then the vectorial Boolean function

F(x) = ‖x‖ + xd + xd

from L onto K is bent for s = 3, for s = 1
4 if k is odd and for s = 1

6 if k is even, respectively.
Using Dickson polynomials (see p. 12) and the angle functions � (see (2)) we can represent

F for Theorem 8 also in the form

F(x) = ‖x‖ (1+D2s−1 (�(x))) .

A vectorial bent function from Fn
2 to Fm

2 exists only if m�k = n/2 as shown by Kaisa Nyberg
[10]. Hence, the dimension of the image vector space of the F in Theorem 8 is maximal.

We recall the previously known constructions of vectorial bent functions.They are straight-
forward generalizations of classical constructions of bent functions due to Maiorana–
McFarland [8] and Dillon [2], respectively. A vectorial bent function F : K ×K → K is
defined by setting

F(y, z) = y 	(z)+ h(z) (Maiorana.McFarland construction),
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where 	 is a permutation of K and h : K → K is any mapping, and by setting

F(y, z) = 
(y/z) (Dillon construction)

with the convention y/0 = 0, where 
 is a permutation of K with 
(0) = 0.

Remark 9. Whenever a new construction of bent functions is found, the question arises,
what is the structure of the corresponding dual bent functions. (For instance the constructions
of Maiorana–McFarland and Dillon are closed under forming duals.) We presently do not
have an answer here.

4. Niho’s theorem and Dickson polynomials

Niho’s theorem [9] is presented below. For the reader’s convenience, we include a proof
(cf. [5]).

Theorem 10. Assume that

d = (2k − 1)s + 1

is a Niho exponent and

f (x) = tr(xd).

Then f W (c) = (N(c)− 1)2k , where N(c) is the number of u ∈ S, such that

u2s−1 + u2s−1 + cu+ cu = 0 (5)

for each c ∈ L = F2n .
Thus the Walsh spectrum of f is at most 2s-valued, and the occurring values are among

−2k, 0, 2k, 2 · 2k, . . . , (2s − 2) 2k.

Proof. Using the polar coordinate representation and trL = trK ◦ trL/K , we have

f W (c)=
∑

z∈F2n

�L(cz+ zd)

= 1+
∑
u∈S

∑
�∈F2k

∗
�L(c�u+ �dud)

= 1+
∑
u∈S

∑
�∈F2k

∗
�L(�(cu+ ud))

= 1− #S +
∑
u∈S

∑
�∈F2k

�K(�(cu+ ud + cu−1 + u−d))

=−2k +
∑
u∈S

∑
�∈F2k

�K(�(cu+ u1−2s + cu−1 + u2s−1))

= (N(c)− 1)2k. �
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The same proof shows that more generally if

f (x) = trL

(
m∑

i=1

�ix
di

)

for Niho exponents di = (2k−1)si+1 (i = 1, . . . , m), then N(c) is the number of solutions
u in S of

cu+ cu+
m∑

i=1

�iu
1−2si +

m∑
i=1

�i u1−2si = 0

or equivalently by replacing u by u

cu+ cu+
m∑

i=1

�iu
2si−1 +

m∑
i=1

�i u2si−1 = 0.

This means for the values of f in Theorems 1–3, where s1 = 1
2 , that the equation

cu+ cu+ �1 + �1 + �2u
2s2−1 + �2 u2s2−1 = 0 (6)

has to be considered. We assume that �1+�1 = �2 = 1. (The assertion of our theorems can
easily be reduced to that case, see Section 6.) Therefore in order to confirm that f is bent,
setting s = s2 we have to show that the number of roots u in S of

Gc(u) = u2s−1 + u2s−1 + cu+ cu+ 1 = 0 (7)

is either 0 or 2.

Remark 11. Niho’s theorem in combination with Parseval’s equation (3) obviously implies
that it suffices to prove that (7) has at most 2 solutions. But we do not use this argument,
since it does not simply our proofs essentially.

In [7], the value distribution of the Walsh spectrum of tr(xd2) for d2 = (2k − 1) 3+ 1 of
Theorem 1 has been determined for odd k. This requires to analyze the number of solutions
of the following closely related equation for s = 3:

u5 + u5 + cu+ cu = 0.

This problem was settled with the development of a new approach using Dickson polyno-
mials [7], which will be explained below. It is also the basic tool for proving the results of
the present paper.

