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Presentation outline

@ Part | - Introduction

@ Diversity to combat erasures and fadings.
o The multiple antenna channel model.
o Coding gain and diversity in MIMO channels.

@ Part Il - Information Theory

o Capacity when channel is unknown at transmitter.
@ Qutage probability for non-ergodic channels.

© Part lll - Coding

¢ Quick introduction to STBC.
@ Code design criteria for block fading channels.
o Example of an LDPC code for MIMO channels.
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Coding for erasure channels (1)

The erasure channel is an extremal case of the Rayleigh fading channel (see
Proakis 2000, Tse & Viswanath 2005). The erasure channel can also model an
application layer where packets are lost due to a failure at the physical layer.

Let us consider the binary erasure channel (BEC). A codeword ¢ = (c1, ¢z, ...,¢n)
belonging to C[N, K, dmin]2 is transmitted on the BEC, where C is a linear binary
code of length IV, dimension K, and minimum Hamming distance d;,x, .
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Coding for erasure channels (1)

The erasure channel is an extremal case of the Rayleigh fading channel (see
Proakis 2000, Tse & Viswanath 2005). The erasure channel can also model an
application layer where packets are lost due to a failure at the physical layer.

Let us consider the binary erasure channel (BEC). A codeword ¢ = (c1, ¢z, ...,¢n)
belonging to C[N, K, dmin]2 is transmitted on the BEC, where C is a linear binary
code of length IV, dimension K, and minimum Hamming distance d;,x, .

The iid BEC

@ The channel is memoryless. If y denotes the channel output then

N 1- €, Yi = Ci,
p(yle) = [[pwile:s),  plyiles) = 4 e, yi = X,
i=1 07 Yi = C_i’

where ¢; € F», X represents an erasure, and € € [0, 1].

@ Binary elements are erased independently from each other. The output y; is
equal to the input ¢; with probability 1 — e. No errors are encountered.

Joseph J. Boutros ours dage et Cryptographie, ronde March 2008 1/ 30



Diversity
O@000

Coding for erasure channels (2)

The non-ergodic BEC

@ The channel has memory. Let us divide the codeword c into L blocks CY,
£=1...L, each block has length N/L bits.

@ Blocks are erased independently from each other, an erasure occurs with
probability €. After writing y = (Y1,...,Yz) and ¢ = (C4,...,CL), we get

L 1—c¢, Y, = Cy,
plyle) = [[p(velCo).  p(¥elCo) =< e, Y, = Xt
(=1 0, otherwise,

where Y, € ENT i xE , and X represents L erased bits.
2 1 1
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Coding for erasure channels (2)

The non-ergodic BEC

@ The channel has memory. Let us divide the codeword c into L blocks CY,
£=1...L, each block has length N/L bits.

@ Blocks are erased independently from each other, an erasure occurs with
probability €. After writing y = (Y1,...,Yz) and ¢ = (C4,...,CL), we get

L 1—c¢, Y, = Cy,
plyle) = [[p(velCo).  p(¥elCo) =< e, Y, = Xt
(=1 0, otherwise,

where Y, € FZN/L U{XEY, and XT represents L erased bits.

Degrees of Freedom
The iid BEC has N degrees of freedom whereas the non-ergodic BEC has only L
degrees of freedom. Exempli gratia, N = 1000 and L = 3.
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Coding for erasure channels (3)

@ Consider an iid BEC and a repetition code C(N, 1, N),. The word error
probability after decoding is P, = ™.

Joseph J. Boutros
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Coding for erasure channels (3)

@ Consider an iid BEC and a repetition code C(N, 1, N),. The word error
probability after decoding is P, = ™.

@ Consider an iid BEC and a non-trivial code C(N, K, dyin)2. A maximum
likelihood decoder fails to decode an erasure pattern iff this pattern contains
the support of a nonzero codeword (e.g. see Schwartz & Vardy 2005). Let
V)1 (w) denote the number of such erasure patterns with weight w. Then,

P(ML)= > Wyp(w)e’(1—e)V v
=d.

w min

A similar expression is obtained under iterative decoding using the notion of
stopping sets (e.g. see Di, Proietti, Teletar, Richardson, & Urbanke 2002).

@ For small ¢, the asymptotic behavior is

P,(ML) o edmin,
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Coding for erasure channels (4)

@ Consider a non-ergodic BEC with parameter L and a repetition code
C(L,1,L); or a direct sum of N/L versions of this code, i.e.,
C=(L,1,L)® (L,1,L)...® (L,1,L). The error probability after decoding
the repetition code is P, = €.

