
Stream cipher

A stream cipher is a symmetric cipher which operates with a time-varying transformation on
individual plaintext digits. By contrast, block ciphers operate with a fixed transformation
on large blocks of plaintext digits. More precisely, in a stream cipher a sequence of plaintext
digits, m0m1 . . ., is encrypted into a sequence of ciphertext digits c0c1 . . . as follows: a pseudo-
random sequence s0s1 . . ., called the running-key or the keystream, is produced by a finite state
automaton whose initial state is determined by a secret key. The i-th keystream digit only
depends on the secret key and on the (i−1) previous plaintext digits. Then, the i-th ciphertext
digit is obtained by combining the i-th plaintext digit with the i-th keystream digit.

Stream ciphers are classified into two types: synchronous stream ciphers and asynchronous
stream ciphers. The most famous stream cipher is the Vernam cipher, also called one-time
pad, that leads to perfect secrecy (the ciphertext gives no information about the plaintext).

Stream ciphers have several advantages which make them suitable for some applications.
Most notably, they are usually faster and have a lower hardware complexity than block ciphers.
They are also appropriate when buffering is limited, since the digits are individually encrypted
and decrypted. Moreover, synchronous stream ciphers are not affected by error-propagation.

Anne Canteaut.

References

[Rue86] R.A. Rueppel. Analysis and design of stream ciphers. Springer-Verlag, 1986.

[Ver26] G.S. Vernam. Cipher printing telegraph systems for secret wire and radio telegraphic
communications. Journal of the American Institute of Electrical Engineers, vol.55,
pages 109–115, 1926.

1



Running-key

In a stream cipher, the running-key, also called the keystream, is the sequence which is
combined, digit by digit, to the plaintext sequence for obtaining the ciphertext sequence.
The running key is generated by a finite state automaton called the running-key generator or
the keystream generator (see stream cipher).

Anne Canteaut.

2



Linear feedback shift register

Linear Feedback Shift Registers (LFSRs) are the basic components of many running-key gen-
erators for stream cipher applications, because they are appropriate to hardware implementa-
tion and they produce sequences with good statistical properties. LFSR refers to a feedback
shift register with a linear feedback function (see Nonlinear Feedback Shift Register).

An LFSR of length L over Fq is a finite state automaton which produces a semi-infinite
sequence of elements of Fq, s = (st)t≥0 = s0s1 . . ., satisfying a linear recurrence relation of
degree L over Fq

st+L =
L∑

i=1

cist+L−i, ∀t ≥ 0 .

The L coefficients c1, . . . , cL are elements of Fq. They are called the feedback coefficients of
the LFSR.

An LFSR of length L over Fq has the following form:

st+L−1 -st+L−2 -

ÁÀ

Â¿
c2

ÁÀ

Â¿
cL

¹¸

º·
+

¹¸

º·
+

ÁÀ

Â¿
c1

ÁÀ

Â¿
cL−1

¹¸

º·
+

- stst+1

? ?

- -

??

¾¾ ¾

-

?? ?

... output
st+L

The register consists of L delay cells, called stages, each containing an element of Fq. The
contents of the L stages, st, . . . , st+L−1, form the state of the LFSR. The L stages are initially
loaded with L elements, s0, . . . , sL−1, which can be arbitrary chosen in Fq; they form the
initial state of the register.

The shift register is controlled by an external clock. At each time unit, each digit is shifted
one stage to the right. The content of the rightmost stage st is output. The new content
of the leftmost stage is the feedback bit, st+L. It is obtained by a linear combination of the
contents of the register stages, where the coefficients of the linear combination are given by
the feedback coefficients of the LFSR:

st+L =
L∑

i=1

cist+L−i .

Therefore, the LFSR implements the linear recurrence relation of degree L:

st+L =
L∑

i=1

cist+L−i, ∀t ≥ 0 .

Example. Table 1 gives the successive states of the binary LFSR of length 4 with feedback
coefficients c1 = c2 = 0, c3 = c4 = 1 and with initial state (s0, s1, s2, s3) = (1, 0, 1, 1). This
LFSR is depicted in Figure 1. It corresponds to the linear recurrence relation

st+4 = st+1 + st mod 2 .

The output sequence s0s1 . . . generated by this LFSR is 1011100 . . ..

3



Figure 1: Binary LFSR with feedback coefficients (c1, c2, c3, c4) = (0, 0, 1, 1)

i+

- - - -

?¾

-

Table 1: Successive states of the LFSR with feedback coefficients (c1, c2, c3, c4) = (0, 0, 1, 1)
and with initial state (s0, s1, s2, s3) = (1, 0, 1, 1)

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
st 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1

st+1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0
st+2 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1
st+3 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1

Feedback polynomial and characteristic polynomial. The output sequence of an
LFSR is uniquely determined by its feedback coefficients and its initial state. The feedback
coefficients c1, . . . , cL of an LFSR of length L are usually represented by the LFSR feedback
polynomial (or connection polynomial) defined by

P (X) = 1−
L∑

i=1

ciX
i .

Alternatively, one can use the characteristic polynomial, which is the reciprocal polynomial
of the feedback polynomial:

P ?(X) = XLP (1/X) = XL −
L∑

i=1

ciX
L−i .

For instance, the feedback polynomial of the binary LFSR shown in Figure 1 is P (X) =
1 + X3 + X4 and its characteristic polynomial is P ?(X) = 1 + X + X4.

An LFSR is said to be non-singular if the degree of its feedback polynomial is equal to the
LFSR length (i.e., if the feedback coefficient cL differs from 0). Any sequence generated by
a non-singular LFSR of length L is periodic, and its period does not exceed qL − 1. Indeed,
the LFSR has at most qL different states and the all-zero state is always followed by the all-
zero state. Moreover, if the LFSR is singular, all generated sequences are ultimately periodic,
i.e., the sequences obtained by ignoring a certain number of elements at the beginning are
periodic.

Characterization of LFSR output sequences. A given LFSR of length L over Fq can
generate qL different sequences corresponding to the qL different initial states and these
sequences form a vector space over Fq. The set of all sequences generated by an LFSR
with feedback polynomial P is characterized by the following property: a sequence (st)t≥0 is

4



generated by a LFSR of length L over Fq with feedback polynomial P if and only if there
exists a polynomial Q ∈ Fq[X] with deg(Q) < L such that the generating function of (st)t≥0

satisfies ∑

t≥0

stX
t =

Q(X)
P (X)

.

Moreover, the polynomial Q is completely determined by the coefficients of P and by the
initial state of the LFSR:

Q(X) = −
L−1∑

i=0

Xi




i∑

j=0

ci−jsj


 ,

where P (X) =
∑L

i=0 ciX
i. This result, which is called the fundamental identity of formal

power series of linear recurring sequences, means that there is a one-to-one correspondence
between the sequences generated by an LFSR of lenth L with feedback polynomial P and the
fractions Q(X)/P (X) with deg(Q) < L. It has two major consequences. On the first hand,
any sequence generated by an LFSR with feedback polynomial P is also generated by any
LFSR whose feedback polynomial is a multiple of P . This property is used in some attacks
on keystream generators based on LFSRs (see Fast Correlation attack). On the other hand,
a sequence generated by an LFSR with feedback polynomial P is also generated by a shorter
LFSR with feedback polynomial P ′ if the corresponding fraction Q(X)/P (X) is such that
gcd(P, Q) 6= 1. Thus, amongst all sequences generated by the LFSR with feedback polynomial
P , there is one which can be generated by a shorter LFSR if and only if P is not irreducible
over Fq.

