
Lecture Notes on Cryptographic Boolean Functions

Anne Canteaut

Inria, Paris, France
Anne.Canteaut@inria.fr

https://www.rocq.inria.fr/secret/Anne.Canteaut/

version: March 10, 2016

Contents

1 Boolean functions 3
1.1 Boolean functions and their representations . 3

1.1.1 Truth table and Algebraic normal form 3
1.1.2 Computing the Algebraic Normal Form 6
1.1.3 Reed-Muller codes . 7

1.2 Weight of a Boolean function . 9
1.2.1 Minimum weight of a Boolean function in R(r, n) 10
1.2.2 Weights of affine functions . 10
1.2.3 Weights of functions of degree (n− 1) 11
1.2.4 Weights of functions of degree 2 . 11
1.2.5 Weight divisibility of Boolean functions 11

1.3 Walsh transform . 11
1.3.1 Definitions . 11
1.3.2 Computing the Walsh transform. 12
1.3.3 Basic properties of the Walsh transform 13

1.4 Linearity of a Boolean function . 14
1.4.1 Optimal linearity . 14
1.4.2 Link with Reed-Muller codes. 16
1.4.3 Affine equivalence for Boolean functions 16

1.5 Existence of an approximation with fewer variables 17
1.5.1 Correlation-immunity order . 18
1.5.2 Approximation of a function by a function of (t+ 1) variables. 20

2 Cryptographic Sboxes 23
2.1 Representations of an Sbox . 23

2.1.1 Components of an Sbox . 23
2.1.2 Univariate representation . 24

2.2 Exploiting the degree of the Sbox . 27
2.2.1 Basic algebraic attack . 27
2.2.2 Enhanced algebraic attack . 30
2.2.3 Other attacks exploiting a low degree . 31

2.3 Linear properties of Sboxes . 32
2.3.1 Linear cryptanalysis . 32
2.3.2 Linearity of an Sbox . 33

2.4 Differential properties of Sboxes . 34
2.4.1 Differential cryptanalysis . 34

1

2 Contents

2.4.2 Differential uniformity . 34
2.5 Link between differential uniformity and linearity 35
2.6 Sboxes with good cryptographic properties . 37

2.6.1 Affine equivalence . 37
2.6.2 Odd number of variables . 38
2.6.3 4-bit permutations . 38
2.6.4 6-bit permutations . 39
2.6.5 Sboxes of an even number of variables 40

Chapter 1

Boolean functions

1.1 Boolean functions and their representations

Definition 1.1 (Boolean function). A Boolean function of n variables is a function from Fn2
into F2. Its value vector is the binary vector vf of length 2n composed of all f(x) when x ∈ Fn2 .

1.1.1 Truth table and Algebraic normal form

A Boolean function is usually defined by its truth table, which gives the images of all elements
in Fn2 . For instance, Table 1.1 is the truth table of a Boolean function of 3 variables. The

x1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1

f(x1, x2, x3) 0 1 0 0 0 1 1 1

Table 1.1: Truth table of a Boolean function of 3 variables.

value vector of f is the vector of F8
2 corresponding to the last row in the truth table.

Boolean functions are often identified with their value vectors. In particular, the weight
and the support of a Boolean function f refer to the weight and the support of its value
vector vf . Most cryptographic applications use balanced Boolean functions, i.e., Boolean
functions f whose output is uniformly distributed. This equivalently means that the weight
of vf is half of its length.

Besides the truth table, there are several other representations of Boolean functions which
may be more appropriate in some contexts. In coding theory and in cryptography, a very
natural representation is the so-called algebraic normal form (ANF), which corresponds to
the expression of a Boolean function as a multivariate polynomial. Since the n inputs of the
function take their values in F2, they must be considered modulo X2 + X. Therefore, this
polynomial has degree at most 1 in each input variable. It follows that any monomial of this
polynomial is the product of some input variables. Each monomial can then be characterized
by a subset of I = {1, . . . , n}, i.e.,

∏
i∈I xi, or equivalently by the n-bit vector u having I as

support. This second notation will be extensively used in the context of Boolean functions.

3

4 Chapter 1. Boolean functions

Notation 1.2. For any u ∈ Fn2 , xu denotes the monomial in F2[x1, . . . , xn]/(x21 +x1, . . . , x
2
n+

xn) defined by
n∏
i=1

xuii .

The following theorem then shows that any Boolean function can be uniquely represented
by a multivariate polynomial, and it also gives a simple formula for computing this polynomial
from the value vector of the function.

Theorem 1.3 (Algebraic normal form). Let f be a Boolean function of n variables. Then,
there exists a unique multivariate polynomial in F2[x1, . . . , xn]/(x21+x1, . . . , x

2
n+xn) such that

f(x1, . . . , xn) =
∑
u∈Fn

2

aux
u, with au ∈ F2 .

This multivariate polynomial is called the algebraic normal form (ANF) of f .
Moreover, the coefficients of the ANF and the values of f satisfy:

au =
∑
x�u

f(x) and f(u) =
∑
x�u

ax,

where the sums are in F2 and x � y if and only if xi ≤ yi for all 1 ≤ i ≤ n.

Proof. We first show by induction on n that the ANF of an n-variable Boolean function can
be uniquely computed from its truth table.

• For n = 1, it is easy to check that the polynomial a1x + a0 with a1 = f(0) + f(1) and
a0 = f(0) is the unique polynomial equal to f .

• Induction step. Given an n-variable function f , we consider the two (n − 1)-variable
Boolean functions g and h defined by

g(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0) and h(x1, . . . , xn−1) = f(x1, . . . , xn−1, 1) .

Then, we have

f(x1, . . . , xn) = (1 + xn)g(x1, . . . , xn−1) + xnh(x1, . . . , xn−1)

or equivalently,

f(x1, . . . , xn) = g(x1, . . . , xn−1) + xn (g(x1, . . . , xn−1) + h(x1, . . . , xn−1)) .

We apply the induction hypothesis and denote by αu (resp. βu) for u ∈ Fn−12 the
coefficients of the ANF of g (resp. of h). We know that

αu =
∑
x�u

g(x) =
∑
x�u

f(x, 0) and βu =
∑
x�u

h(x) =
∑
x�u

f(x, 1) .

We then deduce that

f(x1, . . . , xn) = g(x1, . . . , xn−1) + xn (g(x1, . . . , xn−1) + h(x1, . . . , xn−1))

=
∑

u∈Fn−1
2

αu

n−1∏
i=1

xuii +
∑

u∈Fn−1
2

(αu + βu)

(
n−1∏
i=1

xuii

)
xn .

1.1. Boolean functions and their representations 5

Therefore, the coefficients av, v = (v1, . . . , vn) ∈ Fn2 , of the ANF of f are given by

av =

{
αv1,...,vn−1 if vn = 0
αv1,...,vn−1 + βv1,...,vn−1 if vn = 1

From the expressions of the coefficients α and β, we deduce that

av =

{ ∑
u�(v1,...,vn−1)

f(u, 0) if vn = 0∑
u�(v1,...,vn−1)

f(u, 0) +
∑

u�(v1,...,vn−1)
f(u, 1) if vn = 1

implying that
av =

∑
u�v

f(u) .

Conversely, the values of f are uniquely determined by its ANF since the function over F2n
2

which maps the value vector of f to the vector of coefficients of its ANF is an involution.
Indeed, for any y ∈ Fn2 , we have∑

u�y
au =

∑
u�y

∑
x�u

f(x)

=
∑
x�y

f(x)|{u ∈ Fn2 : x � u � y}|

=
∑
x�y

2wt(y)−wt(x)f(x) .

All terms in this sum are then zero modulo 2 unless x = y. Thus∑
u�y

au = f(y) ,

which means that the transformation we consider is an involution. �

Example 1.1. Computing the ANF of the function defined in Table 1.1. Using the
previous theorem, we compute the coefficients of the ANF of this Boolean function:

a000 = f(000) = 0

a100 = f(100) + f(000) = 1

a010 = f(010) + f(000) = 0

a110 = f(110) + f(010) + f(100) + f(000) = 1

a001 = f(001) + f(000) = 0

a101 = f(101) + f(001) + f(100) + f(000) = 0

a011 = f(011) + f(001) + f(010) + f(000) = 1

a111 =
∑
x∈F3

2

f(x) = wt(f) mod 2 = 0 .

Thus, the ANF of f is
x1 + x1x2 + x2x3 .

6 Chapter 1. Boolean functions

The degree of f is then the degree of the largest monomial in the ANF of f , i.e.,

deg f = max
u∈Fn

2 :au 6=0
wt(u) .

For instance the function considered in the previous example has degree 2.
It is worth noticing that there exist several other representations of Boolean functions which

may be more convenient than the ANF in some other contexts. For instance, the disjunctive
normal form represents the function by some products between variables and negations of
variables, which are added by an OR. A disjunctive normal form of the function defined in
Table 1.1 is

x1x2x3 ORx1x2x3 ORx1x2x3 ORx1x2x3 .

Such a representation may be more appropriate than the ANF when we want to determine
the smallest circuit which implements the function in a context where only AND, NOT and
OR gates are available, see [Weg87] for more details.

1.1.2 Computing the Algebraic Normal Form

The general form of the transformation which associates the coefficients of the ANF to the
value vector is

Mn : F2n
2 → F2n

2

a = (au, u ∈ Fn2) 7→ (bu, u ∈ Fn2) with bu =
∑

v�u av .

This function is called the binary Möbius transform. Indeed, Möbius inversion is a method
for inverting sums over a partially ordered sets. This general inversion formula appears in
many contexts in combinatorics. For instance, it leads to the principle of inclusion-exclusion
and to the expression of Euler φ-function [Rot64, Moe12]. In our context, we have proved in
Theorem 1.3 that the transformation Mn is an involution, so any algorithm for computing
the binary Möbius transform can be used both for computing the ANF from the value vector
and for computing the value vector from the ANF.

The naive method for computingMn(a) consists in evaluating the sum of the coordinates
av of a over all positions v � u for the 2n successive elements u ∈ Fn2 . Since the sum defining
bu has 2wt(u) terms, the overall complexity of this algorithm is

n∑
i=0

(
n

i

)
2i = 3n .

But there exists a faster algorithm for computing the image of an element byMn which has
complexity n2n−1 only. This algorithm exploits the fact that if we decompose any vector
a = (au, u ∈ Fn2) into two halves, namely L(a) = (au,0, u ∈ Fn−12) and R(a) = (au,1, u ∈ Fn−12),
we get the following recursive formula:

L(Mn(a)) =Mn−1(L(a)) and R(Mn(a)) =Mn−1(L(a)) +Mn−1(R(a))

where the addition denotes the addition in F2n−1

2 . The corresponding algorithm then starts
from (au, u ∈ Fn2) where the values of u are written in lexicographic order. The k-th step,
for 1 ≤ k ≤ n, then computes the images by Mk of the 2n−k vectors of 2k consecutive
bits composing a. The result at Step k is then obtained from the result at Step (k − 1) by

1.1. Boolean functions and their representations 7

splitting the vector into blocks of 2k consecutive bits, and for each block, the first half of the
block remains unchanged while the second half is replaced by the sum of both halves. This
iterative process is described by Algorithm 1. In this algorithm, the vectors (au, u ∈ Fn2) are
equivalently represented by 2n-bit arrays (a[i], 0 ≤ i < 2n), where n-bit integers are identified
with n-bit vectors.

Algorithm 1 Evaluating the Möbius transformMn.
Input: (a[i], 0 ≤ i < 2n)
Output: b =Mn(a)
for i from 0 to 2n − 1 do
b[i]← a[i]

end for
for k from 1 to n do
for i from 0 to 2n−k do
// Compute the image of the i-th 2k-bit block underMk

for j from 0 to 2k−1 − 1 do
b[2ki+ 2k−1 + j]← b[2ki+ j] + b[2ki+ 2k−1 + j] mod 2

end for
end for

end for
return b

Example 1.2. Computing the ANF of a 3-variable Boolean function. Let us denote
by f [0], . . . , f [7] the array representing the 8-bit value vector of the 3-variable Boolean function
f , namely f [i] = f(i0, i1, i2) where i =

∑2
j=0 ij2

i. Then, the operations performed during the
three successive steps of Algorithm 1 are described in Table 1.2.

Example 1.3. Computing the ANF of a 5-variable Boolean function in C. If the value
vector of the function is stored as 32-bit integer x, then the corresponding ANF is computed
by the following program.

x ^= (x & 0x55555555) << 1;
x ^= (x & 0x33333333) << 2;
x ^= (x & 0x0f0f0f0f) << 4;
x ^= (x & 0x00ff00ff) << 8;
x ^= x << 16;

A more general program for any number of variables is given in [Jou09, Page 287] and can be
downloaded from http://www.joux.biz/algcrypt/PROGRAMS/Walsh_9-2.html.