@ Consider a non-ergodic BEC and a non-trivial code C(N, K, dpin)2- Then,
the word error probability after decoding satisfies P, > €.
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Coding for erasure channels (4)

@ Consider a non-ergodic BEC with parameter L and a repetition code
C(L,1,L); or a direct sum of N/L versions of this code, i.e.,
C=(L,1,L)® (L,1,L)...® (L,1,L). The error probability after decoding
the repetition code is P, = €.

@ Consider a non-ergodic BEC and a non-trivial code C(N, K, dpin)2- Then,
the word error probability after decoding satisfies P, > €.

Definition 1: Diversity on erasure channels
The diversity order d attained by a code C is defined as

log P,
d=lim —8%¢
e—0 |Og€

Notice that diversity on iid BEC is upper bounded by dpin (dmin < N) whereas
diversity on non-ergodic BEC is upperbounded by L (L < N). Non-ergodic
channels are also referred to as limited diversity channels.
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Coding for erasure channels (5)

Let w, be the Hamming weigh of the block Cy. The codeword weight w(c) is the
sum of partial weights, i.e., w(c) = ZeL=1 wy.

Theorem 2: Design criterion for non-ergodic BEC

C is full diversity (d = L) under ML decoding on a non-ergodic BEC if and only if,
Ve € C\ {0}, all partial Hamming weights are non zero, i.e., wy # 0, VZ.
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Let w, be the Hamming weigh of the block Cy. The codeword weight w(c) is the
sum of partial weights, i.e., w(c) = Zle wy.

Theorem 2: Design criterion for non-ergodic BEC

C is full diversity (d = L) under ML decoding on a non-ergodic BEC if and only if,
Ve € C\ {0}, all partial Hamming weights are non zero, i.e., wy # 0, VZ.

Example: (Boutros, Guillén i Fabregas, & Calvanese Strinati 2005)

The code is C = [8,4,4] and L = 2. There exist 8!/(4!)> = 70 possibilities to

define blocks Cy and C. The 70 multiplexers are grouped into 2 different classes:
@ 14 multiplexers with diversity 1 (no diversity) and weight enumerator

Alz,y) =) iy =142 +y* + 12077 + aty*.
ceC
@ 56 multiplexers with full diversity (d = L = 2) and weight enumerator
Az, y) = 1+ 62%9° + 42>y + day® + 2*y*.

Exercice: Define C1 = (cq,...,c12) and Cy = (c13, . . ., ¢24). Find a full-diversity
version of the [24, 12, 8] Golay code on L = 2 non-ergodic erasure channel.
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Coding for fading channels (1)

The fading channel is defined by the input-output relation
Yi = hizi + 0,

where the fading coefficient h; is CN(0,1) (known at the receiver side) and the
additive white noise 7; is CN(0,202). The channel likelihood is

|yi — hi$i|2
202

)-

i iy hy) = -
p(yilwi, hi) o2 exp(
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Coding for fading channels (1)

The fading channel is defined by the input-output relation
Yi = hizi + 0,

where the fading coefficient h; is CN(0,1) (known at the receiver side) and the
additive white noise 7; is CN(0,202). The channel likelihood is

lyi — hiw;|?
202

)-

i iy hy) = -
p(yilwi, hi) o2 exp(

Erasure and Fading

By restricting a; = |h;| to {0, +00}, the fading channel becomes an erasure channel.
P(a; =0) =€ and P(ay; = +o0) =1 —e.

Usually z; = f(c;), where f : F, — Z? is a mapping that converts the finite field
elements into complex symbols. This mapping is known as a QAM modulation.
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Coding for fading channels (2)

Erasure Channel

Vyiqu

o
m
o
\
7}
]

>® @ ‘ y; €C

\J
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Coding for fading channels (3)

@ The notions of iid and non-ergodic fading channels are directly derived from
those defining the BEC given on slides 1 and 2.

@ Definition 1 of diversity on BEC and Theorem 2 on the code design criterion
for BEC are still valid on a Rayleigh fading channel. The erasure probability €
is replaced by the signal-to-noise ratio

il
T e

@ The word error probability at the decoder output is denoted by P.. The
full-diversity behavior P, oc ¢ becomes P, oc 1/~v%.
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Coding for fading channels (3)

@ The notions of iid and non-ergodic fading channels are directly derived from
those defining the BEC given on slides 1 and 2.

@ Definition 1 of diversity on BEC and Theorem 2 on the code design criterion
for BEC are still valid on a Rayleigh fading channel. The erasure probability €
is replaced by the signal-to-noise ratio

_ &l

T e

@ The word error probability at the decoder output is denoted by P.. The
full-diversity behavior P, oc ¢ becomes P, oc 1/~v%.