Moreover, for any linear recurring sequence (st)t≥0, there exists a unique polynomial
P0 with constant term equal to 1, such that the generating function of (st)t≥0 is given by
Q0(X)/P0(X), where P0 and Q0 are relatively prime. Then, the shortest LFSR which gener-
ates (st)t≥0 has length L = max(deg(P0), deg(Q0) + 1), and its feedback polynomial is equal
to P0. The reciprocal polynomial of P0, XLP0(1/X), is the characteristic polynomial of the
shortest LFSR which generates (st)t≥0; it is called the minimal polynomial of the sequence.
It determines the linear recurrence relation of least degree satisfied by the sequence. The de-
gree of the minimal polynomial of a linear recurring sequence is the linear complexity of the
sequence. It corresponds to the length of the shortest LFSR which generates it. The minimal
polynomial of a sequence s = (st)t≥0 of linear complexity Λ(s) can be determined from the
knowledge of at least 2Λ(s) consecutive bits of s by the Berlekamp-Massey algorithm.

Example:
The binary LFSR of length 10 depicted in Figure 2 has feedback polynomial

P (X) = 1 + X + X3 + X4 + X7 + X10 ,

and its initial state s0 . . . s9 is 1001001001.
The generating function of the sequence produced by this LFSR is given by

∑

t≥0

stX
t =

Q(X)
P (X)

where Q is deduced from the coefficients of P and from the initial state:

Q(X) = 1 + X + X7 .

5



Figure 2: Example of a LFSR of length 10

1 - 0 - 0 - 1 - 0 - 0 - 1 - 0 - 0 1-

h+h+ h+ h+ ?¾¾¾

-

? ? ?

-

¾

Therefore, we have

∑

t≥0

stX
t =

1 + X + X7

1 + X + X3 + X4 + X7 + X10
=

1
1 + X3

,

since 1+X+X3+X4+X7+X10 = (1+X+X7)(1+X3) in F2[X]. This implies that
(st)t≥0 is also generated by the LFSR with feedback polynomial P0(X) = 1 + X3

depicted in Figure 3. The minimal polynomial of the sequence is then 1+X3 and
its linear complexity is equal to 3.

Figure 3: LFSR of length 3 which generates the same sequence as the LFSR of Figure 2

0 - 0 - 1 --

Period of an LFSR sequence. The minimal polynomial of a linear recurring sequence
plays a major role since it completely determines the linear complexity and the least period of
the sequence. Actually, the least period of a linear recurring sequence is equal to the period of
its minimal polynomial. The period (also called the order) of a polynomial P in Fq[X], where
P (0) 6= 0, is the least positive integer e for which P (X) divides Xe− 1. Then, s has maximal
period qΛ(s) − 1 if and only if its minimal polynomial is a primitive polynomial (i.e., if the
period of its minimal polynomial is maximal). For instance, the sequence generated by the
LFSR shown in Figure 3 has period 3 because its minimal polynomial 1+X3 has period 3. This
sequence is 100100100 . . .. On the other hand, any non-zero sequence generated by the LFSR
of length 4 depicted in Figure 1 has period 24 − 1 = 15. Actually, the minimal polynomial of
any such sequence corresponds to its characteristic polynomial P ?(X) = 1+X +X4, because
P ? is irreducible. Moreover, P ? is a primitive polynomial. Any sequence s = (st)t≥0 generated
by an LFSR of length L which has a primitive feedback polynomial has the highest possible
linear complexity Λ(s) = L and the highest possible period qL− 1. Such sequences are called
maximal-length linear sequences (m-sequences). Because of the previous optimal properties,
the linear recurring sequences used in cryptography are always chosen to be m-sequences.
Moreover, they possess good statistical properties (see maximal-length linear sequences for
further details). In other terms, the feedback polynomial of a LFSR should always be chosen
to be a primitive polynomial.

Keystream generators based on LFSRs. However, it is clear that an LFSR should never
be used by itself as a keystream generator. If the feedback coefficients of the LFSR are public,
the entire keystream can obviously be recovered from the knowledge of any Λ consecutive bits

6



of the keystream, where Λ is the linear complexity of the running-key (which does not exceed
the LFSR length). If the feedback coefficients are kept secret, the entire keystream can be
recovered from any 2Λ consecutive bits of the keystream by the Berlekamp-Massey algorithm.
Therefore, a commonly used technique to produce a pseudo-random sequence which can be
used as a running-key is to combine several LFSRs in different ways in order to generate a
linear recurring sequence which has a high linear complexity (see e.g. combination generator,
filter generator...).

Anne Canteaut.

References

[Gol82] S.W. Golomb. Shift register sequences. Aegean Park Press, revised edition, 1982.

[LN83] R. Lidl and H. Niederreiter. Finite fields. Cambridge University Press, 1983.

[Rue86] R.A. Rueppel. Analysis and design of stream ciphers. Springer-Verlag, 1986.

7



Minimal polynomial

The minimal polynomial of a linear recurring sequence s = (st)t≥0 of elements of Fq is the
polynomial P in Fq[X] of lowest degree such that (st)t≥0 is generated by the linear feedback
shift register (LFSR) with characteristic polynomial P . In other terms, P =

∑L−1
i=0 piX

i +XL

is the characteristic polynomial of the linear recurrence relation of least degree satisfied by
the sequence:

st+L +
L−1∑

i=0

pist+i = 0, t ≥ 0 .

The minimal polynomial of a linear recurring sequence s is monic and unique; it divides
the characteristic polynomial of any LFSR which generates s. The degree of the minimal
polynomial of s is called its linear complexity. The period of the minimal polynomial of s is
equal to the least period of s. (see linear feedback shift register for further details).

The minimal polynomial of a linear recurring sequence with linear complexity Λ can be
recovered from any 2Λ consecutive terms of the sequence by the Berlekamp-Massey algorithm.

Anne Canteaut.

8



Linear complexity

The linear complexity of a semi-infinite sequence s = (st)t≥0 of elements of Fq, Λ(s), is the
smallest integer Λ such that s can be generated by a linear feedback shift register (LFSR)
of length Λ over Fq, and is ∞ if no such LFSR exists. By way of convention, the linear
complexity of the all-zero sequence is equal to 0. The linear complexity of a linear recurring
sequence corresponds to the degree of its minimal polynomial.

The linear complexity Λ(sn) of a finite sequence sn = s0s1 . . . sn−1 of n elements of Fq

is the length of the shortest LFSR which produces sn as its first n output terms for some
initial state. The linear complexity of any finite sequence can be determined by the Berlekamp-
Massey algorithm. An important result due to Massey [Mas69] is that, for any finite sequence
sn of length n, the LFSR of length Λ(sn) which generates sn is unique if and only if n ≥ 2Λ(sn).

The linear complexity of an infinite linear recurring sequence s and the linear complexity of
the finite sequence sn composed of the first n digits of s are related by the following property:
if s is an infinite linear recurring sequence with linear complexity Λ, then the finite sequence
sn has linear complexity Λ for any n ≥ 2Λ. Moreover, the unique LFSR of length Λ that
generates s is the unique LFSR of length Λ that generates sn for every n ≥ 2Λ.

For a sequence s = s0s1 . . ., the sequence of the linear complexities (Λ(sn))n≥1 of all
subsequences sn = s0 . . . sn−1 composed of the first n terms of s is called the linear complexity
profile of s.

The expected linear complexity of a binary sequence sn = s0 . . . sn−1 of n independent
and uniformly distributed binary random variables is

E[Λ(sn)] =
n

2
+

4 + ε(n)
18

+ 2−n

(
n

3
+

2
9

)
,

where ε(n) = n mod 2.
If s is an infinite binary sequence of period 2n which is obtained by repeating a sequence

s0 . . . s2n−1 of 2n independent and uniformly distributed binary random variables, its expected
linear complexity is

E[Λ(s)] = 2n − 1 + 2−2n
.

