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Abstract. The recently developed algebraic attacks apply to all key-
stream generators whose internal state is updated by a linear transition
function, including LFSR-based generators. Here, we describe this type
of attacks and we present some open problems related to their complex-
ity. We also investigate the design criteria which may guarantee a high
resistance to algebraic attacks for keystream generators based on a linear
transition function.

1 Introduction

In an additive stream cipher, the ciphertext is obtained by adding bitwise the
plaintext to a pseudo-random sequence called the keystream. The keystream
generator is a finite state automaton whose initial internal state is derived from
the secret key and from a public initial value by a key-loading algorithm. At
each time unit, the keystream digit produced by the generator is obtained by
applying a filtering function to the current internal state. The internal state
is then updated by a transition function. Both filtering function and transition
function must be chosen carefully in order to make the underlying cipher resistant
to known-plaintext attacks. In particular, the filtering function must not leak
too much information on the internal state and the transition function must
guarantee that the sequence formed by the successive internal states has a high
period.

Stream ciphers are mainly devoted to applications which require either an ex-
ceptional encryption rate or an extremely low implementation cost in hardware.
Therefore, a linear transition function seems to be a relevant choice as soon as
the filtering function breaks the inherent linearity. Amongst all possible linear
transition functions, those based on LFSRs are very popular because they are ap-
propriated for low-cost hardware implementations, produce sequences with good
statistical properties and can be easily analyzed. LFSR-based generators have
been extensively studied. It is known that the involved filtering function must
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satisfy some well-defined criteria (such as a high nonlinearity, a high correlation-
immunity order,...), and the designers of such generators now provide evidence
that their ciphers cannot be broken by the classical attacks.

However, the recent progress in research related to algebraic attacks, intro-
duced by Courtois and Meier [11], seems to threaten all keystream generators
based on a linear transition function. In this context, it is important to deter-
mine whether such ciphers are still secure or not. Here, we investigate some
related open problems, concerning the complexity of algebraic attacks (and of
their variants) and concerning the design criteria of LFSR-based stream ciphers
which guarantee a high resistance to these cryptanalytic techniques.

2 Basic Principle of Algebraic Attacks

Here, we focus on binary keystream generators based on a linear transition func-
tion, which can be described as follows. We denote by xt the n-bit internal state
of the generator at time t. The filtering function f is first assumed to be a
Boolean function of n variables, i.e., at time t the generator outputs only one
bit, st = f(xt). The transition function is supposed to be linear and is denoted
by L : Fn

2 → Fn
2 . Therefore, we have

st = f(Lt(x0)) ,

where x0 is the initial state. We only consider the case where both the filtering
function and the transition function are publicly known, i.e., independent from
the secret key. Two popular constructions known as nonlinear filter generators
and combination generators fit the previous model.

The basic principle of algebraic attacks goes back to Shannon’s work [26,
Page 711]: these techniques consist in expressing the whole cipher as a large
system of multivariate algebraic equations, which can be solved to recover the
secret key. A major parameter which influences the complexity of such an attack
is then the degree of the underlying algebraic system. When the transition is
linear, any keystream bit can obviously be expressed as a function of degree
deg(f) in the initial state bits. Therefore, it is known for a long time that the
filtering function involved in such a stream cipher must have a high degree.

However, as pointed out by Courtois and Meier [11], the keystream generator
may be vulnerable to algebraic attacks even if the degree of the algebraic function
is high. Actually, the attack applies as soon as there exist relations of low degree
between the output and the inputs of the filtering function f . Such relations
correspond to low degree multiples of f , i.e., to relations g(x)f(x) = h(x) for
some g where h has a low degree. But, it was proved in [21, 24] that, in the
case of algebraic attacks over F2, the existence of any such relation is equivalent
to the existence of a low degree annihilator of f or of (1 + f), in the sense
of Definition 1. Indeed, if g(x)f(x) = h(x) with deg(h) ≤ d, we obtain, by
multiplying this equation by f(x), that

g(x) [f(x)]2 = h(x)f(x) = g(x)f(x) = h(x) ,

leading to h(x) [1 + f(x)] = 0.
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Definition 1. Let f be a Boolean function of n variables. The annihilator ideal
of f , denoted by AN(f), is the set of all Boolean functions g of n variables such
that

g(x)f(x) = 0, ∀x ∈ Fn
2 .