Given c ∈ L \ K the idea of Dobbertin et al. [7] is to consider c, c and the associated
equations Gc(u) = 0 and Gc(u) = 0 simultaneously:

Gc(u) Gc(u) = 0. (8)

Then we can change from the parameters u ∈ S and c ∈ L to new parameters �, resp.,
�, T and N in the small field K. The advantage of this procedure is that we end up with an
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equation, where we have to count the solutions with a special “trace condition” instead of
counting solutions with a “norm condition”, which turns out to be much easier.

The twins c, c ∈ L \ K are replaced by the coefficients of their (common) minimal
polynomial

mc,c = X2 + T X +N

over K, that is

T = trL/K(c) = trL/K(c) = c + c,

N = normL/K(c) = normL/K(c) = c c.

Necessary and sufficient conditions for T , N ∈ K to represent c, c ∈ L \K in this way are
T �= 0 and

trK(N/T 2) = 1. (9)

We recall the following simple, but very important observation:

Fact (Hilbert 90). We have trK(x) = 0 for x ∈ K if and only if there exists some y ∈ K

with x = y2 + y.

Thus (9) means that X2 + T X+N is irreducible over K. Fortunately (9) can be ignored
in this context, as it is included in (10) below.

Similarly � represents the pair {u, u} for u ∈ S \ {1} in the sense that

mu,u(X) = X2 + 1

�
X + 1

or equivalently

� = 1

u+ u
.

A necessary and sufficient condition for � to play this role is

trK(�) = 1.

Sometimes it is convenient to make also use of the parameter �:

� = 1/�.

Changing to the new parameters, Gc(u) Gc(u) can be transformed as follows, where Di(X)

denotes the ith Dickson polynomial over F2:

Gc(u) Gc(u)=
(
u2s−1 + u2s−1 + cu+ cu+ 1

) (
u2s−1 + u2s−1 + cu+ cu+ 1

)
=
(
u2s−1 + u2s−1 + 1

)2 +
(
u2s−1 + u2s−1 + 1

)
(c + c) (u+ u)

+ (cu+ cu) (cu+ cu)

= (D2s−1(�)+ 1)2 + (D2s−1(�)+ 1) �T + T 2 + �2N.
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Dickson polynomials satisfy the functional equation

Di(X +X−1) = Xi +X−i ,

the iteration rule

Di(Dj (X)) = Dij (X)

and can be obtained by the recursion

Di+2(X) = XDi+1(X)+Di(X)

with D0(X) = 0 and D(X) = X. We give a list of the Dickson polynomials for i < 10

D0(X)= 0,

D1(X)=X,

D2(X)=X2,

D3(X)=X3 +X,

D4(X)=X4,

D5(X)=X5 +X3 +X,

D6(X)=X6 +X2,

D7(X)=X7 +X5 +X,

D8(X)=X8,

D9(X)=X9 +X7 +X5 +X.

Summarizing we have seen that Gc(u) Gc(u) = 0 with u ∈ S is equivalent to the following
equation in K:(

(D2s−1(1/�)+ 1)�

T

)2

+ (D2s−1(1/�)+ 1)�

T
+ �2 = N

T 2 . (10)

Given T and N we have to count the number of solutions � with trace 1 of (10). Given any
non-zero T and � with trace 1, we can interpret (10) as definition of N. This makes sense,
because it then follows, as already mentioned above, that trK(N/T 2) = trK(�) = 1 and
therefore T, N represent c, c via mc,c(X) = X2 + T X + N. We then have to look at the
number of solutions of (10) different from the given � (for more details see [7]). The special
cases T = 0 and 1 have to be considered separately.

5. One-to-one rational functions

After these preparations, the verification of our main results will come down to the
following two lemmas (to be honest, they have been found for that reason), as we shall see
in the next sections.

Remark 12. The technique used here to prove the below Lemmas 13 and 14 is due to
Dobbertin and Leander. It is in some sense similar to the multi-variate method (see [6],
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where the multi-variate method is described in its general form), insofar as a “generic”
point of view is taken. As for the multi-variate method, also here algebraic computations
are applied, which often need Computer Algebra support. Decomposition of multi-variate
polynomials (with variables which are considered to be independent) and formal elimination
of variables, i.e. for instance computation of resultants, as basic steps.