Further results on the linear complexity and on the linear complexity profile of random se-
quences can be found in [Rue86].

Anne Canteaut.

References

[Mas69] J.L. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on
Information Theory, vol. 15, pp. 122–127, 1969.

[Rue86] R.A. Rueppel. Analysis and design of stream ciphers. Springer-Verlag, 1986.

9



Berlekamp-Massey algorithm

The Berlekamp-Massey algorithm is an algorithm for determining the linear complexity of
a finite sequence and the feedback polynomial of a linear feedback shift register (LFSR) of
minimal length which generates this sequence. This algorithm is due to Massey [Mas69], who
showed that the iterative algorithm proposed in 1967 by Berlekamp [Ber67] for decoding BCH
codes can be used for finding the shortest LFSR that generates a given sequence.

For a given sequence sn of length n, the Berlekamp-Massey performs n iterations. The
t-th iteration determines an LFSR of minimal length which generates the first t digits of sn.
The algorithm can be described as follows.

Input. sn = s0s1 . . . sn−1, a sequence of n elements of Fq.

Output. Λ, the linear complexity of sn and P , the feedback polynomial of an LFSR
of length Λ which generates sn.

Initialization.
P (X)← 1, P ′(X)← 1, Λ← 0, m← −1, d′ ← 1.

For t from 0 to n− 1 do

d← st +
∑Λ

i=1 pist−i.

If d 6= 0 then

T (X)← P (X).
P (X)← P (X)− d(d′)−1P ′(X)Xt−m.
if 2Λ ≤ t then

Λ← t + 1− Λ.
m← t.
P ′(X)← T (X).
d′ ← d.

Return Λ and P .

In the particular case of a binary sequence, the quantity d′ does not need to be stored
since it is always equal to 1. Moreover, the feedback polynomial is simply updated by

P (X)← P (X) + P ′(X)Xt−m .

The number of operations performed for computing the linear complexity of a sequence of
length n is O(n2).

It is worth noticing that the LFSR of minimal length that generates a sequence sn of
length n is unique if and only if n ≥ 2Λ(sn), where Λ(sn) is the linear complexity of sn.

Example:
The following table describes the successive steps of the Berlekamp-Massey algo-
rithm applied to the binary sequence of length 7, s0 . . . s6 = 0111010. The values

10



t st d Λ P (X) m P ′(X)
0 1 −1 1

0 0 0 0 1 −1 1
1 1 1 2 1 + X2 1 1
2 1 1 2 1 + X + X2 1 1
3 1 1 2 1 + X 1 1
4 1 0 2 1 + X 1 1
5 0 1 4 1 + X + X4 5 1 + X

6 0 0 4 1 + X + X4 5 1 + X

of Λ and P obtained at the end of step t correspond to the linear complexity of the
sequence s0 . . . st and to the feedback polynomial of an LFSR of minimal length
that generates it.

The linear complexity Λ(s) of a linear recurring sequence s = (st)t≥0 is equal to the linear
complexity of the finite sequence composed of the first n terms of s for any n ≥ Λ(s). Thus,
the Berlekamp-Massey algorithm determines the shortest LFSR that generates an infinite
linear recurring sequence s from the knowledge of any 2Λ(s) consecutive digits of s.

It can be proved that the Berlekamp-Massey algorithm and the Euclidean algorithm are
essentially the same.

Anne Canteaut.

References

[Ber67] E.R. Berlekamp. Algebraic coding theory. McGraw-Hill, 1967.

[Mas69] J.L. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on
Information Theory, vol. 15, pp. 122–127, 1969.

[Dor87] J.-L. Dornstetter. On the equivalence between Berlekamp’s and Euclid’s algorithms.
IEEE Transactions on Information Theory, vol. 33, pp. 428–431, 1987.

11



Combination generator

A combination generator is a running-key generator for stream cipher applications. It is
composed of several linear feedback shift registers (LFSRs) whose outputs are combined
by a Boolean function to produce the keystream. Then, the output sequence (st)t≥0 of a
combination generator composed of n LFSRs is given by

st = f(u1
t , u

2
t , . . . , u

n
t ), ∀t ≥ 0 ,

where (ui
t)t≥0 denotes the sequence generated by the i-th constituent LFSR and f is a function

of n variables. In the case of a combination generator composed of n LFSR over Fq, the
combining function is a function from Fn

q into Fq.

-

??

?

-

? ??

-

??

-

-

-

e
e

e
e

e
e

ee
%

%
%

%
%

%
%%

-

...

u1
t

u2
t

un
t

f st

The combining function f should obviously be balanced, i.e., its output should be uni-
formly distributed. The constituent LFSRs should be chosen to have primitive feedback
polynomials for ensuring good statistical properties of their output sequences (see Linear
Feedback Shift Register for more details).

The characteristics of the constituent LFSRs and the combining function are usually
publicly known. The secret parameters are the initial states of the LFSRs, which are derived
from the secret key of the cipher by a key-loading algorithm. Therefore, most attacks on
combination generators consist in recovering the initial states of all LFSRs from the knowledge
of some digits of the sequence produced by the generator (in a known plaintext attack), or
of some digits of the ciphertext sequence (in a ciphertext only attack). When the feedback
polynomials of the LFSR and the combining function are not known, the reconstruction
attack presented in [CF00] enables to recover the complete description of the generator from
the knowledge of a large segment of the ciphertext sequence.

Statistical properties of the output sequence. The sequence produced by a combi-
nation generator is a linear recurring sequence. Its period and its linear complexity can be
derived from those of the sequences generated by the constituent LFSRs and from the alge-
braic normal form of the combining function (see Boolean function). Indeed, if we consider
two linear recurring sequences u and v over Fq with linear complexities Λ(u) and Λ(v), we
have the following properties:

• the linear complexity of the sequence u + v = (ut + vt)t≥0 satisfies

Λ(u + v) ≤ Λ(u) + Λ(v) ,

12



with equality if and only if the minimal polynomials of u and v are relatively prime.
Moreover, in case of equality, the period of u + v is the least common multiple of the
periods of u and v.

• the linear complexity of the sequence uv = (utvt)t≥0 satisfies

Λ(uv) ≤ Λ(u)Λ(v) ,

where equality holds if the minimal polynomials of u and v are primitive and if Λ(u) and
Λ(v) are distinct and greater than 2. Other general sufficient conditions for Λ(uv) =
Λ(u)Λ(v) can be found in [Her85], [RS87], [GN95].

Thus, the keystream sequence produced by a combination generator composed of n binary
LFSRs with primitive feedback polynomials which are combined by a Boolean function f
satisfies the following property proven in [RS87]. If all LFSR lengths L1, . . . , Ln are distinct
and greater than 2 (and if all LFSR initializations differ from the all-zero state), the linear
complexity of the output sequence s is equal to

f(L1, L2, . . . , Ln)

where the algebraic normal form of f is evaluated over integers. For instance, if four LFSRs
of lengths L1, . . . , L4 satisfying the previous conditions are combined by the Boolean function
x1x2 +x2x3 +x4, the linear complexity of the resulting sequence is L1L2 +L2L3 +L4. Similar
results concerning the combination of LFSRs over Fq can be found in [RS87] and [Bry95].
A high linear complexity is desirable property for a keystream sequence since it ensures
that Berlekamp-Massey algorithm becomes computationally infeasible. Thus, the combining
function f should have a high algebraic degree (the algebraic degree of a Boolean function is
the highest number of terms occurring in a monomial of its algebraic normal form).