1.1.3 Reed-Muller codes

Reed-Muller codes are named after Reed [Ree54] and Muller [Mul54]: Muller described the
codes while Reed proposed a majority-logic decoding algorithm for them. Reed-Muller codes
can be defined over Fq but we here focus on the binary case. Binary Reed-Muller codes can
be defined very easily in terms of Boolean functions.

8 Chapter 1. Boolean functions

T
ab

le
1.
2:

C
om

pu
ti
ng

th
e
A
N
F
of

a
3
-v
ar
ia
bl
e
B
oo

le
an

fu
nc

ti
on

f
w
it
h
A
lg
or
it
hm

1.

i
0

1
2

3
4

5
6

7
f

[i
]

f
[0

]
f

[1
]

f
[2

]
f

[3
]

f
[4

]
f

[5
]

f
[6

]
f

[7
]

St
ep

1
f

[0
]

f
[0
]
+

f
[1
]

f
[2

]
f
[2
]
+

f
[3
]

f
[4

]
f
[4
]
+

f
[5
]

f
[6

]
f
[6
]
+

f
[7
]

St
ep

2
f

[0
]

f
[0

]+
f

[1
]

f
[0
]
+

f
[2
]

f
[0
]
+

f
[1
]

f
[4

]
f

[4
]+

f
[5

]
f
[4
]
+

f
[6
]

f
[4
]
+

f
[5
]

+
f
[2
]
+

f
[3
]

+
f
[6
]
+

f
[7
]

St
ep

3
f

[0
]

f
[0

]+
f

[1
]

f
[0

]+
f

[2
]

f
[0

]+
f

[1
]

f
[0
]
+

f
[4
]

f
[0
]
+

f
[1
]

f
[0
]
+

f
[2
]

f
[0
]
+

f
[1
]

+
f

[2
]+

f
[3

]
f
[4
]
+

f
[5
]

+
f
[4
]
+

f
[6
]

+
f
[2
]
+

f
[3
]

+
f
[4
]
+

f
[5
]

+
f
[6
]
+

f
[7
]

1.2. Weight of a Boolean function 9

Definition 1.4 (Reed-Muller codes). Let n be a positive integer and r an integer such 0 ≤
r ≤ n. The r-th order binary Reed-Muller code of length 2n, denoted by R(r, n), is the set of
the value vectors of all Boolean functions of n variables with degree at most r:

R(r, n) = {(f(x), x ∈ Fn2), f : Fn2 → F2 with deg f ≤ r} .

In particular R(0, n) is composed of the all-zero and the all-one 2n-bit words. It is also
known as the repetition code of length 2n. On the other extreme, R(n, n) contains all 2n-bit
words.

Reed-Muller codes satisfy the following simple properties.

Proposition 1.5. Let n be a positive integer and r an integer such 0 ≤ r ≤ n.
1. R(r, n) is a linear code;

2. The value vectors of all monomials of degree at most r form a basis of R(r, n);

3. The dimension of R(r, n) is

dimR(r, n) =

r∑
i=0

(
n

i

)
;

4. R(r − 1, n) ⊂ R(r, n).

Example 1.4. R(1, 3) is a linear code of length 8 and dimension 1 + 3 = 4. A generator
matrix of R(1, 3) consists of the value vectors of all monomials of degree 0 or 1 in x1, x2, x3:

1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 .

Indeed, the rows of this matrix are equal to the value vectors of the functions f(x1, x2, x3)
with respective ANF 1, x1, x2 and x3, where the inputs (x1, x2, x3) of the value vectors are
ordered lexicographically.

1.2 Weight of a Boolean function

For studying the properties of a Boolean function with a given degree, the following decompo-
sition provides a useful tool since it allows recursive constructions (and proofs by induction).
For any Boolean function f of n variables and degree at most r, there exist two functions of
n− 1 variables, namely g and h, with deg g ≤ r and deg h ≤ r − 1 such that

f(x1, . . . , xn) = g(x1, . . . , xn−1) + xnh(x1, . . . , xn−1) .

The value vector vf of f can then be decomposed into two halves corresponding to the inputs
with xn = 0 (resp. with xn = 1). Then, we get

vf = (vg|vg + vh) ,

where vg and vh denote the value vectors of g and h and belong toR(r, n−1) andR(r−1, n−1)
respectively.

This decomposition corresponds to a general construction, named the (u|u+ v) construc-
tion, described by Plotkin [Plo60], combining two codes of the same length to derive a new
code which is twice longer.

10 Chapter 1. Boolean functions

1.2.1 Minimum weight of a Boolean function in R(r, n)

The minimum weight of a function inR(r,m) can be deduced from the previous decomposition.

Theorem 1.6. Let n be a positive integer and r an integer such 0 ≤ r ≤ n. Then, the
smallest weight for a nonzero function of n variables and degree at most r is 2n−r. Moreover,
this bound is tight by the monomials of degree r.

Proof. Clearly, any monomial of n variables and degree r has weight 2n−r. Then, we only
have to prove that any function of degree at most r has weight wt(f) ≥ 2n−r, by induction
on n.

• For n = 1 and r = 0, the only nonzero constant function is the all-one function, which
has weight 2. Moreover, the value vectors of all nonzero functions correspond to all
nonzero vectors in F2

2, implying that the minimum weight for a function in R(1, 1) is 1.

• Induction step. We now use that any f in R(r, n) can be decomposed as

f(x1, . . . , xn) = g(x1, . . . , xn−1) + xnh(x1, . . . , xn−1) ,

i.e.,
vf = (vg|vg + vh) ,

with vg ∈ R(r, n− 1) and vh ∈ R(r − 1, n− 1). Then,

wt(f) = wt(g) + wt(g + h) .

If h is the zero function, then wt(f) = 2wt(g) ≥ 2 × 2(n−1)−r = 2n−r by induction
hypothesis.

If h 6= 0, then, we use that, for any m-bit vectors x and y,

wt(x+ y) = wt(x) + wt(y)− 2| Suppx ∩ Supp y|
≥ wt(x) + wt(y)− 2wt(x)

≥ wt(y)− wt(x) .

Hence,
wt(f) = wt(g) + wt(g + h) ≥ wt(h) ≥ 2(n−1)−(r−1)

where the last inequality is deduced from the induction hypothesis.

�

1.2.2 Weights of affine functions

Proposition 1.7. All n-variable Boolean functions of degree 1 have weight 2n−1.

Proof. A function of degree 1 can be written as f(x) = a · x+ ε with a ∈ Fn2 \ {0} and ε ∈ F2.
Then,

wt(f) = {x ∈ Fn2 : f(x) = 1} = {x ∈ Fn2 : a · x = 1 + ε} =

{
〈a〉⊥ if ε = 1
Fn2 \ 〈a〉⊥ if ε = 0

The support of a function of degree 1 is then a hyperplane or the complement of a hyperplane,
and has size 2n−1. �

.

1.3. Walsh transform 11

1.2.3 Weights of functions of degree (n− 1)

Obviously, half of the Boolean functions of n variables have degree n. These functions are
characterized by the following property.

Proposition 1.8. A Boolean function f of n variables has an odd weight if and only if it has
degree n.

Proof. This comes directly from Theorem 1.3 which shows that the coefficient of degree n in
the ANF of an n-variable Boolean function f is equal to the parity of the weight of its value
vector. �

This implies that Boolean functions with maximal degree cannot be used in most crypto-
graphic applications since their output distribution is biased.

1.2.4 Weights of functions of degree 2

The list of all possible weights for a Boolean function of degree 2 is also known [SB70]. The
proof can be found in [SB70] or in Chapter 15,§ 2 of [MS77].

Proposition 1.9. The weights of the Boolean functions of n variables with degree 2 are of
the form

w = 2n−1 or w = 2n−1 ± 2n−1−h with 0 ≤ h ≤
⌊n

2

⌋
.

1.2.5 Weight divisibility of Boolean functions

Another information is that the weight of any n-variable Boolean function of degree at most r
is divisible by some power of 2 whose exponent depends on r and n.

Proposition 1.10. Let n be a positive integer and r an integer such 0 < r ≤ n. Then, the
weight of any n-variable Boolean function of degree at most r is divisible by

2d
n
r
e−1 .

This theorem was originally proved by Solomon and McEliece [SM66], but it is usually
presented as a consequence of a more general theorem due to McEliece [McE72] on the divis-
ibility of the weight of cyclic codes. A simpler proof can be derived from a classical formula
for computing the weight of a Boolean function from its ANF (see e.g. [MM94] or [CHLL97,
Page 240]).

1.3 Walsh transform

1.3.1 Definitions

Definition 1.11. The bias (aka, correlation, or imbalance) of an n-variable Boolean function
f is

E(f) =
∑
x∈Fn

2

(−1)f(x) = 2n − 2wt(f) .

In other words,

PrX [f(X) = 1] =
wt(f)

2n
=

1

2

(
1− E(f)

2n

)
.

12 Chapter 1. Boolean functions

Most notably, a Boolean function f is balanced if and only if E(f) = 0.
In the following, we denote by ϕa the linear Boolean function x 7→ a · x.
We now reformulate Prop. 1.8 in terms of biases of linear functions.

Lemma 1.12. Let a ∈ Fn2 . Then

E(ϕa) =
∑
x∈Fn

2

(−1)a·x =

{
0 if a 6= 0
2n if a = 0 .

A useful tool for studying Boolean functions is the Walsh transform.

Definition 1.13 (Walsh transform). Let f be a Boolean function of n variables. The Walsh
transform of f is the function

Fn2 → Z
a 7→ E(f + ϕa) =

∑
x∈Fn

2
(−1)f(x)+a·x .

The value E(f + ϕa) is called the Walsh coefficient of f at point a and the multiset composed
of all Walsh coefficients of f is called the Walsh spectrum of f .

The Walsh spectrum of f corresponds to the biases of all approximations of f by a linear
function. This quantity, especially its maximum, plays a major role in linear cryptanalysis.

1.3.2 Computing the Walsh transform.

A useful property of the Fourier transform is that it can be computed by a fast algorithm.
While the naive method for computing all values of the Walsh transform of an n-variable
Boolean function has complexity 22n, the complexity of the fast algorithm described in Algo-
rithm 2 is proportional to n2n.

Algorithm 2 Evaluating the Walsh transform of an n-variable Boolean function f .
Input: (f [a], 0 ≤ a < 2n)
Output: (e[a] = E(f + ϕa), 0 ≤ a < 2n)
for i from 0 to 2n − 1 do
e[i]← (−1)f [i]

end for
for k from 1 to n do
for i from 0 to 2n−k do
// Compute the image of the i-th 2k-bit block
for j from 0 to 2k−1 − 1 do
e′[2ki+ j]← e[2ki+ j] + e[2ki+ 2k−1 + j] mod 2
e′[2ki+ 2k−1 + j]← e[2ki+ j]− e[2ki+ 2k−1 + j] mod 2

end for
end for
e← e′

end for
return e

1.3. Walsh transform 13

Example 1.5. Let us compute the Walsh transform of the 3-variable function

f(x1, x2, x3) = x1 + x1x2 + x2x3.

f(a) 0 1 0 0 0 1 1 1
(−1)f(a) 1 -1 1 1 1 -1 -1 -1
step 1 0 2 2 0 0 2 -2 0
step 2 2 2 -2 2 -2 2 2 2
E(f + ϕa) 0 4 0 4 4 0 -4 0

We deduce that the highest bias (in magnitude) of a linear approximation of this function is 4
and is obtained for instance for E(f + x1). This equivalently means

Pr[f(x1, x2, x3) + x2 = 0] =
1

2

(
1 +

4

23

)
=

3

4
.

1.3.3 Basic properties of the Walsh transform

Since it corresponds to a discrete Fourier transform, The Walsh transform enjoys all math-
ematical properties of a Fourier transform. For instance, the Walsh transform is (up to a
constant factor) an involution.

Proposition 1.14. Let f be a Boolean function of n variables. For all b ∈ Fn2 , we have∑
a∈Fn

2

(−1)a·bE(f + ϕa) = 2n(−1)f(b) .