We briefly describe the method and roughly explain why it works. Suppose that an
irreducible multi-variate polynomial F(a, x1, . . . , xm) is given, and that we have to show
that F(a, x1, . . . , xm) = 0 implies that a has trace 0, i.e. we can represent a = b2 + b in
each of the considered fields. If this fact has “generic” reasons then we can represent these
“local” b in a “global” way as a fixed rational function of a, x1, . . . , xm:

b = R(a, x1, . . . , xm) = C(a, x1, . . . , xm)

D(a, x1, . . . , xm)
.

Assume that R in fact exists. Then X = b is a zero of the rational function

(X + R(X2 +X, x1, . . . , xm))(X + 1+ R(X2 +X, x1, . . . , xm)).

In the generic case we can expect that this rational function is essentially, up to avoiding
denominators, the polynomial

F(X2 +X, x1, . . . , xm),

which therefore factorizes in the form

Q(X, x1, . . . , xm) Q(X + 1, x1, . . . , xm).

Thus, we consider b as unknown, substitute a = b2 + b in F and decompose F in order
to compute Q. We can assume that a occurs in Q with some odd exponent. Using then
b2 = b + a we reduce Q and get the polynomial C(a, x1, . . . , xm) + D(a, x1, . . . , xm)b,
which gives R = C/D. Common zeros of C and D need an extra discussion.

Given a concrete field K of characteristic 2, we find b ∈ E with a = b2 + b in some
extension field E of K. Thus, if F(a, x1, . . . , xm) = 0 for a, x1, . . . , xm ∈ K , then our
generic result implies that b = R(a, x1, . . . , xm) and therefore b ∈ K , i.e. trK(a) = 0.

This simple machinery, which works of course for any non-zero characteristic, will turn
out to be very powerful and effective.

Define

Tε = {x ∈ K : trK(x) = ε}, ε ∈ F2.

Lemma 13. Let K be any finite field of characteristic 2. Then the rational functions

�(x) = 1

x4 +
1

x2 + x

and

�(x) = 1

x8 +
1

x2 + x,

respectively, induce a permutation of T1.
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Proof. The proof is essentially the same for both rational functions. We consider first
�(x) = 1/x4 + 1/x2 + x. Note that

tr(�(x))= tr(1/x4)+ tr(1/x2)+ tr(x)

= tr(1/x)+ tr(1/x)+ tr(x)

= tr(x).

Thus � maps Tε into itself. It remains to confirm that for � �= 0

�(x + �) = �(x)

implies tr(x) = 0. We have �(x) = U(x)/V (x) with polynomials U(x) = x5 + x2 + 1
and V (x) = x4. Substituting x2 = y2 + y the idea is to represent y as a rational function
of x and � as described above. 3 We see that the polynomial

(�(x + �)+ �(x)) V (x + �)V (x) = U(x + �)V (x)+ U(x)V (x + �)

factorizes in the form

� Q(�, y) Q(�, y + 1)

with

Q(�, y) = y4 + y3 + �2y2 + �y + �2.

On the other hand, we can write Q uniquely as

Q(�, y) = C(�, x2)+D(�, x2)y

with polynomials C and D. In fact to compute C and D, reduce Q modulo y2 = y + x2.
Here, we have

C(�, x)= x2 + �2(x + 1),

D(�, x)= x + �2 + �.

Summarizing we conclude for � �= 0 that �(x +�) = �(x) implies Q(�, y) = 0 w.l.o.g.,
thus x2 = y2 + y for y = C(�, x2)/D(�, x2). Hence y ∈ K and tr(x) = 0. It remains
to confirm that C(�, x) and D(�, x) have no common zeros x in T1, which is trivial in our
case, since already D(�, x) = 0 implies tr(x) = 0.

The other rational function �(x) = 1/x8 + 1/x2 + x can get handled in precisely the
same way. Here U(x) = x9 + x6 + 1 and V (x) = x8. This leads to

Q(�, y)= y8 + �y5 + (�4 + �2 + 1)y4

+(�3 + �2 + �)y3 + �3y2 + �3y + �4

C(�, x)= x4 + (�4 + �2)x2 + �4x + �4,

D(�, x)=�(x2 + (�2 + �)x + �3 + �2).