Known attacks and related design criteria. Combination generators are vulnerable
to the correlation attack and its variants called fast correlation attacks. In order to make
these attacks infeasible, the LFSR feedback polynomials should not be sparse. The combining
function should have a high correlation-immunity order, also called resiliency order when the
involved function is balanced (see correlation-immune Boolean function). But, there exists a
tradeoff between the correlation-immunity order and the algebraic degree of a Boolean func-
tion. Most notably, the correlation-immunity of a balanced Boolean function of n variables
cannot exceed n − 1 − deg(f), when the algebraic degree of f , deg(f), is greater than 1.
Moreover, the complexity of correlation attacks and of fast correlation attacks also increases
with the nonlinearity of the combining function (see correlation attack). The tradeoffs be-
tween high algebraic degree, high correlation-immunity order and high nonlinearity can be
circumvented by replacing the combining function by a finite state automaton with memory.
Examples of such combination generators with memory are the summation generator and the
stream cipher E0 used in Bluetooth.

Anne Canteaut.

13



References

[Bry85] L. Brynielsson. On the linear complexity of combined shift register sequences.
In : Advances in Cryptology - EUROCRYPT ’85, Lecture Notes in Computer Science,
number 219, pages 156–160. Springer-Verlag, 1986.

[CF00] A. Canteaut and E. Filiol. Ciphertext only reconstruction of stream ciphers based
on combination generators. In : Fast Software Encryption 2000, Lecture Notes in Com-
puter Science, number 1978, pages 165–180. Springer-Verlag, 2001.

[Her85] T. Herlestam. On functions of linear shift register sequences. In : Advances in
Cryptology - EUROCRYPT ’85, Lecture Notes in Computer Science, number 219, pages
119–129. Springer-Verlag, 1986.

[GN95] R. Göttfert and H. Niederreiter. On the minimal polynomial of the product of linear
recurring sequences. Finite Fields and Their Applications, 1(2):204–218, 1995.

[RS87] R.A. Rueppel and O.J. Staffelbach. Products of linear recurring sequences with
maximum complexity. IEEE Transactions on Information Theory, 33(1):124–131, 1987.

14



Filter generator

A filter generator is a running-key generator for stream cipher applications. It consists of a
single linear feedback shift register (LFSR) which is filtered by a nonlinear function. More
precisely, the output sequence of a filter generator corresponds to the output of a nonlinear
function whose inputs are taken from some stages of the LFSR. If (ut)t≥0 denotes the sequence
generated by the LFSR, the output sequence (st)t≥0 of the filter generator is given by

st = f(ut+γ1 , ut+γ2 , . . . , ut+γn), ∀t ≥ 0

where f is a function of n variables, n is less than or equal to the LFSR length and (γi)1≤i≤n

is a decreasing sequence of nonnegative integers called the tapping sequence.

f

st (running-key)

utut+γ1 ut+γ2 ut+γ3 . . . ut+γn-

6 6 6 6 6 6

-

©©©©©©©©©©©©©

HHHHHHHHHHHHH

6

In order to obtain a keystream sequence having good statistical properties, the filtering
function f should be balanced (i.e., its output should be uniformly distributed), and the
feedback polynomial of the LFSR should be chosen to be a primitive polynomial (see linear
feedback shift register for more details).

In a filter generator, the LFSR feedback polynomial, the filtering function and the tapping
sequence are usually publicly known. The secret parameter is the initial state of the LFSR
which is derived from the secret key of the cipher by a key-loading algorithm. Therefore, most
attacks on filter generators consist in recovering the LFSR initial state from the knowledge
of some digits of the sequence produced by the generator (in a known plaintext attack), or
of some digits of the ciphertext sequence (in a ciphertext only attack). The attack presented
in [Sie85] enables to construct an equivalent keystream generator from the knowledge of a
large segment of the ciphertext sequence when the LFSR feedback polynomial is the only
known parameter (i.e., when the filtering function, the tapping sequence and the initial state
are kept secret).

Any filter generator is equivalent to a particular combination generator, in the sense that
both generators produce the same output sequence. An equivalent combination generator
consists of n copies of the LFSR used in the filter generator with shifted initial states; the
combining function corresponds to the filtering function.

15



Statistical properties of the output sequence. The output sequence s of a filter gener-
ator is a linear recurring sequence. Its linear complexity, Λ(s), is related to the LFSR length
and to the algebraic degree of the filtering function f (the algebraic degree of a Boolean func-
tion is the highest number of terms occurring in a monomial of its algebraic normal form).
For a binary LFSR with a primitive feedback polynomial, we have

Λ(s) ≤
d∑

i=0

(
L

i

)

where L denotes the LFSR length and d denotes the algebraic degree of f [Key76, Mas01].
The period of s divides 2L − 1. Moreover, if L is a large prime, Λ(s) is at least

(
L
d

)
for most

filtering functions with algebraic degree d (see [Rue86]).
Thus, to achieve a high linear complexity, the LFSR length L and the algebraic degree of

the filtering function should be large enough. More precisely, the keystream length available
to an attacker should always be much smaller than

(
L

deg(f)

)
.

Known attacks and related design criteria Filter generators are vulnerable to fast
correlation attacks because their output sequence is correlated to some linear function of the
stages of the constituent LFSR (see fast correlation attack). Efficient fast correlation attacks
on filter generators are described in [JJ02] and [CF02]. In order to make the fast correlation
attacks computationally infeasible, the filtering function should have a high nonlinearity.
Moreover, it should have many nonzero Walsh coefficients. Another design criterion is that
the LFSR feedback polynomial should not be sparse.

Another attack on any filter generator is the generalized inversion attack. It highly de-
pends on the memory size of the generator, which corresponds to the largest spacing between
two taps, i.e., M = γ1 − γn. To make this attack infeasible, the tapping sequence should
be such that the memory size is large and preferably close to its maximum possible value,
L − 1, where L is the LFSR length. Moreover, when the greatest common divisor of all
spacing between the taps, gcd(γi − γi+1), is large, the effective memory size can be reduced
by a decimation technique (see inversion attack). Then, the greatest common divisor of all
(γi − γi+1) should be equal to 1.

The choice of the tapping sequence also conditions the resistance to the so-called condi-
tional correlation attacks [And94, Gol96, LCPP96]. The basic idea of these particular correla-
tion attack is that some information on the LFSR sequence may leak when some patterns ap-
pear in the keystream sequence. Actually, the keystream bits st and st+τ , with τ ≥ 1, respec-
tively depend on the LFSR-output bits ut+γ1 , . . . , ut+γn and ut+γ1+τ , . . . , ut+γn+τ . Therefore,
the pair (st, st+τ ) only depends on M−I(τ) bits of the LFSR sequence, where M is the mem-
ory size and I(τ) is the size of the intersection between {γi, 1 ≤ i ≤ n} and {γi+τ, 1 ≤ i ≤ n},
i.e., the number of pairs (i, j) with i < j such that γi − γj = τ . It is then clear that a given
observation of (st, st+τ ) may provide some information on the (M − I(τ)) involved bits of the
LFSR sequence when I(τ) is large. Thus, I(τ) should be as small as possible for all values
of τ ≥ 1. It can be proved that the lowest possible value of maxτ≥1 I(τ) is 1 and it is achieved
when the tapping sequence is a full positive difference set, i.e., when all differences γi − γj ,
i < j are distinct. Such a tapping sequence of n integers only exists if the LFSR length
exceeds n(n− 1)/2 (see [Gol96] for details).