Moreover, for any degree d, we denote by ANd(f) the set of all annihilators of
f with degree at most d:

ANd(f) = {g ∈ AN(f), deg(g) ≤ d} .

Since the keystream bit at time t is defined by st = f ◦ Lt(x0), we deduce
that:

– if st = 1, any function g in AN(f) leads to g ◦ Lt(x0) = 0;
– if st = 0, any function h in AN(1 + f) leads to h ◦ Lt(x0) = 0.

Therefore, if we collect the relations associated to all functions of degree at
most d in AN(f) ∪ AN(f + 1) for N known keystream bits, we obtain a system
of equations of degree d depending on n variables, x1, . . . , xn, which correspond
to the bits of the initial state:{

g ◦ Lt(x1, . . . , xn) ∀g ∈ ANd(f), ∀ 0 ≤ t < N such that st = 1
h ◦ Lt(x1, . . . , xn) ∀h ∈ ANd(1 + f), ∀ 0 ≤ t < N such that st = 0 (1)

The n-bit initial state can then be recovered by solving this multivariate poly-
nomial system.

3 Complexity of Algebraic Attacks

Solving a multivariate polynomial system such as (1) is a typical problem stud-
ied in computer algebra. In order to get a rough estimate of the complexity
of algebraic attacks for determining the suitable parameters for the keystream
generator, we only focus on the simplest technique, called linearization. It con-
sists in identifying the system with a linear system of

∑d
i=1

(
n
i

)
variables, where

each product of i bits of the initial state (1 ≤ i ≤ d) is seen as a new variable.
The entire initial state is then recovered by a Gaussian reduction (or by more
sophisticated techniques) whose time complexity is roughly

(
d∑

i=1

(
n

i

))ω

� nωd ,

where ω is the exponent of the matrix inversion algorithm, i.e., ω � 2.37 [9].
However, the previous estimation of the attack complexity is based on two

hypotheses. It is first assumed that almost all monomials of degree d appear in
System (1). This clearly corresponds to the worst situation for the attacker, but
we can wonder whether some weak choices for the transition function L and for
the filtering function f can provide a system involving a small proportion of all
possible monomials only, leading to a faster attack.
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Open problem 1. Determine the number of monomials in x1, . . . , xn involved
in System (1), depending on the choice of L and f .

A probably much stronger assumption in the usual complexity estimation is that
the system can always be solved: it is usually supposed that the knowledge of

N � 2nd

d! (dimAd(f) + dimAd(1 + f))

keystream bits lead to a system with
∑d

i=1

(
n
i

)
linearly independent equations.

It then raises the following open issue.

Open problem 2. Determine the rank of System (1) depending on the choice
of functions L and f .

Obviously, this question has an influence on the number of keystream bits re-
quired for the attack. But, a more crucial point is that the attack using equations
of degree d may be infeasible even if a huge keystream segment is available. This
situation occurs when the system generated by N keystream bits is underdeter-
mined for any value of N . A natural related question is to determine whether the
equations corresponding to a given annihilator g are different for all keystream
bits, i.e., whether there exists some T less than the period of {Lt, t ≥ 0} such
that g ◦ LT (x) = g(x) for all x ∈ Fn

2 . It is clear that such an integer T divides
the period of {Lt, t ≥ 0}. This observation leads to the following result when L
corresponds to the next-state function of an LFSR.