Proof. ∑
a∈Fn

2

(−1)a·bE(f + ϕa) =
∑
a∈Fn

2

∑
x∈Fn

2

(−1)a·b(−1)f(x)+a·x

=
∑
x∈Fn

2

(−1)f(x)
∑
a∈Fn

2

(−1)a·(x+b)

=
∑
x∈Fn

2

(−1)f(x)E(ϕx+b) = 2n(−1)f(b)

where the last equality is derived from Lemma 1.12 which states that E(ϕx+b) = 0 unless
x = b. �

As any Fourier transform, the Walsh transform satisfies the Parseval relation.

Proposition 1.15 (Parseval relation). Let f be a Boolean function of n variables. Then,∑
a∈Fn

2

[E(f + ϕa)]
2 = 22n .

14 Chapter 1. Boolean functions

Proof.

∑
a∈Fn

2

E2(f + ϕa) =
∑
a∈Fn

2

∑
x∈Fn

2

(−1)f(x)+a·x

∑
y∈Fn

2

(−1)f(y)+a·y

=

∑
x∈Fn

2

∑
y∈Fn

2

(−1)f(x)+f(y)

∑
a∈Fn

2

(−1)a·(x+y)

= 2n

∑
x∈Fn

2

(−1)f(x)+f(x) = 22n

where the last-but-one equality is derived from Lemma 1.12. �

1.4 Linearity of a Boolean function

Since linear cryptanalysis exploits highly biased linear approximations, a natural question for
a designer who needs to choose a good nonlinear function is to know the smallest possible value
that can be achieved for the bias of the best linear approximation. This value is determined
by the so-called linearity of the function, in the sense of the following definition.

Definition 1.16 (Linearity of a Boolean function). Let f be a Boolean function of n variables.
The linearity of f is the highest magnitude of its Walsh coefficients, i.e.,

L(f) = max
a∈Fn

2

|E(f + ϕa)| .

1.4.1 Optimal linearity

The following lower bound on the linearity of a Boolean function is directly derived from
Parseval relation.

Proposition 1.17. Let f be a Boolean function of n variables. Then

L(f) ≥ 2
n
2 .

The functions for which equality holds are called bent functions. They exist for even n only,
and are not balanced.

Proof. We first observe that a function f satisfying L(f) < 2
n
2 cannot exist. Otherwise, from

Parseval relation, we would have

22n =
∑
a∈Fn

2

E2(f + ϕa) < 2n × 2n ,

a contradiction.
Obviously, this bound on the linearity is tight when n is even only. Let now f be a bent

function. Parseval relation implies that, for all a ∈ Fn2 ,

E2(f + ϕa) = 2n .

In other words, the Wash transform of a bent function has constant magnitude. In particular,
for a = 0, we get that E(f) = ±2

n
2 implying that f is not balanced. �

1.4. Linearity of a Boolean function 15

Since their output is biased, bent functions are of little use in cryptography. Most notably,
any linear combination of the coordinates of a permutation is balanced, and then satisfies
L(f) > 2

n
2 .

When n is odd, bent functions do not exist, and the lowest possible value for L(f) is
unknown for n ≥ 9. The quadratic function of (2t+ 1) variables

f(x1, . . . , x2t+1) = x1x2 + x3x4 + . . .+ x2t−1x2t + x2t+1

satisfies
L(F) = 2

n+1
2 .

We then deduce the following proposition.

Proposition 1.18. The lowest linearity for a Boolean function of n variables, n odd, satisfies

2
n
2 < min

f∈Booln
L(f) ≤ 2

n+1
2

where the upper bound is tight for n ≤ 7 and is not tight for n ≥ 9.

The fact that the previous upper bound is not tight for n ≥ 9 was a long-standing open
problem solved in 2006 by [KMY07]. More precisely, Table 1.3 gives the lowest possible
linearities for an n-variable Boolean function for n odd, 5 ≤ n ≤ 15. Note that, by definition,
the values of the Walsh transform, including the linearity, are always even.

n 5 7 9 11 13 15

minf∈Booln L(f) 8 16 24− 30 46− 60 92− 120 182− 216

Table 1.3: Smallest possible linearity for an n-variable Boolean function, where a − b means
that the lowest linearity can be any even integer in this range.

As previously mentioned, most cryptographic applications require the use of balanced
functions. The lowest linearity for a balanced function of n variables is also unknown for
n even. Only an upper bound on its value is derived from a recursive construction due to
Dobbertin [Dob94]. Table 1.4 gives the lowest possible linearities for an n-variable balanced
Boolean function for 4 ≤ n ≤ 10. It is worth noticing that, since the weight of a balanced
function is even, its degree is at most (n− 1). Then, all (f +ϕa) have degree at most (n− 1)
and an even degree, implying that their biases are divisible by 4.

n 4 5 6 7 8 9 10

minf∈Booln L(f) 8 8 12 16 {20, 24} {24, 28, 32} {36, 40}

Table 1.4: Smallest possible linearities for an n-variable balanced function.

16 Chapter 1. Boolean functions

1.4.2 Link with Reed-Muller codes.

The previously mentioned problems on the lowest possible linearity for a Boolean function have
been extensively investigated in coding theory since they are related to the determination of
the covering radius of the first-order Reed-Muller code. Indeed, the Walsh coefficients of a
given Boolean function are determined by the weights of the coset of R(1, n) defined by the
value vector of f , as detailed in the following proposition.

Proposition 1.19. Let f be a Boolean function of n variables. Then, the Hamming weights
of all functions in the set f +R(1, n) are

{2n−1 − 1

2
E(f + ϕa); 2n−1 +

1

2
E(f + ϕa), a ∈ Fn2} .

In particular, the Hamming distance of f to the set of all affine functions, called the nonlin-
earity of f , is given by

d(f,R(1, n)) = 2n−1 − 1

2
L(f) .

Proof. By definition of R(1, n), the weights of f + R(1, n) correspond to the weights of all
functions c = f + ϕa + ε, a ∈ Fn2 , ε ∈ F2. If ε = 0, we get that

wt(f + ϕa) = 2n−1 − 1

2
E(f + ϕa) .

If ε = 1, we have

wt(f + ϕa + 1) = 2n − wt(f + ϕa) = 2n−1 +
1

2
E(f + ϕa) .

The expression of d(f,R(1, n)) directly follows. �

Finding a function with minimal linearity then boils down to finding a value vector which
lies as far as possible from the code R(1, n). This corresponds to the well-known notion of
covering radius.

Definition 1.20 (Covering radius). Let C be a code of length n. The covering radius of C is
the highest Hamming distance between C and a word in Fn2 :

ρ(C) = max
c∈Fn

2

d(c, C) .

Therefore, most of the previously mentioned results on the best linearity for a Boolean
functions have been first proved in terms of covering radius of the first-order Reed-Muller
codes, e.g. [Myk80, PW83, Hou93, Hou96b, Hou96a].

1.4.3 Affine equivalence for Boolean functions

The number of Boolean functions of n variables is 22
n , which makes very difficult to find

functions with good cryptographic properties, like a high nonlinearity, for practical values
of n. A useful tool for avoiding examining all functions is provided by any equivalence relation
under which the involved properties are invariant. The most prominent equivalence relation
is called affine equivalence.

1.5. Existence of an approximation with fewer variables 17

Definition 1.21 (Affine equivalence). Two n-variable Boolean functions are said to be affine
equivalent if there exists an affine permutation A of Fn2 such that

g(x) = f(A(x)) .

Obviously, the degree is invariant under affine equivalence. This is also the case of the
unsigned Walsh spectrum (and then of the linearity) as shown in the following proposition.

Proposition 1.22. Let f and g be two n-variable Boolean functions such that g(x) = f(Mx+
a) for some invertible n× n matrix M and a ∈ Fn2 . Then, for any α ∈ Fn2 ,

E(g + ϕα) = (−1)α·M
−1aE(f + ϕ(M−1)Tα) .

Proof.

E(g + ϕα) =
∑
x∈Fn

2

(−1)g(Mx+a)+α·x = (−1)α·M
−1a

∑
y∈Fn

2

(−1)g(y)+α·(M
−1y) .

For any y ∈ Fn2 , we have

α · (M−1y) =

n∑
i=1

αi(M
−1y)i

=

n∑
i=1

n∑
j=1

αiM
−1
ij yj

=

n∑
j=1

yj

(
n∑
i=1

αiM
−1
ij

)
= y ·

(
(M−1)Tα

)
.

We then deduce

E(g + ϕα) = (−1)α·M
−1a

∑
y∈Fn

2

(−1)g(y)+y·((M
−1)Tα) = (−1)α·M

−1aE(g + ϕ(M−1)Tα) .

�

Since they mainly focus on the linearity (or on the magnitude of the Walsh coefficients),
all existing classifications of Boolean functions are up to affine equivalence. For instance,
Berlekamp and Welch [BW72] have classified all functions up to 5 variables.

1.5 Existence of an approximation with fewer variables

Some divide-and-conquer attacks, like (fast) correlation attacks against combination keystream
generators, exploit the fact that the involved Boolean function f can be approximated by a
function g depending on fewer variables. Typically, in a combination generator composed of
n LFSRs, if the combining function f can be approximated by a function g of k < n variables,
then the attack involves the initial states of only k out of the n constituent LFSRs.

18 Chapter 1. Boolean functions

1.5.1 Correlation-immunity order

A natural counter-measure to avoid these attacks consists then in using as a building-block a
correlation-immune function in the sense of the following definition.

Definition 1.23 (Correlation-immunity [Sie84]). A Boolean function f is t-th order correlation-
immune if the probability distribution of its output is unaltered when any t input variables are
fixed. Balanced t-th order correlation-immune functions are called t-resilient.

Note that a t-th order correlation-immune function is k-th order correlation-immune for
any k ≤ t. The correlation-immunity order of a function f then implicitly refers to the highest
integer t such that f is t-th order correlation-immune.

In a combination generator, the correlation-immunity order t of the combining function
determines the minimal number of LFSRs which must be considered together in a correlation
attack. Indeed, the keystream produced by the combination generator is then independent
from the probability distribution of any set of t constituent LFSRs. The smallest number of
LFSRs involved in a correlation attack is therefore t+ 1. But the correlation-immunity order
of a Boolean function cannot be chosen as high as we wish: it is limited by the algebraic
degree of the function as shown in the next proposition.

Proposition 1.24. [Sie84] Let f be a Boolean function of n variables. Then its correlation-
immunity order t satisfies

t+ deg f ≤ n .

Moreover, if f is balanced and t < n− 1, then

t+ deg f ≤ n− 1 .

Proof. Let u ∈ Fn2 such that wt(u) ≥ n− t. We compute the coefficients of the ANF of f with
Theorem 1.3. For L = {1, . . . , n} \ Supp(u), we have

au =
∑

xi=0,i∈L
f(x1, . . . , xn) mod 2 = 2−(n−wt(u))wt(f) mod 2

where the last equality comes from the fact that the probability distribution of the output of f
is unchanged when the (n − wt(u)) ≤ t variables defined by L are set to 0. If f is balanced,
i.e., wt(f) = 2n−1, we get that, for all u with wt(u) ≥ n− t,

au = 2wt(u)−1 mod 2 = 0

since wt(u)− 1 ≥ n− t− 1 > 0. In other words, all coefficients of degree greater than or equal
to (n− t) in the ANF of f are equal to zero, which means than deg f < n− t.

If f is not balanced, we select some word u? of weight (n− t). Then,

au? = 2−twt(f) mod 2

implying that wt(f) = 2tau? + Λ2t+1 for some integer Λ. Now, for any u of weight (n− t+w)
with w ≥ 1, we get

au = 2−t+wwt(f) = 2wau? + Λ2w+1 = 0 mod 2 .

This means that all coefficients in the ANF of degree greater than or equal to (n − t + 1)
vanish, i.e. deg f ≤ n− t. �

1.5. Existence of an approximation with fewer variables 19

The correlation-immunity order of a Boolean function can be characterized by its Walsh
transform. To this end, we need the following lemma which provides a very useful link between
the Walsh transform and the restrictions of a function to some subspace.

Definition 1.25 (Restriction of a Boolean function). Let f be a Boolean function of n vari-
ables, and V be a linear subspace of Fn2 of dimension k. Let W be the supplementary space of
V with respect to Fn2 i.e., V and W are in direct sum.

Then, for any w ∈W , the restriction of f to w+V is the Boolean function of k variables,
denoted by fw+V , defined by

fw+V : x ∈ V ×W 7→ f(x+ w)

The notion of restriction is of particular interest when V is the linear space spanned by
some vectors of the canonical basis, i.e., V = 〈ei, i ∈ I〉 for some I ⊂ {1, . . . , n}, where ei is
the vector with support {i}. In this case, the restriction of f to a coset of V corresponds to
f when the input variables xi, i 6∈ I are fixed.