16



Advanced algebraic techniques, like Gröbner bases, also provide powerful known plaintext
attacks on filter generator, called algebraic attacks [CM03]. Any keystream bit can be ex-
pressed as a function of the L initial bits of the LFSR. Thus, the knowledge of any N keystream
bits lead to an algebraic system of N equations of L variables. The degree of these equa-
tions correspond to the algebraic degree of the filtering function. But, efficient Gröbner bases
techniques enable to substantially lower the degree of the equations by multiplying them by
well-chosen multivariate polynomials. Then, it may be possible to recover the LFSR initial
state by solving the algebraic system even if the filtering function has a high degree.

Anne Canteaut.

References

[And94] R.J. Anderson. Searching for the optimum correlation attack. In Fast Software
Encryption 1994, Lecture Notes in Computer Science number 1008, pages 137–143.
Springer-Verlag, 1995.

[CM03] N.T. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear
feedback. In Advances in Cryptology - EUROCRYPT 2003, Lecture Notes in Computer
Science number 2656, pages 345–359. Springer-Verlag, 2003.

[Gol96] J.Dj. Golić. On the security of nonlinear filter generators. In Fast Software
Encryption 1996, Lecture Notes in Computer Science number 1039, pages 173–188.
Springer-Verlag, 1996.

[Key76] E.L. Key. An analysis of the structure and complexity of nonlinear binary sequence
generators. IEEE Transactions on Information Theory, vol. 22, pp. 732–736, 1976.

[LCPP96] S. Lee, S. Chee, S. Park, and S. Park. Conditional correlation attack on nonlin-
ear filter generators. In Advances in Cryptology - ASIACRYPT’96, Lecture Notes in
Computer Science number 1163, pages 360–367. Springer-Verlag, 1996.

[Mas01] J.L. Massey. The ubiquity of Reed-Muller Codes. In Applied Algebra, Algebraic Al-
gorithms and Error-Correcting Codes - AAECC-14, Lecture Notes in Computer Science
number 2227, pages 1–12. Springer-Verlag, 2001.

[Rue86] R.A. Rueppel. Analysis and design of stream ciphers. Springer-Verlag, 1986.

17



Correlation attack

The correlation attack was proposed by Siegenthaler in 1985. It applies to any running-key
generator composed of several linear feedback shift registers (LFSRs). The correlation attack
is a divide-and-conquer technique: it aims at recovering the initial state of each constituent
LFSRs separately from the knowledge of some keystream bits (in a known plaintext attack).
A similar ciphertext only attack can also be mounted when there exists redundancy in the
plaintext (see [Sie85]).

The original correlation attack presented in [Sie85] applies to some combination generators
composed of n LFSRs of lengths L1, . . . , Ln. It enables to recover the complete initialization
of the generator with only

∑n
i=1

(
2Li − 1

)
trials instead of the

∏n
i=1

(
2Li − 1

)
tests required

by an exhaustive search. Some efficient variants of the original correlation attack can also
be applied to other keystream generators based on LFSRs, like filter generators (see fast
correlation attack for details).

Original correlation attack on combination generators. The correlation attack ex-
ploits the existence of a statistical dependence between the keystream and the output of a
single constituent LFSR. In a binary combination generator, such a dependence exists if and
only if the output of the combining function f is correlated to one of its inputs, i.e., if

pi = Pr[f(x1, . . . , xn) 6= xi] 6= 1
2

for some i, 1 ≤ i ≤ n. It equivalently means that the keystream sequence s = (st)t≥0 is
correlated to the sequence u = (ut)t≥0 generated by the i-th constituent LFSR. Namely, the
correlation between both sequences calculated on N bits

N−1∑

t=0

(−1)st+ut mod 2

(where the sum is defined over real numbers) is a random variable which is binomially dis-
tributed with mean value N(1−2pi) and with variance 4Npi(1−pi) (when N is large enough).
It can be compared to the correlation between the keystream s and a sequence r = (rt)t≥0

independent of s (i.e., such that Pr[st 6= rt] = 1/2). For such a sequence r, the correlation
between s and r is binomially distributed with mean value 0 and with variance N . Thus, an
exhaustive search on the initialization of the i-th LFSR can be performed. The value of the
correlation enables to distinguish the correct initial state from a wrong one since the sequence
generated by a wrong initial state is assumed to be statistically independent of the keystream.
Table 2 gives a complete description of the attack.

In practice, an initial state is accepted if the magnitude of the correlation exceeds a
certain decision threshold which is deduced from the expected false alarm probability Pf and
the non-detection probability Pn (see [Sie85]). The required keystream length N depends
on the probability pi and on the length Li of the involved LFSR: for Pn = 1.3 · 10−3 and
Pf = 2−Li , the attack requires

N '
(√

ln(2Li−1) + 3
√

2pi(1− pi)√
2(pi − 0.5)

)2

running-key bits. Clearly, the attack performs 2Li−1 trials in average where Li is the length
of the target LFSR. The correlation attack only applies if the probability pi differs from 1/2.

18



Input. s0s1 . . . sN−1, N keystream bits,
pi = Pr[f(x1, . . . , xn) 6= xi] 6= 1/2.

Output. u0 . . . uLi−1, the initial state of the i-th constituent LFSR.

For each possible initial state u0 . . . uLi−1

Generate the first N bits of the sequence u produced by the i-th LFSR from
the chosen initial state.

Compute the correlation between s0s1 . . . sN−1 and u0u1 . . . uN−1:

α←
N−1∑

i=0

(−1)st+ut mod 2

If α is close to N(1− 2pi)

return u0u1 . . . uLi−1

Table 2: Correlation attack

Correlation attack on other keystream generators. More generally, the correlation
attack applies to any keystream generator as soon as the keystream is correlated to the output
sequence u of a finite state machine whose initial state depends on some key bits. These key
bits can be determined by recovering the initialization of u as follows: an exhaustive search
on the initialization of u is performed, and the correct one is detected by computing the
correlation between the corresponding sequence u and the keystream.

Correlation attack on combination generators involving several LFSRs. For com-
bination generators, the correlation attack can be prevented by using a combining function
f whose output is not correlated to any of its inputs. Such functions are called 1st-order
correlation-immune (or 1-resilient in the case of balanced functions). In this case, the running-
key is statistically independent of the output of each constituent LFSR; any correlation attack
should then consider several LFSRs simultaneously. More generally, a correlation attack on a
set of k constituent LFSRs, namely LFSR i1, . . . , LFSR ik, exploits the existence of a corre-
lation between the running-key s and the output u of a smaller combination generator, which
consists of the k involved LFSRs combined by a Boolean function g of k variables (see Fig. 4).
Since Pr[st 6= ut] = Pr[f(x1, . . . , xn) 6= g(xi1 , . . . , xik)] = pg, this attack only succeeds when
pg 6= 1/2. The smallest number of LFSRs that can be attacked simultaneously is equal to
m+1 where m is the highest correlation-immunity order of the combining function. Moreover,
the Boolean function g of (m + 1) variables which provides the best approximation of f is
the affine function

∑m+1
j=1 xij + ε [CT00, Zha00]. Thus, the most efficient correlation attacks

that can be mounted relies on the correlation between the keystream s and the sequence u
obtained by adding the outputs of LFSRs i1, i2, . . . , im+1. This correlation corresponds to

Pr[st 6= ut] =
1
2
− 1

2n+1
|̂f(t)| ,

19



LFSR 1

LFSR 2

LFSR n

LFSR ik

LFSR i1

f

g

A
AAU-

¢
¢¢̧

correlation
- -

u

-

HHj

¡¡µ

...