Proposition 1. Let L be the next-state function of an LFSR of length n with
primitive feedback polynomial. Let g be a Boolean function of n variables. If
2n − 1 is a prime, then all functions g ◦ Lt, for 0 ≤ t ≤ 2n − 1, are distinct.

But, when (2n − 1) is not a prime, there always exist filtering functions f such
that some of their annihilators g ∈ AN(f), g 
= 0, lead to a sequence {g◦Lt, 0 ≤
t ≤ 2n − 1} with a small period, as pointed out in the following toy example.

Example 1. Let us consider the LFSR of length 4 with primitive feedback poly-
nomial P (x) = x4 + x + 1 and the 4-variable filtering function f defined by

f(x1, . . . , x4) = x3 + x4 + x1x2 + x2x3 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 .

Then, the function g(x1, . . . , x4) = 1 + x2 + x3 + x4 + x2x4 + x3x4 belongs to
AN(f) and it satisfies

g ◦ Lt(x1, . . . , x4) = g ◦ Lt mod 5(x1, . . . , x4)

for all t. Actually, when F4
2 is identified with the finite field with 16 elements

defined by the primitive polynomial P , we have g(x) = g(xα5), where α is a root
of P .

However, when a function g in AN(f) has such a strong periodic structure, this
also holds for the filtering function, implying that the keystream can be easily
distinguished from a random sequence.
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Proposition 2. Let f be a Boolean function of n variables and let g be a nonzero
function in AN(f) ∪ AN(1 + f). If g ◦ LT = g for some integer T , then there
exists t0 < T such that all keystream bits st0+iT , i ≥ 0 are equal for at least one
initial state. Moreover, if L corresponds to the next-state function of an LFSR
with primitive feedback polynomial, then all st0+iT , i ≥ 0 are equal for some
t0 < T for all nonzero initial states when deg(g) 
= n.

Proof. Since g is not the zero function, there exists some a ∈ Fn
2 such that

g(a) = 1, implying g ◦ LiT (a) = 1 for all i ≥ 0. Because g belongs to AN(f)
(resp. AN(1 + f)), we deduce that f (resp. (1 + f)) vanishes at points LiT (a),
for all i ≥ 0. Therefore, the keystream generated from initial state x0 is such
that st0+iT , i ≥ 0 are equal for some t0 < T as soon as an internal state a
with g(a) = 1 can be reached from x0. For an LFSR with maximum period,
all internal states are generated for each nonzero x0, except the all-zero state.
Thus, the property holds unless g is the function of degree n which vanishes at
all points except 0.

However, the previous propositions only investigate the possibility that all equa-
tions derived from a given annihilator may be equal. The question of their linear
dependency is still open. We can nevertheless conjecture from the previous dis-
cussion that, if the rank of the system involved in an algebraic attack highly
differs from the rank of a random system, the corresponding keystream genera-
tor is probably vulnerable to a distinguishing attack.

If we assume that System (1) behaves like a random system with respect to
both previously discussed properties, it clearly appears that the relevant pa-
rameter in the context of algebraic attacks against such stream ciphers is the
so-called algebraic immunity of the filtering function.

Definition 2. The algebraic immunity of a Boolean function f , denoted by
AI(f), is the lowest degree achieved by a nonzero function in AN(f)∪AN(1+f).

It is worth noticing that the previous definition may be inappropriate when we
consider algebraic attacks against other families of ciphers, for instance against
block ciphers or combiners with memory. In such cases, the annihilator ideals of
f and of (1 + f) may play very different roles [3].