Lemma 1.26 (Walsh transform and restriction). Let f be a Boolean function of n variables.
Let V be a linear subspace of Fn2 . Then, for any a, we have∑

v∈V
(−1)a·vE(f + ϕv) = 2dimV E(fa+V ⊥) .

Proof. ∑
v∈V

(−1)a·vE(f + ϕv) =
∑
v∈V

(−1)a·v
∑
x∈Fn

2

(−1)f(x)+v·x

=
∑
x∈Fn

2

(−1)f(x)
∑
v∈V

(−1)(a+x)·v

= 2dimV
∑

x∈a+V ⊥
(−1)f(x)

where the last equality comes from the fact that, for any linear space V ⊂ Fn2 ,∑
v∈V

(−1)a·v = #{v ∈ V : v ∈ 〈a〉⊥} −#{v ∈ V : v 6∈ 〈a〉⊥} =

{
2dimV if a ∈ V ⊥
0 otherwise.

�

Proposition 1.27 ([XM88]). Let f be a Boolean function of n variables. Then, f is t-th
order correlation-immune if and only if E(F + ϕα) = 0 for any α ∈ Fn2 with 1 ≤ wt(α) ≤ t.

Proof. By definition, f is t-th order correlation-immune if and only if, for any 0 ≤ k ≤ t and
any set I ⊂ {1, . . . n} of size k, the restriction of f to a+ 〈ei, i 6∈ I〉 has the same probability
distribution as f :

2−(n−k)E(fa+〈ei,i 6∈I〉) = 2−nE(f) .

Let V = 〈ei, i 6∈ I〉. We deduce from the previous lemma that this is equivalent to

E(f) = 2kE(fa+V) =
∑
v∈V ⊥

(−1)a·vE(f + ϕv) ,

20 Chapter 1. Boolean functions

This condition is obviously satisfied if all E(f + ϕv) = 0 for v ∈ 〈ei, i ∈ I〉 \ {0}. Conversely,
we get by the inverse Walsh transform that,

2k
∑
a∈V ⊥

(−1)a·bE(fa+V) =
∑
a∈V ⊥

∑
v∈V ⊥

(−1)a·(b+v)E(f + ϕv)

=
∑
v∈V ⊥

E(f + ϕv)

∑
a∈V ⊥

(−1)a·(b+v)

= 2n−kE(f + ϕb),

using that, for V = 〈ei, i 6∈ I〉, we have V ∩ V ⊥ = {0}. Therefore, if all restrictions satisfy
2kE(fa+V) = E(f), then, for any nonzero b ∈ 〈ei, i ∈ I〉,

2n−kE(f + ϕb) =
∑
a∈V ⊥

(−1)a·bE(f) = 0 .

�

1.5.2 Approximation of a function by a function of (t+ 1) variables.

Since the combining function in a combination generator is balanced and nonlinear, its correlation-
immunity order is at most (n − 3). It follows that we can always apply a correlation attack
by considering at most (n − 2) LFSRs together. We now show how to determine the best
approximation of f by a Boolean function g depending on a fixed subset of k variables.

Proposition 1.28. [Can02, Zha00] Let f be a function of n variables and let V be the subspace
spanned by the k elements of the canonical basis of indices in I = {i1, . . . , ik}. The highest
possible value of E(f+g), over all k-variable functions g depending on xi1 , . . . , xik , is achieved
if and only if {

g(x) = 1 if E(fx+V ⊥) < 0
g(x) = 0 if E(fx+V ⊥) > 0

Moreover,
max
g
E(f + g) =

∑
x∈V

∣∣E(fx+V ⊥)
∣∣ .

Proof. Using that V and V ⊥ are in direct sum, we have that, for any function g defined over V ,

E(f + g) =
∑
x∈V

∑
y∈V ⊥

(−1)f(x+y)+g(x)

=
∑
x∈V

(−1)g(x)
∑
y∈V ⊥

(−1)f(x+y)

=
∑
x∈V

(−1)g(x)E(fx+V ⊥) .

It follows that E(f +g) is maximal if and only if all terms in the sum are greater than or equal
to zero, or equivalently

g(x) =

{
0 if E(fx+V ⊥) > 0,
1 if E(fx+V ⊥) < 0.

(1.1)

Note that the value of g(x) can be arbitrarily chosen when E(fx+V ⊥) = 0. The maximal value
of E(f + g) directly follows. �

1.5. Existence of an approximation with fewer variables 21

The previous proposition obviously implies that, for a balanced function f , the maximal
value of E(f + g) is 0 if k is less than or equal to the correlation-immunity order of f since all
E(fx+V ⊥) = 0 in this case. Another consequence is that, for k = t+1 where t is the correlation-
immunity order of f , the maximal value of E(f + g) is achieved by an affine function.

Theorem 1.29. [CT00] Let f be a t-resilient function of n variables and let V be the subspace
spanned by the (t+1) elements of the canonical basis of indices in I = {i1, . . . , it+1}. The high-
est possible value of E(f + g), over all (t+ 1)-variable functions g depending on xi1 , . . . , xit+1,
is achieved by the affine function

g(xi1 , . . . , xit+1) =
∑
i∈I

xi + ε

with ε ∈ F2.

Proof. We use the same notation as in the previous proposition. We have proved that, for
any g defined over V

E(f + g) =
∑
x∈V

(−1)g(x)E(fx+V ⊥) .

But, we know from Lemma 1.26 that

E(fx+V ⊥) = 2−(t+1)
∑
v∈V

(−1)x·vE(f + ϕv) .

Moreover, since f is t-resilient, all its Walsh coefficients E(f +ϕv) for all v of weight at most t
vanish. Then, the only term remaining in the previous sum is when v equals the all-one vector
in V , i.e., the vector 1I having I as support. We deduce

E(f + g) = 2−(t+1)
∑
x∈V

(−1)g(x)(−1)1I ·xE(f + ϕ1I) = 2−(t+1)E(f + ϕ1I)E(g + ϕ1I) .

This quantity is then maximized when g = ϕ1I + ε, and we get

E(f + g) = ±E(f + ϕ1I) .

�

This result is of great interest in the context of fast correlation attacks against combination
generators. The correlation-immunity order of a Boolean function f can also be characterized
by a combinatorial property of the code formed by the support of f , i.e., by f−1(1), namely
by the so-called dual distance of this code [Del73, SM95].

22 Chapter 1. Boolean functions

Chapter 2

Cryptographic Sboxes

Many primitives like block ciphers use as building blocks some Boolean functions with several
output bits. Such functions are called vectorial Boolean functions, or S(ubstitution)-boxes, by
analogy with the former block-cipher standard DES.

2.1 Representations of an Sbox

2.1.1 Components of an Sbox

An Sbox from Fn2 into Fm2 (i.e., with n inputs and m outputs) is usually represented by a
collection of m Boolean functions of n variables called the coordinates of f .

Example 2.1 (A 4-bit Sbox). The following table defines an Sbox from F4
2 into F4

2 (with
hexadecimal notation).

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5
S1(x) 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1
S2(x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0
S3(x) 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1
S4(x) 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0

Table 2.1: Example of a 4-bit Sbox.

The Möbius transform enables us to compute the ANF of the four coordinates of this Sbox:

S1 = 1 + x1 + x3 + x2x3 + x4 + x2x4 + x3x4 + x1x3x4 + x2x3x4

S2 = 1 + x1x2 + x1x3 + x1x2x3 + x4 + x1x4 + x1x2x4 + x1x3x4

S3 = 1 + x2 + x1x2 + x2x3 + x4 + x2x4 + x1x2x4 + x3x4 + x1x3x4

S4 = 1 + x3 + x1x3 + x4 + x2x4 + x3x4 + x1x3x4 + x2x3x4

Besides the coordinates, all linear combinations of the coordinates are usually involved for
determining the cryptographic properties of an Sbox, in the sense of the following definition.

23

24 Chapter 2. Cryptographic Sboxes

Definition 2.1. Let S be an Sbox from Fn2 into Fm2 . The Boolean components of S are the
n-variable Boolean functions

Sλ : x 7→ λ · S(x)

for any λ ∈ Fm2 . The component corresponding to λ = 0 is called the zero (or trivial) compo-
nent.

In particular, the fact that an Sbox is invertible (i.e., a permutation) can be characterized
by its coordinates.

Proposition 2.2. Let S be an Sbox from Fn2 into Fn2 . S is a permutation if and only if all its
non-trivial components are balanced.

Proof. Let λ ∈ Fn2 \ {0}. Then, if S is a permutation,

E(Sλ) =
∑
x∈Fn

2

(−1)λ·S(x) =
∑
y∈Fn

2

(−1)λ·y = 0 .

Conversely, for any a ∈ Fn2 , we have∑
λ∈Fn

2

(−1)a·λE(Sλ) =
∑
λ∈Fn

2

(−1)a·λ
∑
x∈Fn

2

(−1)λ·S(x)

=
∑
x∈Fn

2

∑
λ∈Fn

2

(−1)(a+S(x))·λ

= 2n#{x ∈ Fn2 : S(x) = a} .

It follows that, if all Sλ, λ 6= 0 are balanced, then for any a ∈ Fn2 ,

2n#{x ∈ Fn2 : S(x) = a} = E(S0) = 2n ,

i.e., S is a permutation. �

The degree of an Sbox is defined as the maximal degree of its Boolean components, since
this is the most relevant notion from a mathematical point of view. The minimal degree of
a non-trivial component may also be of interest in some attacks, but it won’t be considered
here.

Definition 2.3 (Degree of an Sbox). Let S be an Sbox from Fn2 into Fm2 . The degree of S is
the highest degree of the ANF of its components.

2.1.2 Univariate representation

When representing an n-bit Sbox, it may be convenient to identify the vector space Fn2 with
the finite field with 2n elements, F2n . Then, for any fixed basis of Fn2 defining an isomorphism
between Fn2 and F2n , the n-bit Sbox S can be uniquely represented as a univariate polynomial
in F2n [X]:

S(X) =
2n−1∑
i=0

AiX
i , Ai ∈ F2n .

The coefficients of this polynomial are computed from the values of F by the discrete Fourier
Transform (DFT) of F (aka Mattson-Solomon transform) (see e.g. [Bla83, MS77, GG04]).

2.1. Representations of an Sbox 25

Proposition 2.4 (Discrete Fourier transform of a function). Let S be a function from F2n

into F2n. Then, there exists a unique univariate polynomial in F2n [X]/(X2n +X) such that

S(X) =

2n−1∑
i=0

AiX
i .

Moreover, A0 = S(0), A2n−1 =
∑

x∈F2n
S(x) and the coefficients Ai, 1 ≤ i ≤ 2n−2, are given

by the discrete Fourier transform of the values of S at all nonzero inputs, namely

Ai =
2n−2∑
k=0

S(αk)α−ki, 0 ≤ i ≤ 2n − 2

where α is a primitive element in F2n.

Proof. We first prove that the univariate polynomial

A(X) =
2n−1∑
i=0

AiX
i

with the previously defined coefficients takes the same values as S. Obviously,

A(0) = A0 = S(0) .

Now, for any nonzero element αj , we have

A(αj) =

2n−1∑
i=0

Aiα
ij = (A0 +A2n−1) +

2n−2∑
i=1

Aiα
ij .

By definition, the constant coefficient of this polynomial is then

A0 +A2n−1 =
2n−1∑
k=0

S(αk) .

It then follows that

A(αj) =

2n−1∑
k=0

S(αk) +

2n−2∑
i=1

(
2n−2∑
k=0

S(αk)α−ki

)
αij

=

2n−2∑
i=0

(
2n−2∑
k=0

S(αk)α−ki

)
αij

=

2n−2∑
k=0

S(αk)

(
2n−2∑
i=0

αi(j−k)

)
= S(αj) .

Then, the values of A correspond to the values of S. Moreover, this polynomial is unique.
Otherwise, there would exist two distinct polynomials of degree less than or equal to (2n − 1)
taking the same value at 2n distinct points, which is impossible. �

26 Chapter 2. Cryptographic Sboxes

Example 2.2. Let α be a root of the irreducible polynomial 1 + x+ x4. We identify F4
2 with

F24 using the basis {1, α, α2, α3}. This leads to
F24 0 1 α α2 α3 α4 α5 α6 α7

0 1 α α2 α3 α+ 1 α2 + α α3 + α2 α3 + α+ 1

F4
2 0000 0001 0010 0100 1000 0011 0110 1100 1011
α8 α9 α10 α11 α12 α13 α14

α2 + 1 α3 + α α2 + α+ 1 α3 + α2 + α α3 + α2 + α+ 1 α3 + α2 + 1 α3 + 1

0101 1010 0111 1110 1111 1101 1001

Considering the following Sbox S over F24 ,

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5

we obtain the univariate representation:

S(X) = α12 + α2X + α13X2 + α6X3 + α10X4 + αX5 + α10X6 + α2X7

+α9X8 + α4X9 + α7X10 + α7X11 + α5X12 +X13 + α6X14

It is worth noticing that the univariate representation of an Sbox depends on the basis
chosen for identifying Fn2 and F2n .