...

s

Figure 4: Correlation attack involving several constituent LFSRs of a combination generator

where n is the number of variables of the combining function, t is the n-bit vector whose i-th
component equals 1 if and only if i ∈ {i1, i2, . . . , im+1} and f̂ denotes the Walsh transform
of f (see Boolean functions). In order to increase the complexity of the correlation attack, the
combining function used in a combination generator should have a high correlation-immunity
order and a high nonlinearity (more precisely, its Walsh coefficients f̂(t) should have a low
magnitude for all vectors t with a small Hamming weight). For an m-resilient combining
function, the complexity of the correlation attack is 2Li1

+Li2
+...+Lim+1 . It can be significantly

reduced by using some improved algorithms, called fast correlation attacks.

Anne Canteaut.

References

[CT00] A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In Advances in Cryptology - EUROCRYPT 2000, Lecture
Notes in Computer Science number 1807, pages 573–588. Springer-Verlag, 2000.

[Sie84] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for crypto-
graphic applications. IEEE Trans. Inform. Theory, IT-30(5):776–780, 1984.

[Sie85] T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE
Trans. Computers, C-34(1):81–84, 1985.

[Zha00] M. Zhang. Maximum correlation analysis of nonlinear combining functions in
stream ciphers. Journal of Cryptology, 13(3):301–313, 2000.

20



Fast correlation attack

Fast correlation attacks were first proposed by Meier and Staffelbach in 1988. They apply
to running-key generators based on linear feedback shift registers (LFSRs), exactly in the
same context as the correlation attack, but they are significantly faster. They rely on the
same principle as the correlation attack: they exploit the existence of a correlation between
the keystream and the output of a single LFSR, called the target LFSR, whose initial state
depends on some bits of the secret key. In the original correlation attack, the initial state of the
target LFSR is recovered by an exhaustive search. Fast correlation attacks avoid examining all
possible initializations of the target LFSR by using some efficient error-correcting techniques.
But, they require the knowledge of a longer segment of the keystream (in the context of a
known-plaintext attack). As for the correlation attack, similar algorithms can be used for
mounting a ciphertext only attack when there exists redundancy in the plaintext.

Fast correlation attacks as a decoding problem. The key idea of fast correlation
attacks consists in viewing the correlation attack as a decoding problem. If there exists a
correlation between the keystream s and the output u of the target LFSR, then the running-
key subsequence (st)t<N can be seen as the result of the transmission of (ut)t<N through the
binary symmetric channel with error probability p = Pr[st 6= ut] < 1/2 (if Pr[st 6= ut] > 1/2,
the bitwise complement of s is considered). Moreover, all bits of the LFSR sequence u
depend linearly on the LFSR initial state, u0 . . . uL−1. Therefore, (ut)t<N is a codeword of a
linear code of length N and dimension L defined by the LFSR feedback polynomial. Thus,
recovering the LFSR initial state consists in decoding the running-key subsequence relatively
to the LFSR code.

¾ -
- -

-

-¡
¡

¡¡µ@
@

@@R

-target LFSR

L

binary symmetric channel

P (X)

0

1 1

0
1− p

1− p

p

p

u running-key
s

With this formulation, the original correlation attack proposed by Siegenthaler consists in
applying a maximum-likelihood decoding algorithm to the linear code defined by the LFSR
feedback polynomial. It has complexity 2L, where L is the length of the target LFSR. The
complexity can be reduced by using faster decoding algorithms. But, they usually require a
larger number of running-key bits.

Decoding techniques for fast correlation attacks. Several algorithms can be used for
decoding the LFSR code, based on the following ideas:

• find many sparse linear recurrence relations satisfied by the LFSR sequence (these re-
lations correspond to sparse multiples of the feedback polynomial), and use them in an
iterative decoding procedure dedicated to low-density parity-check codes [MS89, CT00,
MFI00]. The complexity of this attack may significantly decrease when the feedback

21



polynomial of the target LFSR is sparse. Thus, the use of sparse LFSR feedback poly-
nomials should be avoided in LFSR-based running-key generators;

• construct a convolutional code [JJ99a] (or a turbo code [JJ99b]) from the LFSR code,
and use an appropriate decoding algorithm for this new code (Viterbi algorithm or
turbo-decoding);

• construct a new linear block code with a lower dimension from the LFSR code and
apply to this smaller linear code a maximum-likelihood decoding algorithm [CJS00], or
a polynomial reconstruction technique [JJ00].

A survey on all these techniques and their computational complexities can be found in [Jön02].
In practice, the most efficient fast correlation attacks enable to recover the initial state of a
target LFSR of length 60 for an error-probability p = 0.4 in a few hours on a PC from the
knowledge of 106 running-key bits.

Fast correlation attacks on combination generators. In the particular case of a com-
bination generator, the target sequence u is the sequence obtained by adding the outputs
of (m + 1) constituent LFSRs, where m is the correlation-immunity order of the combining
function (see correlation attack). Thus, this sequence u corresponds to the output of a unique
LFSR whose feedback polynomial is the greatest common divisor of the feedback polynomials
of the (m + 1) involved LFSRs. Since the feedback polynomials are usually chosen to be
primitive, the length of the target LFSR is the sum of the lengths of the (m+1) LFSRs. The
keystream corresponds to the received word as output of the binary symmetric channel with
error-probability

p = Pr[st 6= ut] =
1
2
− 1

2n+1
|̂f(t)| ,

where n is the number of variables of the combining function, t is the n-bit vector whose i-th
component equals 1 if and only if i ∈ {i1, i2, . . . , im+1} and f̂ denotes the Walsh transform
of f (see correlation attack and Boolean functions).

Fast correlation attacks on filter generators. In the case of a filter generator, the target
LFSR has the same feedback polynomial as the constituent LFSR, but a different initial state.
Actually, if the keystream is given by

st = f(vt+γ1 , vt+γ2 , . . . , vt+γn) ,

where v is the sequence generated by the constituent LFSR. The optimal target sequence u
then corresponds to

ut =
n∑

i=1

αivt+γi

where α = (α1, . . . , αn) is the vector which maximizes the magnitude of the Walsh transform
of the filtering function. Thus, the keystream corresponds to the received word as output of
the binary symmetric channel with error-probability

p = Pr[st 6= ut] =
NL(f)

2n
,

22



where NL(f) is the nonlinearity of the filtering function. The fast correlation attacks on filter
generators can be improved by using several target LFSRs together [JJ02, CF02].

Other particular fast correlation attacks apply to filter generators, like conditional block-
oriented correlation attacks [And94, Gol96, LCPP96] (see filter generator).

Anne Canteaut.

References

[And94] R.J. Anderson. Searching for the optimum correlation attack. In Fast Software
Encryption 1994, Lecture Notes in Computer Science number 1008, pages 137–143.
Springer-Verlag, 1995.

[CF02] A. Canteaut and E. Filiol. On the Influence of the Filtering Function on the Perfor-
mance of Fast Correlation Attacks on Filter Generators. In Symposium on information
theory in the Benelux, May 2002.

[CJS00] V. Chepyshov, T. Johansson, and B. Smeets. A simple algorithm for fast corre-
lation attacks on stream ciphers. In Fast Software Encryption 2000, Lecture Notes in
Computer Science number 1978, pages 181–195. Springer-Verlag, 2000.

[CT00] A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In Advances in Cryptology - EUROCRYPT 2000, Lecture
Notes in Computer Science number 1807, pages 573–588. Springer-Verlag, 2000.

[Gol96] J.Dj. Golić. On the security of nonlinear filter generators. In Fast Software
Encryption 1996, Lecture Notes in Computer Science number 1039, pages 173–188.
Springer-Verlag, 1996.

[JJ99a] T. Johansson and F. Jönsson. Improved fast correlation attack on stream ciphers
via convolutional codes. In Advances in Cryptology - EUROCRYPT’99, Lecture Notes
in Computer Science number 1592, pages 347–362. Springer-Verlag, 1999.