In our case, the time-complexity of algebraic attacks based on linearization is
roughly

O
(
nωAI(f)

)
where ω � 2.37

and the associated data-complexity, i.e., the required number of keystream bits,
is O

(
nAI(f)

)
, but it is probably reduced when the number of functions of de-

gree AI(f) in AN(f) ∪ AN(1 + f) increases. Thus, we can derive from this
approximation a lower bound on the algebraic immunity of the filtering function
which must be satisfied in order to resist algebraic attacks. If we suppose that
the size of the internal state is minimal with respect to key-size k, i.e., that
n = 2k (it is known that the size of the internal state must be at least twice the
key size in order to resist time-memory-data trade-off attacks), the complexity
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of the attack is greater than the complexity of an exhaustive search on the key
when

AI(f) ≥ 0.42
[

k

1 + log2 k

]
.

For instance, in a filter generator with a 128-bit key and a 256-bit internal state,
the algebraic immunity of the filtering function must be at least 7.

But, the secure minimum value for the algebraic immunity is probably higher
since more efficient techniques than linearization can be used for solving the al-
gebraic system. Actually, this problem has been extensively studied in computer
algebra and it is well-known that some methods based on Gröbner basis algo-
rithms efficiently apply. The most recent and powerful algorithms, F4 and F5, are
due to Faugère [19, 27, 20]. It was recently proved [18, 5] that F4 is more efficient
than the extended linearization algorithm (XL) proposed by Courtois, Klimov,
Patarin and Shamir [12]; XL actually computes a Gröbner basis in the particu-
lar context of algebraic attacks. And Algorithm F5 is strictly more efficient than
all previous ones. Another technique, called XSL, has also been presented by
Courtois and Pieprzyk [14] but its complexity and its implementation feasibility
are still controversial.

Some recent results on the complexities of F4 and F5 can be found in [6, 7].
However, it is worth noticing that all these results only hold in the so-called
semi-regular case. Therefore, the major problem is to determine whether the
system involved in algebraic attacks behaves like a random system or not with
respect to the previously mentioned algorithms. We would like to emphasize that
it does not make sense to use some complexity results for the semi-regular case if
we do not have any hint on the behaviour of the system. For instance, the public
challenge on the asymmetric cryptosystem Hidden Field Equations (HFE) was
broken by Faugère with F5 whereas the attack was infeasible according to its
complexity in the generic case [22].

Open problem 3. Does System (1) behave like a semi-regular system in the
sense of [6]?

4 Algebraic Immunity of Filtering Functions

Obviously, the algebraic immunity of the filtering function highly influences the
complexity of the attack even if the estimation of the time complexity for solving
the underlying system is still an open problem.

4.1 General Properties of the Algebraic Immunity

The set AN(f) of all annihilating functions of f is obviously an ideal in the
ring of all Boolean functions, and it is generated by (1 + f). It consists of the
22n−wt(f) functions of n variables which vanish on the support of f , i.e., on all
x such that f(x) = 1, where wt(f) denotes the size of the support of f . The
number of functions of degree at most d in AN(f) is equal to 2κ where κ is the
dimension of the kernel of the matrix obtained by restricting the Reed-Muller
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code of length 2n and order d to the support of f . In other words, the rows of
this matrix correspond to the evaluations of the monomials of degree at most d
on {x, f(x) = 1}. Since this matrix has

∑d
i=0

(
n
i

)
rows and wt(f) columns, its

kernel is non-trivial when
d∑

i=0

(
n

i

)
> wt(f) .

Similarly, AN(1 + f) contains some functions of degree d or less if

d∑
i=0

(
n

i

)
> 2n − wt(f) .

Thus, as pointed out in [15], the algebraic immunity of an n-variable function is
related to its Hamming weight. Most notably, for odd n, only balanced functions
can have optimal algebraic immunity. A trivial corollary is also that, for any n-
variable Boolean function, we have AI(f) ≤ �n/2�.

Another interesting property is that the highest possible algebraic immunity
for a function is related to the number of its 0-linear structures. Let S0(f) be the
set of all 0-linear structures for f , i.e., S0(f) = {a ∈ Fn

2 , f(x + a) = f(x), ∀x}.
Then,

AI(f) ≤
⌈n − dim(S0(f))

2

⌉
.