3 We take x2 = y2 + y instead of x = y2 + y, since here U(x + �)V (x) + U(x)V (x + �) is a polynomial
in x2.
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C(�, x) and D(�, x) have a common zero � if and only if the resultant res(C, D, �) of C
and D with respect to � is zero. In this case, we have

res(C, D, �) = x14,

which is non-zero. In general it suffices here to get a contradiction by showing that the zeros
of resultant have trace 0. �

Lemma 14. Let K be any finite field of characteristic 2 and suppose that a ∈ K has absolute
trace 1. Then the rational functions

Ra(x) = (x + 1)(ax4 + x3 + ax2 + x + a2)(ax4 + x3 + (a + 1)x2 + a2)

x(x4 + x2 + a)2a2

and

Sa(x) = 1

x
+ x2 + x

a(a + x4 + x2)
,

respectively, induce a permutation of K \ F2.

Proof. We first consider Ra . Let Ua(x) and Va(x) denote the numerator and denominator
polynomial of Ra(x), respectively. Va(x) is non-zero for non-zero x, since tr(a) = 1. We
note that Ra(x) can be written as

Ra(x) = �(
√

a + x2 + x)+ �(
√

a)

x2 (11)

with � (see Lemma 13) defined as

�(x) = 1

x4 +
1

x2 + x.

Thus Ra(x) is non-zero for x /∈ F2, since � is one-to-one on T1 by Lemma 13 and a, a +
x2 + x ∈ T1.

To confirm that Ra is one-to-one, we argue as before. Suppose on the contrary that
Ra(x) = Ra(y) for x, y /∈ F2, x �= y. We have to present a = b2 + b in K to get a
contradiction to trK(a) = 1. Substituting a = b2 + b, the polynomial

(Ra(x)+ Ra(y)) Va(x)Va(y) = Ua(x)Va(y)+ Ua(y)Va(x)

factorizes in the form

a2 (x + y) Q(b, x, y) Q(b + 1, x, y)

with

Q(b, x, y)= b6 + (x + y)4b4 + xy(x + y)b3

+(xy(x + y)3 + (x + 1)4(y + 1)4 + x2y2)b2

+x2y2(x + y)(xy + x + y)b

+x2(x + 1)2y2(y + 1)2.



H. Dobbertin et al. / Journal of Combinatorial Theory, Series A 113 (2006) 779–798 793

Reducing Q modulo b2 = b + a we get

Q(b, x, y) = C(a, x, y)+D(a, x, y)b

with

C(a, x, y)= a3 + (x + y + 1)4a2

+xy(xy + x + y)
(
xy(x + y)+ (x + 1)2(y + 1)2

)
a

+x2(x + 1)2y2(y + 1)2,

D(a, x, y)= a2 + xy(x + y)a + xy(x + 1)2(y + 1)2(xy + x + y).

Summarizing we conclude for x �= y that Ra(x) = Ra(y) implies Q(b, x, y) = 0 w.l.o.g.,
thus a = b2 + b for b = C(a, x, y)/D(a, x, y). It remains to confirm that D(a, x, y)

has no zeros a in T1. On the contrary, suppose D(a, x, y) = 0. Then C(a, x, y) = 0 and
res(C, D, a) = 0. Here, we have

res(C, D, a) = x2(x + 1)6y2(y + 1)6(x + y)2(x + y + 1)6.

Consequently x + y + 1 = 0, because x, y /∈ F2 and x �= y. On the other hand, from
C = D = 0 we get a as a rational function in x and y, in our case

a = xy(x + 1)2(y + 1)2

x2 + xy + y2 + 1
.

A substitution of y = x+1 yields a = x4+x2, which implies that tr(a) = 0, a contradiction.
It remains to show that Ra does not attain the value 1. Conversely assuming Ra(x) = 1,

i.e. Ua(x) = Va(x) we have to conclude that a has trace 0. To this end we apply the same
technique as before and substitute a = b2+b. Then the polynomial Ua(x)+Va(x) factorizes

Ua(x)+ Va(x) = Q(b, x)Q(b + 1, x)

with

Q(b, x) = b4 + (x4 + x + 1)b2 + (x3 + x2)b + x3 + x.

For C and D satisfying Q = C +Db we compute

C(a, x)= a2 + (x4 + x)a + x3 + x,

D(a, x)= x(x + 1)3.

Now C = 0 contradicts our assumption x /∈ F2.
To confirm that Sa is one-to-one we compute in the same way as before for Ra :

Q(b, x, y)= b3 + (x + y)2b2 + (x + 1)2(y + 1)2b + xy(x + y + 1),

C(a, x, y)= (x + y + 1)2a + xy(x + y ++1),

D(a, x, y)= a + x2y2,

res(C, D, a)= xy(x + y + 1)(x + 1)(y + 1).