A particular family of Sboxes is the class of functions whose univariate representation
contains a single monomial (up to a change of basis), since they usually have a lower imple-
mentation cost. These functions are called monomial or power functions. The most prominent
example in this family is the AES Sbox.

Example 2.3. The AES Sbox, which operates in parallel on each byte of the input of the
round function is defined as a permutation of the finite field with 28 elements. The isomorphism
between the field F28 and the vector space F8

2 is given by

(x0, x1, . . . , x7) ∈ F8
2 7→

7∑
i=0

xiX
i

where all operations are modulo the irreducible polynomial

X8 +X4 +X3 +X + 1.

With this identification, the AES Sbox corresponds to the inversion in F28 (where the inverse
of 0 is 0), i.e.,

x ∈ F28 7→ x254,

followed by an affine function over F8
2:

y0
y1
y2
y3
y4
y5
y6
y7

=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

x0
x1
x2
x3
x4
x5
x6
x7

+

1
1
0
0
0
1
1
0

.

2.2. Exploiting the degree of the Sbox 27

Some properties of the univariate representation of an Sbox are related to the ANF of its
components. For instance, the degree of S can be deduced from the degree of its univariate
representation.

Proposition 2.5. Let S be an n-bit Sbox and let

2n−1∑
i=0

AiX
i

denote its univariate representation in F2n [X]. Then,

deg(f) = max{wt(i) : 0 ≤ i < 2n and Ai 6= 0 }

Proof. Let {α0, . . . , αn−1} be a basis of F2n . We first prove that the degree of S cannot exceed
the maximum weight of an exponent i with Ai 6= 0. Indeed, the multivariate representation
of the monomial Xs over F2n is

Xs = (α0x0 + α1x1 + . . .+ αn−1xn−1)
s

= (α0x0 + α1x1 + . . .+ αn−1xn−1)
∑n−1

i=0 si2
i

=

n−1∏
i=0

(
α2i

0 x
2i

0 + α2i

1 x
2i

1 + . . .+ α2i

n−1x
2i

n−1

)si
.

Then, we get a product of wt(s) terms of degree 1 implying that the degree of Xs cannot
exceed wt(s).

Conversely, we observe that the number of n-variable Boolean functions of degree at most d
is 2dimR(d,n) with

dimR(d, n) =
d∑
i=0

(
n

i

)
,

implying that the number of n-bit Sboxes with degree d is

2n dimR(d,n) .

On the other hand, the number of univariate polynomials composed of monomials Xs with
wt(s) ≤ d is also

(2n)
∑d

i=0 (ni) = 2n dimR(d,n) .

It follows that the two sets of functions are the same. �

2.2 Exploiting the degree of the Sbox

2.2.1 Basic algebraic attack

The basic principle of algebraic attacks goes back to Shannon’s work [Sha49, Page 711]: these
techniques consist in expressing the whole cipher as a large system of multivariate algebraic
equations. In a known-plaintext attack, the plaintext and ciphertext bits are replaced by their
values and the unknowns correspond to the key bits. The secret key can then be recovered by
solving this algebraic system. Therefore, a major parameter which influences the complexity
of such an attack is the degree of the underlying system.

28 Chapter 2. Cryptographic Sboxes

A naive method for solving such a system of degree d is the linearization. It consists
in identifying the system with a linear system of

∑d
i=1

(
n
i

)
variables, where each product of

i initial variables (1 ≤ i ≤ d) is seen as a new variable. The solution is then found by a
Gaussian reduction (or by more sophisticated techniques) whose time complexity is roughly

(
d∑
i=1

(
n

i

))ω
' nωd ,

where ω is the exponent of the matrix inversion algorithm, i.e., ω ' 2.37 [CW90]. Some
much more sophisticated techniques exist for solving polynomial systems over F2. Actually,
this problem has been extensively studied in computer algebra and it is well-known that some
methods based on Gröbner basis algorithms efficiently apply, see e.g. [Fau99, Ste04, Fau02].
Some ad-hoc techniques including XL [CKPS00] or XSL [CP02] have also been proposed. See
e.g. [Cid04] and [CAA+08] for a discussion on these algorithms.

Example 2.4. (inspired from [KR11]). Let us consider a toy-cipher composed of a single-
round key-alternating cipher which operates on 4-bit inputs under an 8-bit key (K0,K1).

m −→
K0
↓
⊕ −→ u −→ S −→ v −→

K1
↓
⊕ −→ c

The inner permutation of F4
2 is defined as in Table 2.1.

Using the algebraic expressions of its coordinates, we can now express each ciphertext bit
ci, 1 ≤ i ≤ 4, as a multivariate polynomial in the plaintext bits m1, . . . ,m4 and in the key
bits k1, . . . , k8:

c1 + k5 = 1 + (m1 + k1) + (m3 + k3) + (m2 + k2)(m3 + k3) + (m4 + k4) + (m2 + k2)(m4 + k4)

+(m3 + k3)(m4 + k4) + (m1 + k1)(m3 + k3)(m4 + k4) + (m2 + k2)(m3 + k3)(m4 + k4)

c2 + k6 = 1 + (m1 + k1)(m2 + k2) + (m1 + k1)(m3 + k3) + (m1 + k1)(m2 + k2)(m3 + k3) + (m4 + k4)

+(m1 + k1)(m4 + k4) + (m1 + k1)(m2 + k2)(m4 + k4) + (m1 + k1)(m3 + k3)(m4 + k4)

c3 + k7 = 1 + (m2 + k2) + (m1 + k1)(m2 + k2) + (m2 + k2)(m3 + k3) + (m4 + k4) + (m2 + k2)(m4 + k4)

+(m1 + k1)(m2 + k2)(m4 + k4) + (m3 + k3)(m4 + k4) + (m1 + k1)(m3 + k3)(m4 + k4)

c4 + k8 = 1 + (m3 + k3) + (m1 + k1)(m3 + k3) + (m4 + k4) + (m2 + k2)(m4 + k4) + (m3 + k3)(m4 + k4)

+(m1 + k1)(m3 + k3)(m4 + k4) + (m2 + k2)(m3 + k3)(m4 + k4)

2.2. Exploiting the degree of the Sbox 29

Every plaintext-ciphertext pair then provides four equations in the eight key-bits:

c1 + k5 = S1(m) + (1 +m3m4)k1 + (m3 +m4 +m3m4)k2 + (1 +m2 +m4 +m1m4 +m2m4)k3

+(1 +m2 +m3 +m1m3 +m2m3)k4 +m4k1k3 +m3k1k4 + (1 +m4)k2k3 + (1 +m3)k2k4

+(1 +m1 +m2)k3k4 + k1k3k4 + k2k3k4

c2 + k6 = S2(m) + (m2 +m3 +m2m3 +m4 +m2m4 +m3m4)k1 + (m1 +m1m3 +m1m4)k2

+(m1 +m1m2 +m1m4)k3 + (1 +m1 +m1m2 +m1m3)k4 + (1 +m3 +m4)k1k2

+(1 +m2 +m4)k1k3 + (1 +m2 +m3)k1k4 +m1k2k3 +m1k2k4 +m1k3k4 + k1k2k3

+k1k2k4 + k1k3k4

c3 + k7 = S3(m) + (m2 +m2m4 +m3m4)k1 + (1 +m1 +m3 +m4 +m1m4)k2

+(m2 +m4 +m1m4)k3 + (1 +m2 +m3 +m1m2 +m1m3)k4 + (1 +m4)k1k2

+m4k1k3 + (m2 +m3)k1k4 + k2k3 +m1k3k4 + (1 +m1)k2k4 + k3k4 + k1k2k4 + k1k3k4

c4 + k8 = S4(m) + (m3 +m3m4)k1 + (m4 +m3m4)k2 + (1 +m1 +m4 +m1m4 +m2m4)k3

+(1 +m2 +m3 +m1m3 +m2m3)k4 + (1 +m4)k1k3 + (m3)k1k4 +m4k2k3

+(1 +m3)k2k4 + (1 +m1 +m2)k3k4 + k1k3k4 + k2k3k4

For instance, the knowledge of E(0) = 0x4 leads to

c1 + k5 = 1 + k1 + k3 + k4 + k2k3 + k2k4 + k3k4 + k1k3k4 + k2k3k4

c2 + k6 = 1 + k4 + k1k2 + k1k3 + k1k4 + k1k2k3 + k1k2k4 + k1k3k4

c3 + k7 = 1 + k2 + k4 + k1k2 + k2k3 + k2k4 + k3k4 + k1k2k4 + k1k3k4

c4 + k8 = 1 + k3 + k4 + k1k3 + k2k4 + k3k4 + k1k3k4 + k2k3k4

By collecting such equations, we get a polynomial system of degree 3 with 8 unknowns. Then,
we can linearize the system by identifying each monomial in the key bits of degree 2 or 3 with
a new unknown:

k9 = k1k2, k10 = k1k3, . . . k14 = k3k4, k15 = k1k2k3, . . . , k18 = k2k3k4

transforming the previous four equations into

c1 + k5 = 1 + k1 + k3 + k4 + k12 + k13 + k14 + k16 + k18

c2 + k6 = 1 + k4 + k9 + k10 + k11 + k15 + k17 + k16

c3 + k7 = 1 + k2 + k4 + k9 + k12 + k13 + k14 + k17 + k16

c4 + k8 = 1 + k3 + k4 + k10 + k13 + k14 + k16 + k18

This way, we get a linear system with 8 +
(
4
2

)
+
(
4
3

)
= 18 unknowns, which can be solved as

far as it has enough equations, i.e., as far as 5 plaintext-ciphertext pairs are known, leading
to 20 equations.

Practical block ciphers have obviously more than a single round. In this case, the degree
of the polynomial system is expected to grow as (degS)r when the number of rounds r
increases. Solving such a system then becomes infeasible even for a few rounds only and with
sophisticated techniques. An alternative solution consists in using some intermediate variables
in order to handle equations of a reasonable degree. For instance, let us consider the following

30 Chapter 2. Cryptographic Sboxes

two-round key-alternating cipher

m→
K0
↓
⊕→ u→ S → v →

K1
↓
⊕→ w → S → x→

K2
↓
⊕→ c .

Then, we can consider the 4 bits of the intermediate value v as four additional unknowns.
With this method, a plaintext-ciphertext pair provides 8 equations of degree 3 involving 16
unknowns (the twelve key-bits and the four bits of v). Any additional plaintext-ciphertext
pair provides four new equations, but introduces four more unknowns. Therefore, from N
plaintext-ciphertext pairs, we obtain a system with 8N equations and (12 + 4N) unknowns.

2.2.2 Enhanced algebraic attack

Courtois and Pieprzyk [CP02] have pointed out that it might be possible to lower the degree
of the polynomial system that we need to solve even if the round function has a high degree.
Indeed, the attacker may equivalently exploit any Boolean relation between the plaintext bits,
the ciphertext bits and the key-bits.

Example 2.5. If we come back to our previous toy-cipher, we can check that, even if the
inner permutation S has degree 3, there exist some Boolean relations of degree 2 only between
its inputs and outputs, for instance it can be checked that

x2x4 + x2S1(x1, . . . , x4) + x2S2(x1, . . . , x4) = 0

for all inputs. Any plaintext-ciphertext pair for our single-round toy-cipher then leads to the
following quadratic equation

(m4 + c1 + c2)k2 +m2k4 +m2k5 +m2k6 + k2k4 + k2k5 + k2k6 = m2m4 +m2c1 +m2c2 .

A total of 21 linearly independent relations of degree of 2 between the input and output bits
of S can be exhibited, implying that the derived polynomial system is easier to solve than the
original cipher equations.

An important quantity which affects the complexity of this algebraic attack is obviously
the lowest degree we can reach for a Boolean relation between the inputs and outputs of the
round permutation.

Proposition 2.6. Let S be a function from Fn2 into Fn2 . The Boolean relations of degree
at most d between the inputs and outputs of S are the elements of the kernel of the binary
matrix with

∑d
i=0

(
2n
i

)
rows and 2n columns whose rows correspond to the value vectors of the

n-variable Boolean function

xuS(x)v, u, v ∈ Fn2 such that wt(u) + wt(v) ≤ d .