This bound is important for instance in the case of filtered LFSRs, since the
filtering function usually depends only on a small subset of the internal state bits.
We deduce from the previous discussion that if an m-variable Boolean function
is used for filtering the n-bit internal state of the generator, the complexity of
the algebraic attack will be at most n

ωm
2 . Therefore, the cipher resists algebraic

attacks only if the number m of variables of the filtering function satisfies

m ≥ 0.84
[

k

1 + log2(k)

]
,

where k is the key-size and where the initial state is supposed to be twice longer
than the key. For instance, a filter generator with a 128-bit key and a 256-bit
internal state must use a filtering function of at least 16 variables. Here again,
the secure number of variables is probably higher than the previous bound which
is based on the complexity of linearization.

4.2 Algebraic Immunity of Random Balanced Functions

For 5-variable functions, it is possible to compute the algebraic immunity of all
Boolean functions using the classification due to Berlekamp and Welch (because
algebraic immunity is invariant under composition by a linear permutation). We
here focus on balanced functions because they are the only ones that may have
optimal algebraic immunity for n odd. We can compute the algebraic immunity
of all 601, 080, 390 balanced functions of 5 variables:

Another interesting quantity is the number of linearly independent annihila-
tors of degree at most 2 for all balanced functions of 5 variables:
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AI(f) 1 2 3
nb. of balanced f 62 403,315,208 197,765,120
proportion of balanced f 10−7 0.671 0.329

dim(AN2(f)) 0 1 2 3 4 5
proportion of balanced f 0.329 0.574 0.094 0.002 2 · 10−5 10−7

An important observation is that both sets AN2(f) and AN2(1+f) have the same
dimension for all balanced functions except for one function and its complement
(up to linear equivalence). This raises the following open problem.

Open problem 4. For balanced Boolean functions f , is there a general rela-
tionship between AN(f) and AN(1 + f)?

Similar simulations can be performed as far as the functions of n variables are
classified into equivalence classes under composition by a linear permutation.
But, such a classification only exist for n = 6 and for cubic functions up to
8 variables.

Even if some well-known constructions of cryptographic Boolean functions
have been proved to have a low algebraic immunity, probabilistic arguments
tend to show that the proportion of balanced functions with low algebraic im-
munity is very small. It has been proved in [24] that the probability that a
balanced function of n variables has algebraic immunity less than 0.22n tends
to zero when n tends to infinity. An upper bound on the probability that a bal-
anced function has an annihilator of degree less than d is also given. This bound
involves a part of the weight enumerator of RM(d, n) and any new information
on its complete weight distribution can clearly improve the result. However, both
following problems are still open.

Open problem 5. Determine the average value of the algebraic immunity for
a balanced function of n variables.

Open problem 6. Determine the proportion of balanced Boolean functions of
n variables with optimal algebraic immunity.

4.3 Boolean Functions with Optimal Algebraic Immunity

A first relationship between the annihilators of f and of 1 + f can be exhibited
for functions with optimal algebraic immunity. Actually, all annihilators of a
balanced n-variable function f have maximal degree n+1

2 � if and only if the
support of f corresponds to a subset of 2n−1 columns of the Reed-Muller code
of length 2n and order n−1

2 � with maximal rank. When n is odd, such a set is an
information set for the Reed-Muller code of order n−1

2 which has dimension 2n−1.
Then, a relationship between deg(AN(f)) and deg(AN(1 + f)) can be derived
from the fact that this code is a self-dual code.

Proposition 3. Let C be a linear self-dual code. If I is an information set for
C, then its complement is an information set too.
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Proof. Let I be an information set for C. Then, there exists a generator matrix for
C which can be decomposed into G = (Id, M)I where the first part corresponds
to the positions in I. Let us now assume that the complement of I is not an
information set for C. This means that there exists a nonzero codeword of the
form c = (c′, 0)I in C. Since C is self-dual, c belongs to the dual code. Therefore,
Gc = 0, implying that some columns of the identity matrix sum up to zero, a
contradiction.