Thus a = x4 + x2, a contradiction.
To show that Sa(x) ∈ F2 is impossible the same method works. We leave the details to

the reader. �



794 H. Dobbertin et al. / Journal of Combinatorial Theory, Series A 113 (2006) 779–798

6. Proof of Theorem 1

Let d2 = (2k − 1) 3+ 1, then obviously gcd(d2, 2n − 1) = gcd(5, 2k + 1) equals 5 for
k ≡ 2 (mod 4) and it equals 1 for k �≡ 2 (mod 4). Thus, in both cases, there is an element b
in F2n with �2b

d2 = 1. Therefore

‖�2‖‖bd2‖ = ‖�2‖bd1d2 = ‖�2‖‖b‖d2 = ‖�2‖‖b‖ = 1

and the substitution x ← bx in f (x) gives

f (bx) = trL
(
�1‖bx‖ + �2(bx)d2

)
= trL

(
�1

‖�2‖‖x‖ + xd2

)
.

Now the general case �1+�1 = ‖�2‖ for Theorem 1 follows from �2 = 1 and �1+�1 = 1.
Using Niho’s theorem (Theorem 10) in order to confirm Theorem 1 we have to prove

that, for all c ∈ L = F2n , n = 2k, the number of u ∈ S such that

Gc(u) = u5 + u5 + cu+ cu+ 1 = 0

is either 0 or 2 (see (7)). Recall that

S = {u ∈ L : uu = 1},
K = F2k , and x ∈ K iff x ∈ L and x = x = x2k

. We shall apply the approach described in
Section 4. Recall that

�= 1/(u+ u), tr(�) = 1,

T = c + c,

N = c c.

Case 1: T = 0, i.e. c ∈ K . Then Gc(u) = 0 iff

u5 + u5 + c(u+ u) = 1,

i.e. iff

c = D5(1/�)�+ � = 1/�4 + 1/�2 + 1+ �,

where D5(X) = X5 +X3 +X denotes the 5th Dickson polynomial. Thus given c we have
no or precisely two solutions u ∈ S of Gc(u) = 0 if and only if

� �→ �(�) = 1/�4 + 1/�2 + �

is one-to-one for � ∈ T1, the set of elements in K with trace 1, which is true by Lemma 13.
(For further details concerning this approach see [7, Section 4, Case 1] especially.)

Case 2a: T = 1. Note that this case occurs if and only if u = 1 is a solution of Gc(u) = 0.
Then on the other hand Gc(u) Gc(u) = 0 with u �= 1 iff

cc = �(�) = 1/�8 + 1/�2 + �, (12)

where � = 1/(u+ u) ∈ K and therefore trK(�) = 1, see (10). Arguing as before in Case 1
we have to show that � is one-to-one on T1, which is true by Lemma 13. The two solutions
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of Gc(u) = 0 and Gc(u) = 0 are u = 1 and u = u0, respectively u = 1 and u = u0, where
�0 = 1/(u0 + u0) is the unique solution of (12) with trace 1.

Case 2b: T /∈ F2. By (10), we have

N = T 2�2 + �1(�) T + �1(�)2

with

�1(�) := (D5(1/�)+ 1) � = �(�)+ 1.

We have to show that for each T /∈ F2

� �→ T 2�2 + �1(�) T + �1(�)2

maps two-to-one for � ∈ T1. (For details concerning this approach we refer again to [7,
Section 4, Case 2] in particular.) In other words, since u = 1 is impossible (see Case 2a
above), given T /∈ F2 and � with trK(�) = 1, we have to show that there is a unique
non-zero � with trK(�) = 0 and

T 2�2 + �1(�) T + �1(�)2 = T 2(�+ �)2 + �1(�+ �) T + �1(�+ �)2, (13)

that is

�2 = (�1(�+ �)+ �1(�)) /T + (�1(�+ �)+ �1(�))2 /T 2.