Most notably, the number of linearly independent relations of degree at most d is at least

d∑
i=0

(
2n

i

)
− 2n .

2.2. Exploiting the degree of the Sbox 31

Proof. This result comes from the fact that the relations between x and S(x) correspond to
the functions ∑

u,v∈Fn
2

cu,vx
u [S(x)]v

which vanish for all possible inputs x. Moreover, the degree of such a relation corresponds
to the maximal value of wt(u) + wt(v) such that cu,v = 1. Any such relation is then defined
by a linear combination of the monomials xuS(x)v which vanish at all points, i.e., an element
in the kernel of the matrix defined by the value vectors of all these monomials. The involved
matrix has 2n columns, and

∑d
i=0

(
2n
i

)
rows (corresponding to all possible pairs (u, v)). Then,

the dimension of its kernel exceeds the difference between the number of rows and the number
of columns. �

We deduce for instance that any function from F4
2 into F4

2 has at least

2∑
i=0

(
8

i

)
− 24 = 37− 16 = 21

quadratic relations between its inputs and outputs, as we observed in the toy-example.

Case of the AES. The AES Sbox can be seen as the composition of the inversion over F28

with an affine function. More precisely,

S : A ◦ ϕ−1 ◦ (ϕ(x))254 ,

where ϕ is the isomorphism from F8
2 into F28 defined by the basis {1, α, . . . , α7} and α is a

root of X8 +X4 +X3 +X + 1. By definition, the inversion Inv over F28 satisfies

x2 Inv(x) = x2x254 = x .

Since x 7→ x2 is an F2-linear mapping over F8
2, we deduce that this relation corresponds to

eight Boolean relations over F2 between the inputs and outputs of S. Actually, there exists
39 such quadratic relations for the AES Sbox. This is much higher than expected for a
randomly chosen mapping over F8

2, since Proposition 2.6 shows that there is no relation of
degree 3 for a random 8-bit Sbox.

Using these relations of degree 2, a quadratic system can be formed by introducing in-
termediate variables corresponding to the outputs of the successive rounds. However, solving
this system is infeasible due to its size: 8000 quadratic equations of 1600 variables.

2.2.3 Other attacks exploiting a low degree

There are some other attacks exploiting that the Sbox has a low degree. A first example is
the higher-order differential cryptanalysis [Knu95] which exploits the fact that the Boolean
function corresponding to some ciphertext bit has a low degree. This property is then used as
a distinguisher on the reduced cipher, using the same approach as classical statistical attacks
like differential cryptanalysis, even if the distinguishing relation holds with probability 1. A
nice example is the cryptanalysis of the KN cipher by Jakobsen and Knudsen [JK97]. The
degree d of the Boolean function involved in the attack determines the data complexity of
the cryptanalysis, which is equal to 2d+1 chosen plaintext-ciphertext pairs. Since higher-order

32 Chapter 2. Cryptographic Sboxes

differential attacks on block ciphers usually exploit a low degree of several iterations of the
round function, it requires a careful analysis of the growth of the degree when the function
is iterated. This analysis depends on the general structure of the cipher (e.g. SPN or Feistel
structure). Some results on SPN can be found in [BCD11] for instance. The more recent cube
attacks [DS09] and cube testers [ADMS09] can be seen as variants of higher-order differential
cryptanalysis.

A different type of attacks is the so-called interpolation attack introduced in [JK97]. It
exploits the fact that the encryption function has a low univariate degree. For any given key,
the univariate representation of the encryption (or decryption) function can then be recovered
by Lagrange interpolation as soon as enough plaintext-ciphertext pairs are known. The data
complexity is then determined by the univariate degree of the function. An interesting point
is that this technique provides the attacker with a way to decrypt any ciphertext but does not
recover the key.

2.3 Linear properties of Sboxes

2.3.1 Linear cryptanalysis

The principle of linear cryptanalysis has been originally presented by Gilbert, Chassé and
Tardy-Corfdir [GC91, TCG91] on the block cipher FEAL, and then applied to DES by Mat-
sui [Mat94, Mat95]. It exploits, as a distinguisher a linear Boolean relation between the input
bits, output bits and the key-bits of the reduced cipher, which is biased, i.e., which holds with a
probability different from 1/2. In other words, it uses a triple of masks (α, β, γ) ∈ Fn2×Fn2×Fκ2
such that

Prx[α · x+ β ·Gk(x) + γ · k = 0] =
1

2
(1 + ε) with ε 6= 0 .

Example 2.6. We consider the same cipher with a 4-bit block and an 8-bit key as in Exam-
ple 2.4. Recall that its inner permutation is defined by

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5
S1(x) 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1
S2(x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0
S3(x) 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1
S4(x) 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0

It can be checked that the linear relation defined by the input mask α = (1, 0, 0, 1) = 0x9 and
β = (0, 1, 0, 0) = 0x2 has the following value vector (with hexadecimal notation):

x1 + x4 + S2(x) = 0x7ffd .

In particular, its Hamming weight is 14 implying that this relation holds with probability
2
16 = 1

8 . From this biased relation, we can derive a distinguisher for the whole cipher described
in Example 2.4:

(α ·m) + (β · c) = (α ·K0) + (β ·K1) + 1

with probability 7/8. It recovers the key information-bit (k1+k4+k5+k8) by a simple majority
vote between the binary values taken by m1 +m4 + c2 + 1 for a few plaintext-ciphertext pairs.

2.3. Linear properties of Sboxes 33

2.3.2 Linearity of an Sbox

In a linear attack, we then search for the most biased linear relation between the input and
output bits of the Sbox. For a pair of masks (a, b), the corresponding bias is determined by
the Walsh coefficient of Sb at point a, E(Sb + ϕa). These biases are usually represented as a
two-dimensional table E(a, b) = E(Sb + ϕa) called the linear-approximation table.

Example 2.7. The linear-approximation table of the previous Sbox corresponds to the fol-
lowing table.

a \ b 1 2 3 4 5 6 7 8 9 a b c d e f
1 -4 . 4 . -4 8 -4 4 8 4 . -4 . 4 .
2 4 -4 . -4 . . 4 4 8 . 4 8 -4 -4 .
3 8 4 4 -4 4 4 -4 -4 -4 . 8
4 . -4 4 4 -4 . . -8 . 4 4 4 4 . 8
5 -4 4 . 4 8 . 4 -4 8 . -4 . 4 -4 .
6 -4 . 4 . 4 8 4 4 -8 4 . 4 . -4 .
7 . . . 8 . -8 8 . 8 . .
8 . -4 4 -8 . 4 4 -8 . -4 -4 . . 4 -4
9 -4 -12 . . 4 -4 . 4 . . -4 -4 . . 4
a -4 . -12 -4 . 4 . -4 . 4 . . -4 . 4
b . . . 4 -4 4 -4 . . -8 -8 4 -4 -4 4
c . . . -4 -4 -4 -4 . . 8 -8 4 4 -4 -4
d -4 . 4 4 . -4 . -4 . 4 . . -12 . -4
e 4 -4 . . 4 4 -8 -4 . . 4 -4 . -8 -4
f -8 4 4 -8 . -4 -4 . . -4 4 . . -4 4

It can be checked that E(0x9, 0x2) = −12 as exploited in the previously described attack.

A major parameter is then the highest magnitude of an element in this table, which
corresponds to the linearity of the Sbox.

Definition 2.7. Let S be function from Fn2 into Fm2 . Then, the linearity of S is the highest
linearity of any of its non-trivial components, i.e.

L(S) = max
b∈(Fm

2)∗
L(Sb) = max

a,b∈(Fm
2)∗
|E(Sb + ϕa)| .

The linearity of S is now related to the weights of the following code.

Proposition 2.8 ([CCZ98]). Let S be an Sbox from Fn2 into Fn2 . Let us consider the code ΓS
having for generator matrix the following (2n+ 1)× 2n-matrix S(0) S(1) S(2) . . . S(2n − 1)

0 1 2 . . . 2n − 1
1 1 1 . . . 1

where the integers in the first two rows of the matrix correspond to n-bit vectors, i.e., each
element in these two rows is an n-bit column vector. The Hamming weights of this code are{

2n−1 − 1

2
E(Sb + ϕa); 2n−1 +

1

2
E(Sb + ϕa), a, b ∈ Fn2

}

34 Chapter 2. Cryptographic Sboxes

The proof is similar to the proof of Proposition 1.19. Note that the case a and b equal
to zero should be included in order to take into account the words of R(1, n). Based on
some relationships satisfied by the weight distribution of a code with such parameters, we can
deduce a lower bound on the linearity of an Sbox.

Proposition 2.9. [CV95, CCZ98] Let S be a function from Fn2 into Fn2 . Then

L(S) ≥ 2
n+1
2 .

The Sboxes for which equality holds are called almost bent (AB) functions. They exist for n
odd only.

When n is even, almost bent functions do not exist, and the lowest possible linearity for
an n-bit Sbox is not known. But, the best known value is L(S) = 2

n
2
+1, and this value is tight

for a very few families of Sboxes, including the inversion over F2n which is used in the AES.

2.4 Differential properties of Sboxes

2.4.1 Differential cryptanalysis

Differential cryptanalysis has been introduced by Biham and Shamir [BS91]. It exploits as a
distinguishing property the existence of a differential, i.e., of a pair of differences (a, b) in Fn2
such that

PrX [Ek(X + a) + Ek(X) = b]

is high. For a randomly chosen permutation, the derivative X 7→ Ek(X + a) + Ek(X) is
expected to take every possible nonzero value with uniform probability. It follows that a
differential can be used as a distinguisher if the corresponding probability p is significantly
different from 2−n.

2.4.2 Differential uniformity

Then, a relevant parameter for evaluating the resistance of a cipher against differential attacks
is the maximal probability that a given nonzero input difference leads to a given output
difference for the Sbox. This quantity is determined by the differential uniformity of S.

Definition 2.10 (Differential uniformity [Nyb93]). Let S be a function from Fn2 into Fm2 . For
any a ∈ Fn2 and b ∈ Fm2 , we define

δ(a, b) = #{x ∈ Fn2 : S(x+ a) + S(x) = b} .

Then the multi-set {δ(a, b), a ∈ Fn2 \ {0}, b ∈ Fm2 } is the differential spectrum of S, and its
maximum

δS = max
a6=0,b

δ(a, b)

is the differential uniformity of S.

The values (δ(a, b))a∈Fn
2 ,b∈Fm

2
are usually represented as a two-dimensional array called the

difference table of S.

Example 2.8. The difference table of the Sbox in Table 2.1 is as follows.

2.5. Link between differential uniformity and linearity 35

a \ b 1 2 3 4 5 6 7 8 9 a b c d e f
1 2 0 4 2 0 2 2 0 0 0 2 0 0 0 2
2 2 2 0 2 4 0 2 0 4 0 0 0 0 0 0
3 2 0 4 0 2 0 0 0 0 6 0 0 0 2 0
4 2 0 2 4 0 0 0 2 2 0 0 2 0 0 2
5 0 4 2 0 0 0 2 2 0 0 4 2 0 0 0
6 4 0 0 0 0 4 0 4 0 0 0 0 4 0 0
7 0 2 0 0 2 2 2 0 2 2 2 0 0 2 0
8 0 4 0 0 0 4 0 0 0 0 0 0 4 0 4
9 2 2 0 2 2 0 0 0 4 0 0 2 0 2 0
a 0 0 2 2 0 2 2 2 0 2 2 0 0 0 2
b 0 0 2 0 4 0 2 2 0 0 0 6 0 0 0
c 0 2 0 0 0 2 0 0 2 2 2 2 0 4 0
d 2 0 0 0 2 0 0 0 0 2 0 0 8 2 0
e 0 0 0 0 0 0 4 0 0 0 4 0 0 4 4
f 0 0 0 4 0 0 0 4 2 2 0 2 0 0 2

The lowest differential uniformity that can be achieved by an Sbox is determined in the
following proposition.

Proposition 2.11 ([NK93]). Let S be a function from Fn2 into Fn2 . Then, its differential
uniformity satisfies

δ(S) ≥ 2 .

The Sboxes for which equality holds are called almost perfect nonlinear (APN) functions.