We can immediately derive the following result.

Theorem 1. Let n be an odd integer and f be a balanced Boolean function of
n variables. Then, f has optimal algebraic immunity n+1

2 if and only if AN(f)
does not contain any nonzero function of degree strictly less than n+1

2 .

A few classes of Boolean functions with optimal algebraic immunity have been
recently exhibited. An iterative construction which provides an infinite family of
balanced Boolean functions with optimal algebraic immunity is presented in [16].
Another example of functions with optimal algebraic immunity is the majority
symmetric function depending on an odd number of variables, i.e., the function
which outputs 1 if and only if the Hamming weight of its input vector is greater
than or equal to n+1

2 . This property was first proved in [23, Theorem 1] in terms of
information sets for the self-dual Reed-Muller code, and it is also mentioned in [17].

4.4 Algebraic Immunity and Other Cryptographic Criteria

Besides the Hamming weight of the function, its nonlinearity is also related to
its algebraic immunity [15]. It can be proved that, for any linear function ϕ, the
algebraic immunity of f + ϕ is at most AI(f) + 1. Therefore, any function f of
n variables with algebraic immunity at least d satisfies

NL(f) ≥
d−2∑
i=0

(
n

i

)
.

It follows that any function with optimal algebraic immunity has a high nonlin-
earity, more precisely

NL(f) ≥
{

2n−1 −
(

n
n−1

2

)
if n is odd

2n−1 − 1
2

(
n
n
2

)
−

(
n

n
2 −1

)
if n is even

A high nonlinearity and a high algebraic immunity are then compatible criteria.
Another important consequence is that the nonlinearity of a function may be
a sufficient criterion to decide whether it has low algebraic immunity (but the
converse is not true).

Another cryptographic property that implies that a function does not have
a maximal algebraic immunity is the notion of normality. A function is said to
be k-normal (resp. k-weakly normal) if there exists an affine subspace of dimen-
sion k on which the function is constant (resp. affine). Since the minimum weight
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codewords of RM(r, n) are those whose support is an affine subspace of dimen-
sion n − r, we deduce that any k-normal function f of n variables has algebraic
immunity at most n − k. Similarly, any k-weakly normal function has algebraic
immunity at most n−k+1. Non-normal (and non-weakly normal) functions may
be good candidates if we want to construct functions with optimal nonlinearity.

The existence of links between algebraic immunity and other cryptographic
criteria remains unknown. For instance, the relation between the distance of
a function to all low-degree functions (i.e., its distance to RM(d, n)) and its
algebraic immunity is still unclear. Correlation-immunity does not seem to be
a priori incompatible with optimal algebraic immunity: there exists a 1-resilient
function of 5 variables with optimal algebraic immunity. However, the link with
all known criteria must be investigated further.

4.5 Algebraic Immunity of Known Constructions

Some bounds have been established on the algebraic immunity of the crypto-
graphic functions obtained by applying classical constructions. First, the alge-
braic immunity of a function can be derived from the algebraic immunities of its
restrictions to a given hyperplane and to its complement [15]. For instance, if

f(x1, . . . , xn) = (1 + xn)f1(x1, . . . , xn−1) + xnf2(x1, . . . , xn−1) ,

we have:

– if AI(f1) 
= AI(f2), then AI(f) = min(AI(f1), AI(f2)) + 1;
– if AI(f1) = AI(f2), then AI(f) ∈ {AI(f1), AI(f1) + 1}.

Therefore, it is obvious how to construct a function of 2t variables with opti-
mal algebraic immunity from two functions of (2t − 1) variables with respective
algebraic immunities equal to t and to (t − 1). But, constructing a function of
(2t+1) variables with optimal algebraic immunity from two functions of 2t vari-
ables is much more difficult since both restrictions must have optimal algebraic
immunity and they must also satisfy some additional conditions.