Setting � = x2 + x, this means that

x2 +
(
�1(�+ x2 + x)+ �1(�)

)
/T + ε = 0

or equivalently

T = �1(�+ x2 + x)+ �1(�)

x2 + ε
(14)

for an unique set {x, x + 1} and ε ∈ F2. The pairs (x, ε) and (x + 1, ε + 1) give the same
T. Hence w.l.o.g. we can choose ε = 0. Then the right-hand rational function of Eq. (14)
coincides with Ra(x) for a = �2, since �1(�) = �(�)+ 1, see (11). Thus the existence of
an unique non-zero � = x2+ x for given T and � is guaranteed in view of Lemma 14. This
completes the proof that the Boolean function f in Theorem 1 is bent. �

7. Proof of Theorem 2

Let k be odd. We can w.l.o.g. assume that �1+�1 = 1 and �2 = 1, because d2 is invertible.
(In fact s2 = 1

4 and therefore 2s2− 1 = − 1
2 , which is invertible modulo 2k+ 1; see Section

4.) Since s1 = 1
2 and s2 = 1

4 , according to (the general form of) Niho’s theorem, we have
to show that

Gc(u) = cu2 + cu2 + u+ u+ 1
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has either 0 or 2 zeros u in S. The case c ∈ K is trivial. If c /∈ K we consider

Gc(u) Gc(u) = 0

and substitute as before �, T and N with the condition trK(�) = 1. This leads to the following
equation in K:

(T 2 + 1)�4 + (T + 1)�2 + T �+N = 0, (15)

which is linear in �. If T = 1 then N = �, i.e. we have a unique solution as desired in this
special case, where Gc(1) = 0 (see Case 2a above).

Thus assume T /∈ F2 in the sequel (see Case 2b in the preceding proof). We have to verify
that the homogeneous equation corresponding to (15) has exactly one non-zero root � with
trace 0:

(T 2 + 1)�3 + (T + 1)�+ T = 0. (16)

After the substitution � = a2 + a the left hand term factorizes Q(a) Q(a + 1) with

Q(a) = a3T + a3 + 1.

W.l.o.g. assume Q(a) = 0. Since k is odd, we know that 3 is invertible modulo 2k − 1.
Consequently

� = (T + 1)
− 2

3 + (T + 1)
− 1

3

and vice versa this is a solution of (16). (Actually we can also conclude that every solution
� has trace zero.) Therefore if (15) has a solution at all, then it has precisely 2 solutions
with the same trace. This completes the proof. �

8. Proof of Theorem 3

Let k be even. Hence 1
3 (mod 2k + 1) exists.Again w.l.o.g. we can assume that �1+�1 = 1

and �2 = 1, because d2 is invertible. (In fact s2 = 1
6 and therefore 2s2 − 1 = − 2

3 , which is
invertible modulo 2k + 1; see Section 4.)

Since s1 = 1
2 and s2 = 1

6 , by Niho’s theorem, we have Gc(u) = cu+ cu+u
2
3 +u

2
3 +1.

Taking third powers is one-to-one on S. Thus Gc(u) can be replaced by

Gc(u) = cu3 + cu3 + u2 + u2 + 1.

In what follows parameters �, �, T and N are used, which are defined as before.
Case 1: c ∈ K . Then Gc(u) = 0 is equivalent to

(c + �)
(
�2 + 1

)
= 0

Note that � �= 1, since trk(�) = 1, but trK(1) = 0 (k is even). Hence c = �, and we have
at most one solution as desired.
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Case 2: c /∈ K . We consider Gc(u) Gc(u) = 0, which becomes after substitution the
following equation in K:

�4 + 1+ (�2 + 1)D3(�)T +D3(�)
2N + T 2 = 0, (17)

where D3(X) = X3 + X denotes the 3rd Dickson polynomial. (This is of course also
included in the general formula (10). Using the iteration rule Di(Dj (X)) = Dij (X) for
Dickson polynomials, here with i = 3 and j = 2

3 , it follows if � is replaced by 1/D3(�).)
In term of � we get

FT (�) := �2 + T �+ �6

�4 + 1
T 2 = N. (18)

Case 2a: c + c = 1. If T = 1 then the preceding equation becomes

F1(�) = �+ �2

�4 + 1
= N.

We have to show that F1 is one-to-one on T1, the set of all elements in K with trace 1. This
is in fact a consequence of Lemma 13, since trK(1) = 0 and

F1(�+ 1) = 1/�4 + 1/�2 + �+ 1 = �(�)+ 1.

Case 2b: T /∈ F2. We have to show that for each � and T, there is precisely one non-zero
� with trace 0, such that FT (�) + FT (� + �) = 0. We argue as in the proof of Theorem
1 in Case 2b. In the present case, we can reduce the latter statement to the fact that Sa in
Lemma 14 induces a permutation of K \ F2. This completes the proof of Theorem 3. �
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