[JJ99b] T. Johansson and F. Jönsson. Fast correlation attacks based on turbo code tech-
niques. In Advances in Cryptology - CRYPTO’99, Lecture Notes in Computer Science
number 1666, pages 181–197. Springer-Verlag, 1999.

[JJ00] T. Johansson and F. Jönsson. Fast correlation attacks through reconstruction of lin-
ear polynomials. In Advances in Cryptology - CRYPTO’00, Lecture Notes in Computer
Science number 1880, pages 300–315. Springer-Verlag, 2000.

[JJ02] F. Jönsson and T. Johansson. A fast correlation attack on LILI-128. Information
Processing Letters, 81(3):127–132, 2002.

[Jn02] F. Jönsson. Some results on fast correlation attacks. PhD thesis, University of Lund,
Sweden, 2002.

[LCPP96] S. Lee, S. Chee, S. Park, and S. Park. Conditional correlation attack on nonlin-
ear filter generators. In Advances in Cryptology - ASIACRYPT’96, Lecture Notes in
Computer Science number 1163, pages 360–367. Springer-Verlag, 1996.

23



[MFI00] M.J. Mihaljevic, M.P.C. Fossorier, and H. Imai. A low-complexity and high per-
formance algorithm for the fast correlation attack. In Fast Software Encryption 2000,
Lecture Notes in Computer Science number 1978, pages 196–212. Springer-Verlag, 2000.

[MS88] W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. In
Advances in Cryptology - EUROCRYPT’88, Lecture Notes in Computer Science number
330, pages 301–314. Springer-Verlag, 1988.

[MS89] W. Meier and O. Staffelbach. Fast correlation attack on certain stream ciphers. J.
Cryptology, pages 159–176, 1989.

24



Inversion attack

The inversion attack is a known plaintext attack on some particular filter generators. It was
proposed by Golić in 1996 [Gol96]. A generalization to any filter generator, called generalized
inversion attack, was presented by Golić, Clark and Dawson in 2000. Both inversion attack
and generalized inversion attack aim at recovering the initial state of the linear feedback shift
register (LFSR) from a segment of the running-key when the LFSR feedback polynomial, the
tapping sequence and the filtering function are known.

Original inversion attack. The original inversion attack only applies when the filtering
function f is linear in its first input variable (forward attack) or in its last input variable
(backward attack), i.e., when

f(x1, x2, . . . , xn) = x1 + g(x2, . . . , xn)

or
f(x1, x2, . . . , xn) = g(x1, . . . , xn−1) + xn

where g is a Boolean function of n− 1 variables. In the first case, the keystream s is defined
by

st = f(ut+γ1 , ut+γ2 , . . . , ut+γn)
= ut+γ1 + g(ut+γ2 , . . . , ut+γn) ,

where (ut)t≥0 is the sequence generated by the LFSR and (γi)1≤i≤n is a decreasing sequence
of non-negative integers. The attack relies on the fact that the bit ut+γ1 can be deduced
from the (γ1 − γn) previous terms, (ut+γ1+1, . . . , ut+γn) if the running-key bit st is known.
The relevant parameter of the attack is then the memory size of the filter generator, defined
by M = γ1 − γn. Indeed, the complete initialization of the LFSR can be recovered by an
exhaustive search on only M bits as described in Table 3.

The backward attack, which applies when the filter function is linear in its last variable,
is similar. The complexity of both forward and backward attacks is O(L2M ). It follows that
the memory size of a filter generator should be large and preferably close to its maximum
possible value L− 1.

Moreover, the complexity of the attack dramatically decreases when the greatest common
divisor of all spacings between the taps, d = gcd(γi − γi+1), is large. Indeed, the inversion
attack can be applied to the d-decimation of the LFSR sequence, i.e., to the sequence obtained
by sampling the LFSR sequence at intervals of d clock cycles (see [Gol96]). Therefore, the
effective memory size of the filter generator corresponds to

M ′ =
γ1 − γn

gcd(γi − γi+1)
.

The related design criterion is then that the greatest common divisor of all spacings between
the taps should be equal to 1.

Generalized inversion attack. A similar attack can be mounted even if the filtering
function is not linear in its first or last variable. In the general case, the keystream is given
by

st = f(ut+γ1 , ut+γ2 , . . . , ut+γn) .

25



Input. s0s1 . . . sN−1, N keystream bits.

Output. uγn . . . uL+γn−1, L consecutive bits of the LFSR sequence, where L is the
LFSR length.

For each choice of the M-bit vector uγn . . . uγ1−1

Compute the next (L−M) bits of the LFSR sequence by

ut+γ1 ← st + g(ut+γ2 , . . . , ut+γn), 0 ≤ t ≤ L−M .

Compute (N−L) additional bits of the LFSR sequence with the LFSR recur-
rence relation, and the corresponding running-key bits, ŝt, for L −M ≤
t < N −M .

If the N − L bits ŝt are equal to the observed keystream sequence, then

return (uγn . . . uL+γn−1).

Table 3: Inversion attack

Exactly as in the original inversion attack, the basic step of the attack consists in deducing
the bit ut+γ1 from the knowledge of the keystream bit st and of the M previous terms of the
LFSR sequence, (ut+γ1+1, . . . , ut+γn). For fixed values of st and of (ut+γ1+1, . . . , ut+γn), the
unknown bit ut+γ1 may take 0, 1 or 2 possible values. Then, an exhaustive search on the
M bits uγn . . . uγ1−1 of the LFSR sequence, can still be performed. For a given value of the
M -bit vector uγn . . . uγ1−1, a binary tree of depth L −M representing all the solutions for
the next (L−M) bits of u is formed. Each node at level t corresponds to a guessed value of
(ut+γn . . . ut+γ1−1). Then, the number of edges out of this node is 0, 1 or 2 according to the
number of solutions x of the equation st = f(x, ut+γ2 , . . . , ut+γn). If a tree of depth L −M
can be constructed from a given M -bit root, some additional bits of the LFSR sequence are
computed and their consistency with the observed keystream is checked. It is shown that the
typical number of surviving nodes at level L−M is linear in L. Then, the typical complexity
of the attack is O(L2M ). Exactly as in the inversion attack, the parameter involved in the
attack is the effective memory size, i.e.,

M ′ =
γ1 − γn

gcd(γi − γi+1)
.

Another technique based on a trellis representation and on the Viterbi algorithm is described
in [LBGZ01]. Its efficiency is comparable to the generalized inversion attack.

Anne Canteaut.

References

[Gol96] J. Dj. Golić. On the security of nonlinear filter generators. In Fast Software
Encryption 1996, Lecture Notes in Computer Science number 1039, pages 173–188.
Springer-Verlag, 1996.

26



[GCD00] J. Dj. Golić, A. Clark, and E. Dawson. Generalized inversion attack on nonlinear
filter generators. IEEE Transactions on Computers, 49(10):1100–1108, 2000.

[LBGZ01] S. Leveiller, J. Boutros, P. Guillot, and G. Zmor. Cryptanalysis of nonlinear
filter generators with {0, 1}-metric Viterbi decoding. In Cryptography and Coding - 8th
IMA International Conference, Lecture Notes in Computer Science number 2260, pages
402–414. Springer-Verlag, 2001.

27



A5/1

A5/1 is the symmetric cipher used for encrypting over-the-air transmissions in the GSM
standard. A5/1 is used in most European countries, whereas a weaker cipher, called A5/2,
is used in other countries (a description of A5/2 and an attack can be found in [PF00]). The
description of A5/1 was first kept secret but its design was reversed engineered in 1999 by
Briceno, Golberg and Wagner. A5/1 is a synchronous stream cipher based on linear feedback
shift registers (LFSRs). It has a 64-bit secret key.