Proof. The proof comes from the fact that

δ(a, b) = #{x ∈ Fn2 , S(x+ a) + S(x) = b}

is always even since, if x is a solution of this equation, (x+ a) is a solution too. �

The APN terminology comes from the fact that we call perfect nonlinear the functions
from Fn2 into Fm2 such that δ(S) = 2n−m. It can be proved that the perfect nonlinear functions
correspond to the functions with linearity L(S) = 2

n
2 , i.e., such that all their components are

bent. Such functions exist only when n ≥ 2m [Nyb91]. Therefore, when m = n, the optimal
differential uniformity is obtained for the almost perfect nonlinear functions.

2.5 Link between differential uniformity and linearity

The differential spectrum and the Walsh spectrum of an Sbox are strongly related. This link
appears under several forms. We first focus on the coding approach.

We have seen in Proposition 2.8 that the Walsh spectrum of an Sbox is related to the
weight distribution of the code ΓS with generator matrix

G =

 S(0) S(1) S(2) . . . S(2n − 1)
0 1 2 . . . 2n − 1
1 1 1 . . . 1

 (2.1)

Now, we show that the APN property is also related to this code.

36 Chapter 2. Cryptographic Sboxes

Proposition 2.12 ([CCZ98]). Let S be an Sbox from Fn2 into Fn2 . Let us consider the code
ΓS defined by the generator matrix in Eq. (2.1). Then, the minimum distance of Γ⊥S is equal
to 6 if S is APN and equal to 4 otherwise.

Proof. It can be easily checked that the minimum distance of Γ⊥S is even (since ΓS contains the
all-one codeword), and at least 4. Moreover, it cannot be greater than 6 [DZ84, BT93]. Now,
a codeword of weight 4 of Γ⊥S corresponds to four columns of the generator matrix G which
sum to zero (since the words of Γ⊥S are the column vectors c such that Gc = 0). Therefore,
Γ⊥S has minimum distance 4 if and only if there exist four distinct elements x1, x2, x3, x4 such
that

x1 + x2 + x3 + x4 = 0 and S(x1) + S(x2) + S(x3) + S(x4) = 0 .

Replacing x2 by x1 + a, we get that it is equivalent to the existence of x1, x3 and a such that

S(x1) + S(x1 + a) = S(x3) + S(x3 + a)

since x4 = x3 + (x1 + x2) = x3 + a. All four xi are distinct if and only if they correspond to
four distinct solutions of the equation

S(x+ a) + S(x) = b

with b = S(x1) + S(x1 + a). This equivalently means that S is not APN. �

The APN and AB properties then correspond to a particular value of the minimum distance
of the code Γ⊥S and ΓS . Using the relations between the weight distributions of the two codes,
it can be deduced that these two properties are related as follows.

Proposition 2.13 ([CV95, CCZ98]). Any almost bent Sbox is also APN.

This result comes from the fact that, if the minimum distance of ΓS is maximal (i.e., equal
to 2n−1−2

n−1
2), then the minimum distance of Γ⊥S is also maximal (i.e., equal to 6). It is worth

noticing that the converse does not hold in general, except for Sboxes of degree 2 [CCZ98].

Another approach used in [CV95] and revisited in [BN13] provides a relation between
the differential spectrum and the squared Walsh coefficients. Indeed, the squared Walsh
coefficients of an Sbox correspond to the Walsh transform of the entries in its difference table.

Theorem 2.14. [CV95, BN13] Let S be a function from Fn2 into Fn2 . Let δ(a, b) denote the
entries in the difference table of S. Then, for any λ and µ in Fn2 , we have

E2(Sµ + ϕλ) =
∑
a∈Fn

2

∑
b∈Fn

2

(−1)a·λ+b·µδ(a, b) .

Conversely, for any a and b in Fn2 ,

δ(a, b) = 2−2n
∑
λ∈Fn

2

∑
µ∈Fn

2

(−1)a·λ+b·µE2(Sµ + ϕλ) .

2.6. Sboxes with good cryptographic properties 37

Proof. We prove the second formula only, since the other one is directly derived by inverting
the Walsh transform. Let a and b in Fn2 . Then

A = 2−2n
∑
λ∈Fn

2

∑
µ∈Fn

2

(−1)a·λ+b·µE2(Sµ + ϕλ)

= 2−2n
∑
λ∈Fn

2

∑
µ∈Fn

2

(−1)a·λ+b·µ

∑
x∈Fn

2

(−1)µ·S(x)+λ·x

∑
y∈Fn

2

(−1)µ·S(y)+λ·y

= 2−2n

∑
x∈Fn

2

∑
y∈Fn

2

∑
λ∈Fn

2

(−1)λ·(x+y+a)

∑
µ∈Fn

2

(−1)µ·(S(x)+S(y)+b)

= #{(x, y) ∈ Fn2 × Fn2 : x+ y = a and S(x) + S(y) = b}
= δ(a, b) .

�

It is worth noticing that, while a function can be entirely recovered from the knowledge
of its Walsh transform (or of its linear approximation table), this is not the case if only the
difference table is known. Indeed, the difference table equivalently provides the magnitude of
the Walsh coefficients, but does not give any information on the signs.

2.6 Sboxes with good cryptographic properties

We now give some examples of Sboxes with low linearity and differential uniformity. For small
values of n, such Sboxes are classified. As previously explained for Boolean functions, this
classification takes advantage of any equivalence relation under which the main cryptographic
properties are invariant. In the case of Sboxes, the relevant relation is the affine equivalence
in the following sense

2.6.1 Affine equivalence

Definition 2.15. Two n-bit Sboxes S1 and S2 are said to be affine equivalent if there exist
two affine permutations of Fn2 , A1 and A2, such that

S2 = A2 ◦ S1 ◦A1

Proposition 2.16. Let S1 and S2 be two affine equivalent Sboxes, with

S2 = A2 ◦ S1 ◦A1 .

Then, their difference tables and their linear-approximation tables satisfy

δS2(a, b) = δS1(L1(a), L−12 (b))

ES2(a, b) = ES1((L−11)T (a), LT2 (b))

where L1 and L2 are the linear parts of A1 and A2.

38 Chapter 2. Cryptographic Sboxes

Proof. Let Ai(x) = Li(x) + ci. We first consider the differential spectrum. An element x ∈ Fn2
satisfies S2(x+ a) + S2(x) = b if and only if

L2

[
S1
(
L1(x) + L1(a) + c1

)
+ S1

(
L1(x) + c1

)]
= b ,

or equivalently
S1
(
y + L1(a)

)
+ S1(y) = L−12 (b) .

For the linear-approximation table, we use that

b · S2(x) + a · x = b · c2 + b · L2(S1(y)) + a ·A−11 (y)

= b · c2 + LT2 (b) · S1(y) + a · L−11 (c1) + (L−11)T (a) · y .

�

2.6.2 Odd number of variables

When n is odd, almost bent Sboxes offer the best cryptographic properties since they have
both the lowest possible linearity and differential uniformity. The list of all known almost bent
power permutations of n variables, n odd, is given in Table 2.2.

exponent s

Quadratic exponents 2i + 1 with gcd(i, n) = 1, [Gol68, Nyb93]

1 ≤ i ≤ t
Kasami exponents 22i − 2i + 1 with gcd(i, n) = 1 [Kas71]

2 ≤ i ≤ t
Welch exponent 2t + 3 [Dob99b, CCD00]

Niho exponent 2t + 2
t
2 − 1 is t is even [Dob99a, HX01]

2t + 2
3t+1

2 − 1 if t is odd

Table 2.2: Known almost bent power permutations S : x 7→ xs over F2n with n = 2t+ 1 (up
to inversion).

A few AB permutations have been found which are not equivalent to a power permutation.
For instance, when n is odd, divisible by 3 and not by 9.

S(x) = x2
i+1 + ux2

j n
3 +2(3−j)n3 +i

with gcd(i, n) = 1 and j = i
n

3
mod 3

is an AB permutation [BCL08].

2.6.3 4-bit permutations

When n is even, almost bent functions do not exist and finding optimal functions is then much
more difficult. For n = 4, 4-bit permutations have been classified up to affine equivalence

2.6. Sboxes with good cryptographic properties 39

in [LP07] and in [De 07]. The smallest differential uniformity and linearity which can be
achieved for a 4-bit permutation S are

δ(S) ≥ 4 and L(S) ≥ 8 .

Up to affine equivalence, there are 16 classes of optimal permutations [LP07]. All of them
have degree 3 but half of them have at least one component of degree 2 which may be an
unsuitable property. Then, there are eight equivalence classes having all their non-trivial
components of degree 3. A representative in each class is given in Table 2.3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
G0 0 1 2 13 4 7 15 6 8 11 12 9 3 14 10 5
G1 0 1 2 13 4 7 15 6 8 11 14 3 5 9 10 12
G2 0 1 2 13 4 7 15 6 8 11 14 3 10 12 5 9
G3 0 1 2 13 4 7 15 6 8 12 5 3 10 14 11 9
G4 0 1 2 13 4 7 15 6 8 12 9 11 10 14 5 3
G5 0 1 2 13 4 7 15 6 8 12 11 9 10 14 3 5
G6 0 1 2 13 4 7 15 6 8 12 11 9 10 14 5 3
G7 0 1 2 13 4 7 15 6 8 12 14 11 10 9 3 5
G8 0 1 2 13 4 7 15 6 8 14 9 5 10 11 3 12
G9 0 1 2 13 4 7 15 6 8 14 11 3 5 9 10 12
G10 0 1 2 13 4 7 15 6 8 14 11 5 10 9 3 12
G11 0 1 2 13 4 7 15 6 8 14 11 10 5 9 12 3
G12 0 1 2 13 4 7 15 6 8 14 11 10 9 3 12 5
G13 0 1 2 13 4 7 15 6 8 14 12 9 5 11 10 3
G14 0 1 2 13 4 7 15 6 8 14 12 11 3 9 5 10
G15 0 1 2 13 4 7 15 6 8 14 12 11 9 3 10 5

Table 2.3: The 8 classes of optimal 4-bit permutations [LP07].

2.6.4 6-bit permutations

It has been conjectured for a long time that APN permutations of an even number of variables
did not exist. This has been disproved by Dillon in 2009 who has exhibited an APN permuta-
tion of 6 variables [BDMW10]. But this is (up to composition by affine transformations) the
only known example of APN permutation of an even number of variables. This permutation
is defined by

S = {0, 54, 48, 13, 15, 18, 53, 35, 25, 63, 45, 52, 3, 20, 41, 33, 59, 36, 2, 34, 10, 8, 57, 37, 60, 19, 42, 14, 50,

26, 58, 24, 39, 27, 21, 17, 16, 29, 1, 62, 47, 40, 51, 56, 7, 43, 44, 38, 31, 11, 4, 28, 61, 46, 5, 49, 9, 6, 23,

32, 30, 12, 55, 22} .

It satisfies
δ(S) = 2 , degS = 4 and L(S) = 16 .

The corresponding univariate polynomial over F26 contains 53 nonzero monomials (out of
the 56 possible monomials of degree at most 4), see e.g. [BN15, Page 131].

40 Chapter 2. Cryptographic Sboxes

2.6.5 Sboxes of an even number of variables

For a permutation depending on an even number of variables n, n ≥ 8, the best known
differential uniformity is δ(S) = 4. Then, we usually search for permutations S with

δ(S) = 4 and L(S) = 2
n+2
2 ,

even if we do not know whether these two values are optimal or not. Table 2.4 provides the
list of all known power permutations over F2n , n even, which achieve these values.

2i + 1, gcd(i, n) = 2 n ≡ 2 mod 4 [Gol68]

22i − 2i + 1, gcd(i, n) = 2 n ≡ 2 mod 4 [Kas71]

2n − 2 [LW90]

Table 2.4: Known power permutations S : x 7→ xs over F2n with n = 2t (up to inversion) with
the best known linearity and differential uniformity.

It is worth noticing that, when n is divisible by 4, the inversion is the only known permu-
tation of n variables (up to composition by affine transformations) which reaches these two
values.

Bibliography

[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube testers
and key recovery attacks on reduced-round MD6 and trivium. In Fast Software
Encryption - FSE 2009, volume 5665 of Lecture Notes in Computer Science, pages
1–22. Springer, 2009.

[BCD11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-order dif-
ferential properties of Keccak and Luffa. In Fast Software Encryption - FSE 2011,
volume 6733 of Lecture Notes in Computer Science, pages 252–269. Springer, 2011.

[BCL08] Lilya Budaghyan, Claude Carlet, and Gregor Leander. Two classes of quadratic
APN binomials inequivalent to power functions. IEEE Transactions on Informa-
tion Theory, 54(9):4218–4229, 2008.

[BDMW10] K.A. Browning, J.F. Dillon, M.T. McQuistan, and A.J. Wolfe. An APN permu-
tation in dimension six. In Finite Fields: Theory and Applications, volume 518
of Contemporary Mathematics, pages 33–42. AMS, 2010.