Some bounds on the algebraic immunities of some classical constructions, such
as the Maiorana-McFarland family, can be found in [24, 15, 25].

4.6 Computing the Algebraic Immunity of a Boolean Function

The basic algorithm for computing the algebraic immunity of an n-variable func-
tion consists in performing a Gaussian elimination on the generator matrix of
the punctured RM(n−1

2 �, n) restricted to the support of f . This matrix has

wt(f) columns and k(n−1
2 �, n) =

∑�n−1
2 �

i=0

(
n
i

)
rows. Therefore, the algorithm

requires k2(n−1
2 �, n)wt(f) operations, which is close to 23n−3 when f is bal-

anced. As noted in [24], the complexity can be significantly reduced if we only
want to check whether a function has annihilators of small degree d, since we
do not need to consider all positions in the support of f . Indeed, considering a
number of columns which is only slightly higher that the code dimension k(d, n)



130 A. Canteaut

is usually sufficient for proving that a function does not admit any annihilator of
degree d. A technique for reducing the size of the matrix over which the Gaus-
sian elimination is performed is presented in [24]. The idea is that the elements
in the support of f with low Hamming weight provide simple equations that
can be removed from the matrix by a substitution step. However, due to the
lack of simulation results, it is very hard to evaluate the time complexity of the
substitution step in practice.

Gröbner bases algorithms such as F5 provide other techniques for computing
the size of the annihilator ideal. But they need to be compared with the basic
techniques in this particular context.

5 Resistance to Fast Algebraic Attacks

At CRYPTO 2003, Courtois presented some important improvements on alge-
braic attacks, called fast algebraic attacks [10]. The refinement first relies on the
existence of some low degree relations between the bits of the initial state and
not only one but several consecutive keystream bits. In other words, the attacker
wants to find some low degree relations g between the inputs and outputs of

Fm: Fn
2 → Fm

2
x �→ (f(x), f(L(x)), . . . , f(Lm−1(x))

where L is the linear transition function. This function is very similar to the so-
called augmented function defined in [1]. The fact that the augmented function
may be much weaker than the filtering function, i.e., than F0 with the previous
notation, has been pointed out by Anderson [1] in the context of correlation
attacks. However, finding the low degree relations between the n inputs and
m outputs of Fm becomes infeasible when m increases. The direct algorithm
used for a function S with n inputs and m outputs consists in finding the low
degree annihilators for the characteristic function ΦS of S, which is the Boolean
function of (n + m) variables defined by

ΦS(x1, . . . , xn, y1, . . . , ym) = 1 if and only if yi = Si(x1, . . . , xn), ∀i .

Due to its high complexity, it can only be used for small values of m. For in-
stance, if we consider a Boolean function of 20 variables, it may have algebraic
immunity 10. But, there always exist relations of degree at most 7 involving
4 consecutive keystream bits together. The problem is that determining whether
relations of degree less than or equal to 6 exist in this case requires the com-
putation of the kernel of a matrix of 120 GBytes. And even checking whether
relations of degree 3 exist involves a 2.7 GByte-matrix. Mounting algebraic at-
tacks based on the augmented function is then related to the following problem.

Open problem 7. Find an algorithm which determines the low-degree relations
for the augmented function.
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More generally, we can wonder whether the particular form of the augmented
function has an influence on the degree of the annihilator ideal of its charac-
teristic function. For instance, the existence of a general relationship between
the algebraic immunity of a Boolean function and the algebraic immunity of the
associated augmented function is still unclear. The fact that the augmented func-
tion is a very special case of multi-output functions may lead to new theoretical
results or to dedicated algorithms in that case. For instance, a very particular
property of the augmented function is that all its Boolean components are lin-
early equivalent. This raises the following open question, which is clearly related
to algebraic attacks against block ciphers which use power functions as S-Boxes,
like the AES.