A GSM conversation is transmitted as a sequence of 228-bit frames (114 bits in each
direction) every 4.6 millisecond. Each frame is xored with a 228-bit sequence produced by
the A5/1 running-key generator. The initial state of this generator depends on the 64-bit
secret key, K, which is fixed during the conversation, and on a 22-bit public frame number,
F .

The A5/1 running-key generator consists of 3 LFSRs of lengths 19, 22 and 23. Their
characteristic polynomials are X19+X5+X2+X+1, X22+X+1 and X23+X15+X2+X+1.
For each frame transmission, the 3 LFSRs are first initialized to zero. Then, at time t =
1, . . . , 64, the LFSRs are clocked, and the key bit Kt is xored to the feedback bit of each
LFSR. For t = 65, . . . , 86, the LFSRs are clocked in the same fashion, but the (t− 64)-th bit
of the frame number is now xored to the feedback bits.

e+e+e+
e+

e+
e+

e+e+e+
e+

-

-

-

¾??? ¾¾6
-

¾?6
-

¾?¾??¾6
-

-
½

½
½

½
½½>

C
C
CCW

F22 . . . F1K64 . . .K1

Figure 5: Initialization of the A5/1 running-key generator

After these 86 cycles, the generator runs as follows. Each LFSR has a clocking tap:
tap 8 for the first LFSR, tap 10 for the second and the third ones (where the feedback tap
corresponds to tap 0). At each unit of time, the majority value b of the 3 clocking bits is
computed. A LFSR is clocked if and only its clocking bit is equal to b. For instance, if the
3 clocking bits are equal to (1, 0, 0), the majority value is 0. The second and third LFSRs are
clocked, but not the first one. The output of the generator is then given by the xor of the
outputs of the 3 LFSRs. After the 86 initialization cycles, 328 bits are generated with the
previously described irregular clocking. The first 100 ones are discarded and the following
228 bits form the running-key.

Several time-memory trade-off attacks have been proposed on A5/1 [BD00, BSW01]. They
require the knowledge of a few seconds of conversation plaintext and run very fast. But, they
need a huge precomputation time and memory. Another attack due to Ekdahl and Johansson
[EJ03] exploits some weaknesses of the key initialization procedure. It requires a few minutes
using 2-5 minutes of conversation plaintext without any notable precomputation and storage
capacity.

28



e+e+e+

e+

e+e+e+

l+

¾??? ¾¾

¾?

¾?¾??¾

-

-

-

C
C
C
CCW

-

¤
¤
¤
¤¤º§

¨

¦

¥

b

©©©¼

6

-running-key

?

Figure 6: A5/1 running-key generator

Anne Canteaut.

References

[BD00] E. Biham and O. Dunkelman. Cryptanalysis of the A5/1 GSM stream cipher. In
Indocrypt 2000, Lecture Notes in Computer Science number 1977, pages 43-51. Springer-
Verlag, 2000.

[BSW00] A. Biryukov, A. Shamir, and D. Wagner. Real time attack of A5/1 on a PC. In
Fast Software Encryption 2000, Lecture Notes in Computer Science number 1978, pages
1–18. Springer-Verlag, 2000.

[EJ03] P. Ekdahl and T. Johansson. Another attack on A5/1. IEEE Transactions on
Information Theory, 49(1):284-289, 2003.

[PF00] S. Petrović and A. Fúster-Sabater. Cryptanalysis of the A5/2 algorithm. Cryptology
ePrint Archive, Report 2000/052, 2000. Available on http://eprint.iacr.org/.

29



Linear syndrome attack

The linear syndrome attack is an attack on LFSR-based keystream generators which was
presented by Zeng and Huang in 1988 [ZH88]. It is a weak version of the fast correlation
attack which was independently proposed by Meier and Staffelbach [MS88].

Anne Canteaut.

References

[MS88] W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. In
Advances in Cryptology - EUROCRYPT’88, Lecture Notes in Computer Science number
330, pages 301–314. Springer-Verlag, 1988.

[ZH88] K. Zeng and M. Huang. On the linear syndrome method in cryptanalysis. In
Advances in Cryptology - CRYPTO’88, Lecture Notes in Computer Science number
403, pages 469–478. Springer-Verlag, 1988.

[ZYR90] K. Zeng, C.H. Yang, and T.R.N. Rao. An improved linear syndrome algorithm
in cryptanalysis with applications. In Advances in Cryptology - CRYPTO’90, Lecture
Notes in Computer Science number 537, pages 34–47. Springer-Verlag, 1990.

30



Linear consistency attack

The linear consistency attack is a divide-and conquer technique which provides a known
plaintext attack on stream ciphers. It was introduced by Zeng, Yang and Rao in 1989. It
has been applied to various keystream generators, like the Jenning generator [ZYR89], the
stop-and-go generator of Beth and Piper [ZYR89] and the E0 cipher used in Bluetooth [FL01].

The linear consistency attack applies as soon as it is possible to single out a portion K1

of the secret key and to form a system Ax = b of linear equations, where the matrix A only
depends on K1 and the right-side vector b is determined by the known keystream bits. Then,
an exhaustive search on K1 can be performed. The correct value of K1 can be distinguished
from a wrong one by checking whether the linear system is consistent or not. Once K1 has
been recovered, the solution x of the system may provide some additional bits of the secret
key.

Anne Canteaut.

References

[FL01] S.R. Fluhrer and S. Lucks. Analysis of the E0 encryption system. In Selected Areas
in Cryptography - SAC 2001, Lecture Notes in Computer Science number 2259, pages
38–48. Springer-Verlag, 2001.

[ZYR89] K. Zeng, C.H. Yang, and T.R.N. Rao. On the linear consistency test (LCT) in
cryptanalysis with applications. In Advances in Cryptology - CRYPTO’89, Lecture
Notes in Computer Science number 435, pages 164–174. Springer-Verlag, 1989.

31



Linear cryptanalysis for stream ciphers

A linear cryptanalysis technique for stream ciphers was presented by Golić in 1994. It relies on
the same basic principles as the linear cryptanalysis for block ciphers introduced by Matsui.
The linear cryptanalysis provides a known plaintext attack on various synchronous stream
ciphers, which enables to distinguish the keystream from a truly random sequence. Such a
distinguishing attack can be used for reducing the uncertainty of unknown plaintexts, or for
recovering the unknown structure of the keystream generator. It may also lead to a divide-
and-conquer attack when the structure of the keystream generator depends on a portion of
the secret-key.

The linear cryptanalysis consists in finding some linear functions of the keystream bits
which are not balanced, i.e., which are not uniformly distributed. Such linear correlations
are used for distinguishing the keystream sequence from a random sequence by a classical
statistical test. Efficient techniques for finding biased linear relations between the keystream
bits are presented in [Gol94, CHJ02].

The linear cryptanalysis leads to distinguishing attacks on several types of stream ciphers
[Gol94, CHJ02] and to a reconstruction attack on combination generators [CF00].

Anne Canteaut.

References

[CF00] A. Canteaut and E. Filiol. Ciphertext only reconstruction of stream ciphers based on
combination generators. In Fast Software Encryption 2000, Lecture Notes in Computer
Science, number 1978, pages 165–180. Springer-Verlag, 2001.

[CHJ02] D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of stream ciphers with
linear masking. In Advances in Cryptology - CRYPTO 2002, Lecture Notes in Computer
Science number 2442, pages 515–532. Springer-Verlag, 2002.

[Gol94] J.Dj. Golić. Linear cryptanalysis of stream ciphers. In Fast Software Encryption
1994, Lecture Notes in Computer Science, number 1008, pages 154–169. Springer-
Verlag, 1994.

32