[Bla83] Richard E Blahut. Theory and practice of error control codes. Addison-Wesley,
1983.

[BN13] Céline Blondeau and Kaisa Nyberg. New links between differential and linear
cryptanalysis. In Advances in Cryptology - EUROCRYPT 2013, volume 7881 of
Lecture Notes in Computer Science, pages 388–404. Springer, 2013.

[BN15] Céline Blondeau and Kaisa Nyberg. Perfect nonlinear functions and cryptography.
Finite Fields and Their Applications, 32:120–147, 2015.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

[BT93] A.E. Brouwer and L.M.G.M. Tolhuizen. A sharpening of the Johnsson bound for
binary linear codes and the nonexistence of linear codes with Preparata parame-
ters. Designs, Codes and Cryptography, 3(2):95–98, 1993.

[BW72] Elwyn R. Berlekamp and Lloyd R. Welch. Weight distributions of the cosets
of the (32, 6) Reed-Muller code. IEEE Transactions on Information Theory,
18(1):203–207, 1972.

[CAA+08] Carlos Cid, Martin Albrecht, Daniel Augot, Anne Canteaut, and Ralf-Philipp
Weinmann. D.STVL.7 - algebraic cryptanalysis of symmetric primitives. Report

41

42 Bibliography

of the ECRYPT European Network of Excellence, July 2008. https://www.rocq.
inria.fr/secret/Anne.Canteaut/Publications/dstvl7.pdf.

[Can02] Anne Canteaut. On the correlations between a combining function and functions
of fewer variables. In IEEE Information Theory Workshop - ITW 2002, pages
78–81, Bangalore, Inde, October 2002. IEEE Press.

[CCD00] Anne Canteaut, Pascale Charpin, and Hans Dobbertin. Binary m-sequences with
three-valued crosscorrelation: A proof of welch’s conjecture. IEEE Transactions
on Information Theory, 46(1):4–9, 2000.

[CCZ98] Claude Carlet, Pascale Charpin, and Victor Zinoviev. Codes, bent functions and
permutations suitable for DES-like cryptosystems. Designs, Codes and Cryptog-
raphy, 15(2):125–156, 1998.

[CHLL97] Gérard D. Cohen, Iiro S. Honkala, Simon Litsyn, and Antoine Lobstein. Covering
codes. North-Holland, 1997.

[Cid04] Carlos Cid. Some Algebraic Aspects of the Advanced Encryption Standard. In
Advanced Encryption Standard - AES 2004, volume 3373 of Lecture Notes in
Computer Science, pages 58–66. Springer, 2004.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient
algorithms for solving overdefined systems of multivariate polynomial equations.
In Advances in Cryptology - EUROCRYPT 2000, volume 1807 of Lecture Notes
in Computer Science, pages 392–407. Springer-Verlag, 2000.

[CP02] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with overde-
fined systems of equations. In Advances in Cryptology - ASIACRYPT’02, volume
2501 of Lecture Notes in Computer Science, pages 267–287. Springer-Verlag, 2002.

[CT00] Anne Canteaut and Mickaël Trabbia. Improved fast correlation attacks using
parity-check equations of weight 4 and 5. In Advances in Cryptology - EURO-
CRYPT’2000, volume 1807 of Lecture Notes in Computer Science, pages 573–588.
Springer-Verlag, 2000.

[CV95] Florent Chabaud and Serge Vaudenay. Links between differential and linear crypt-
analysis. In Advances in Cryptology - EUROCRYPT’94, volume 950 of Lecture
Notes in Computer Science, pages 356–365. Springer-Verlag, 1995.

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
programming. Journal of Symbolic Computation, (9):251–280, 1990.

[De 07] Christophe De Cannière. Analysis and Design of Symmetric Encryption Algo-
rithms. PhD thesis, KU Leuven, 2007.

[Del73] P. Delsarte. Four fundamental parameters of a code and their combinatorial
signifiance. Information and Control, 23(5):407–438, décembre 1973.

[Dob94] Hans Dobbertin. Construction of bent functions and balanced Boolean functions
with high nonlinearity. In Fast Software Encryption - FSE’94, volume 1008 of
Lecture Notes in Computer Science, pages 61–74. Springer-Verlag, 1994.

Bibliography 43

[Dob99a] Hans Dobbertin. Almost perfect nonlinear power functions on GF (2n): the Niho
case. Information and Computation, 151(1-2):57–72, 1999.

[Dob99b] Hans Dobbertin. Almost perfect nonlinear power functions on GF (2n): the Welch
case. IEEE Transactions on Information Theory, 45(4):1271–1275, 1999.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials.
In Advances in Cryptology - EUROCRYPT 2009, volume 5479 of Lecture Notes
in Computer Science, pages 278–299. Springer, 2009.

[DZ84] Stefan M. Dodunekov and Victor Zinoviev. A note on Preparata codes. In Pro-
ceedings of the 6th Intern. Symp. on Information Theory, Moscow-Tashkent Part
2, pages 78–80, 1984.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
(F4). Journal of Pure and Applied Algebra, 139(1-3):61–88, 1999.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5). In Proceedings of the 2002 international sympo-
sium on Symbolic and algebraic computation. ACM, 2002.

[GC91] Henri Gilbert and Guy Chassé. A Statistical Attack of the FEAL-8 Cryptosys-
tem. In Advances in Cryptology - CRYPTO’90, volume 537 of Lecture Notes in
Computer Science, pages 22–33. Springer-Verlag, 1991.

[GG04] Solomon W. Golomb and Guang Gong. Signal Design for Good Correlation: For
Wireless Communication, Cryptography, and Radar. Cambridge University Press,
2004.

[Gol68] Robert Gold. Maximal recursive sequences with 3-valued recursive crosscorrela-
tion functions. IEEE Transactions on Information Theory, 14:154–156, 1968.

[Hou93] Xiang-Dong Hou. Further results on the covering radii of the Reed-Muller codes.
Designs, Codes and Cryptography, 3:167–177, 1993.

[Hou96a] Xiang-Dong Hou. Covering radius of the Reed-Muller code R(1, 7) - a simpler
proof. Journal of Combinatorial Theory, Series A, (74):337–341, 1996.

[Hou96b] Xiang-Dong Hou. On the covering radius of R(1,m) in R(3,m). IEEE Transac-
tions on Information Theory, 42(3):1035–1037, 1996.

[HX01] H.D.L. Hollmann and Q. Xiang. A proof of the Welch and Niho conjectures
on crosscorrelations of binary m-sequences. Finite Fields and their Applications,
7(2):253–286, 2001.

[JK97] Thomas Jakobsen and Lars R. Knudsen. The interpolation attack on block ci-
phers. In Fast Software Encryption - FSE’97, volume 1267 of Lecture Notes in
Computer Science. Springer-Verlag, 1997.

[Jou09] Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall/CRC, 2009.

44 Bibliography

[Kas71] Tadao Kasami. The weight enumerators for several classes of subcodes of the
second order binary Reed-Muller codes. Information and Control, 18:369–394,
1971.

[KMY07] Selçuk Kavut, Subhamoy Maitra, and Melek D. Yücel. Search for Boolean Func-
tions With Excellent Profiles in the Rotation Symmetric Class. IEEE Transac-
tions on Information Theory, 53(5):1743–1751, 2007.

[Knu95] Lars R. Knudsen. Truncated and higher order differentials. In Fast Software
Encryption - FSE’94, volume 1008 of Lecture Notes in Computer Science, pages
196–211. Springer-Verlag, 1995.

[KR11] Lars R. Knudsen and Matthew Robshaw. The Block Cipher Companion. Infor-
mation Security and Cryptography. Springer, 2011.

[LP07] Gregor Leander and Axel Poschmann. On the Classification of 4 Bit S-Boxes.
In Arithmetic of Finite Fields - WAIFI 2007, volume 4547 of Lecture Notes in
Computer Science, pages 159–176. Springer, 2007.

[LW90] G. Lachaud and J. Wolfmann. The weights of the orthogonal of the extended
quadratic binary Goppa codes. IEEE Transactions on Information Theory,
36(3):686–692, 1990.

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology - EUROCRYPT’93, volume 765 of Lecture Notes in Computer Science.
Springer-Verlag, 1994.

[Mat95] Mitsuru Matsui. The first experimental cryptanalysis of the Data Encryption
Standard. In Advances in Cryptology - CRYPTO’94, volume 839 of Lecture Notes
in Computer Science. Springer-Verlag, 1995.

[McE72] Robert J. McEliece. Weight congruence for p-ary cyclic codes. Discrete Mathe-
matics, 3:177–192, 1972.

[MM94] Oscar Moreno and Carlos J. Moreno. The MacWilliams-Sloane conjecture on the
tightness of the Carlitz-Uchiyama bound and the weights of duals of BCH codes.
IEEE Transactions on Information Theory, 40(6):1894–1907, 1994.

[Moe12] Möbius inversion. Encyclopedia of Mathematics, 2012. http://www.
encyclopediaofmath.org/index.php?title=M%C3%B6bius_inversion&oldid=
23416.

[MS77] F. Jessie MacWilliams and Neil J.A. Sloane. The theory of error-correcting codes.
North-Holland, 1977.

[Mul54] David E. Muller. Application of Boolean algebra to switching circuit design and
to error detection. IEEE Transactions on Computers, 3:6–12, 1954.

[Myk80] Johannes Mykkeltveit. The covering radius of the (128,8) Reed-Muller code is 56.
IEEE Transactions on Information Theory, IT-26(3):359–362, 1980.

Bibliography 45

[NK93] Kaisa Nyberg and Lars R. Knudsen. Provable security against differential crypt-
analysis. In Advances in Cryptology - CRYPTO’92, volume 740 of Lecture Notes
in Computer Science, pages 566–574. Springer-Verlag, 1993.

[Nyb91] Kaisa Nyberg. Perfect nonlinear S-boxes. In Advances in Cryptology - EURO-
CRYPT’91, volume 547 of Lecture Notes in Computer Science, pages 378–385.
Springer-Verlag, 1991.

[Nyb93] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Advances in
Cryptology - EUROCRYPT’93, volume 765 of Lecture Notes in Computer Science,
pages 55–64. Springer-Verlag, 1993.

[Plo60] Morris Plotkin. Binary codes with specified minimum distance. IRE Transactions
on Information Theory, 6(4):445–450, 1960.

[PW83] Nick J. Patterson and Douglas H. Wiedemann. The covering radius of the [215, 16]
Reed-Muller code is at least 16276. IEEE Transactions on Information Theory,
IT-36(2):443, 1983.

[Ree54] Irving S. Reed. A class of multiple-error-correcting codes and the decoding
scheme. IEEE Transactions on Information Theory, 4:38–49, 1954.

[Rot64] Gian-Carlo Rota. On the foundations of combinatorial theory I. Theory of Möbius
Functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,
2(4):340–368, 1964.

[SB70] Neil J. A. Sloane and Elwyn R. Berlekamp. Weight enumerator for second-order
Reed-Muller codes. IEEE Transactions on Information Theory, 16(6):745–751,
1970.

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell System
Technical Journal, 28:656–715, 1949.

[Sie84] Thomas Siegenthaler. Correlation-immunity of nonlinear combining functions
for cryptographic applications. IEEE Transactions on Information Theory, IT-
30(5):776–780, 1984.

[SM66] Gustave Solomon and Robert J. McEliece. Weights of cyclic codes. Journal of
Combinatorial Theory, 1(4), 1966.

[SM95] Douglas R. Stinson and James L. Massey. An infinite class of counterexamples
to a conjecture concerning nonlinear resilient functions. Journal of Cryptology,
8(3):167–173, 1995.

[Ste04] Allan Steel. Allan Steel’s Gröbner basis timings page, 2004. http://magma.
maths.usyd.edu.au/users/allan/gb/.

[TCG91] Anne Tardy-Corfdir and Henri Gilbert. A known plaintext attack of FEAL-4 and
FEAL-6. In Advances in Cryptology - CRYPTO’91, volume 576 of Lecture Notes
in Computer Science, pages 172–182. Springer-Verlag, 1991.

[Weg87] Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987.

46 Bibliography

[XM88] Guozheng Xiao and James L. Massey. A spectral characterization of correlation-
immune combining functions. IEEE Transactions on Information Theory, IT-
34(3):569–571, 1988.

[Zha00] Muxiang Zhang. Maximum correlation analysis of nonlinear combining functions
in stream ciphers. Journal of Cryptology, 13(3):301–313, 2000.