Open problem 8. Does the linear equivalence between all output components
of a multi-output function influence its algebraic immunity?

Since the computation of low degree relations involving several keystream bits is
usually infeasible, Courtois proposed to focus on particular subclasses of relations
that can be obtained much faster. The relations considered in the attack are given
by linear combinations of relations of the form

g(x0, . . . , x�−1, st, . . . , st+m)

where the terms of highest degree do not involve any keystream bits. Then, an
additional precomputation step consists in determining the linear combinations
of the previous relations which cancel out the highest degree monomials. Some
algorithms for this step have been proposed in [10, 2]. This technique helps to
decrease the degree of the relations used in the attack for different practical
examples. But, here again, we do not have any theoretical result connecting the
algebraic immunity of the function and the existence of such low degree linear
combinations.

6 Using More Sophisticated Filtering Functions

Many stream ciphers do not use a simple Boolean filtering function; they prefer
more sophisticated mappings in order to render the attacks more difficult or in
order to increase the throughput of the generator.

Multi-output Boolean functions. A basic technique for increasing the speed of
the generator consists in using a filtering function with several outputs. Such
functions are called vectorial Boolean functions, or S-boxes by analogy with
block ciphers. But, as pointed out in [28], the resistance of the generator to
fast correlation attacks usually decreases with the number of output bits of
the function. For a single output function, the attack exploits the fact that the
output may be approximated by an affine function of the input variables. But,
for a function S with m outputs, the attacker can apply any Boolean function g
of m variables to the output vector (y1, . . . , ym) and he or she can perform
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the attack on the resulting sequence z = g(y1, . . . , ym). Therefore, the relevant
parameter is not the nonlinearity of the vectorial function, which is the lowest
Hamming distance between any linear combination of the components of S and
the affine functions, but the so-called unrestricted nonlinearity [8], which is the
lowest distance between any function g ◦ S and the affine functions, where g
varies in the set of all nonzero Boolean functions of m variables.

For similar reasons, the algebraic immunity of a vectorial function tends to
decrease with the number of output bits. For an S-box with n inputs and m out-
puts, there exists a relation of degree at most d in the input variables (and of
any degree in the output variables) if

d∑
i=0

(
n

i

)
> 2n−m .

A particular case of generators based on multi-output Boolean functions are
the word-oriented ciphers. In order to increase the performance of software im-
plementations, many ciphers use LFSRs over an extension field F2m and the
associated filtering function is usually a mapping from Fn

2m into F2m . This tech-
nique is used in many recent stream ciphers, e.g. in SNOW 2.0. The associated
filtering function can obviously be seen as a vectorial Boolean function with
mn inputs and m outputs. Consequently, all results previously mentioned apply,
but the major open issue here is to determine whether word-oriented attacks can
be mounted which exploit the particular structure of the function defined as a
polynomial over F2m .

Functions with memory. In some keystream generators, the filtering function is
replaced by a finite automaton with some memory bits. An example is the E0
keystream generator used in the Bluetooth wireless LAN system, which uses a
combining function with 4 inputs and 4 memory bits. However, (fast) algebraic
attacks [4] can still be applied on such systems. Armknecht and Krause proved
that, for any filtering function of n variables with M memory bits, there always
exists a relation of degree at most �n(M+1)

2 � between (M +1) consecutive output
bits and the bits of the initial state, for a given initial assignment of the memory
bits. Obviously, relations of lower degree may exist. For instance, the function
used in E0 provides a relation of degree 4 involving 4 consecutive output bits,
which leads to an algebraic attack of running-time around 267 [4]. General results
on algebraic attacks against combiners with memory can be found in [3, 13].

The main open issue related to the use of such sophisticated functions is to
improve the efficiency of the algorithms for computing their algebraic immunity
for a large number of input variables. Another related open problem is to find
some general constructions which guarantee a high resistance to all these attacks.
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