Definition 3: Diversity on fading channels

The diversity order d attained by a code C is defined as
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Coding for fading channels (4)

@ Let x = f(c) and & = f(&) be two codewords. The partial Hamming weights
wy defined for the non-ergodic BEC can now be extended to the non-ergodic
fading channel as follows:

o Divide a codeword into L blocks, each block containing N/L components.
o The quantity wy is the weight of the fth block in x — Z, i.e., the number of
non-zero components in the difference.

@ Example: N =4, ¢g=4, and L =2. Take x = (+1,+41,-3,-3), if
2=(-1,-1,-3,-3) then w; =2 and wp, =0. If £ = (—1,41,+3,+3) then
w1 =1and wy, =2.

Theorem 4: ML design criterion for non-ergodic fading channels

C is full diversity (d = L) on a non-ergodic fading channel iff, Va, & € f(C), z # Z,
all partial Hamming weights are non zero, i.e., wy # 0, VZ.
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The MIMO channel (1)

Two parallel single antenna fading channels
hy

I1e—>»——o U1

y=Hx+n

ho hy O
12— > o U2 H—<O h2>

A multiple antenna (M1 M O) fading channel
hiy

€ Y1
hax

o (I
2 v hat ho
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The MIMO channel (3)

Mathematical (analytical) models
Physical modeling of a MIMO channel cannot lead to space-time coding design
criteria. Mathematical modeling is necessary.

The simplest mathematical model for a n; x n, MIMO channel is

y=Hzr+,

where
o H = [hy;] is a n, x ny matrix with complex circularly symmetric iid gaussian
entries of zero mean and unit variance, h;; ~ CN(0,1).

@ x is a column vector including the n; transmitted symbols,
x;i € q— QAM C 72

@ 1) is a noise vector whose components are complex gaussian and iid,

i ~ CN(O, 202).

March 2008 11 / 30
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The MIMO channel (5)

@ The diversity on a MIMO channel is also given by Definition 3, i.e.,

7> 1,

where g is referred to as the coding gain.

@ The MIMO channel as defined in its simplest model on the previous slide has
ng X n, degrees of freedom. For a static channel H, i.e., H is constant within
a codeword, we have
n, <d < ng Xn,.

Joseph J. Boutros our Codage et Cryptographie, Cas Gironde March 2008 12 / 30
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The MIMO channel (5)

@ The diversity on a MIMO channel is also given by Definition 3, i.e.,

7> 1,

where g is referred to as the coding gain.

@ The MIMO channel as defined in its simplest model on the previous slide has
ng X n, degrees of freedom. For a static channel H, i.e., H is constant within
a codeword, we have
n, <d < ng Xn,.

The lower bound is attained in absence of coding. The ratio d/n, is known as
the transmit diversity.

@ The (receive) space dimension for one channel use is n,. Hence, achieving the
maximal diversity n; x n, must require n; channel transmissions at least. The
expression “space-time coding” describes the spreading in both space and
time of codes designed for MIMO channels.
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The MIMO channel (6)

@ The main objective of space-time coding is to build easily encodable and

decodable codes that maximize both coding gain g and diversity d for a given
information rate R.

@ Let R. = K/N denotes the coding rate of C. Then, the information rate
expressed in bits per channel use (bpcu) is given by

R =n; X R X logy(q) bpcu

Joseph J. Boutros
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The MIMO channel (6)

@ The main objective of space-time coding is to build easily encodable and
decodable codes that maximize both coding gain g and diversity d for a given
information rate R.

@ Let R. = K/N denotes the coding rate of C. Then, the information rate
expressed in bits per channel use (bpcu) is given by

R =n; X R X logy(q) bpcu

@ Distributing the components of a space-time code over the n; transmit
antennas is referred to as spatial multiplexing.

@ When compared to an uncoded single antenna system, the MIMO information
rate is multiplied by a factor © = nyR.. This increase in information rate is
called multiplexing gain.

@ Another (asymptotic) information theoretical definition of y is given by

_ . R
pw= lim ——
y—+oo log, 7y

which is equivalent to the assumption R = plog, v + O(1).
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Capacity of MIMO channels (1)

A single antenna (also single user) ideal channel without fading, known as AWGN

channel, is described by
y=x+n z,yneC

Capacity is given by the famous formula (Shannon 1948)

Cawan = logy(1+7).

@ Recall that it is possible to find a code C such that P, — 0 when N — 400
iff R < C (e.g., see Cover & Thomas 1993, Gallager 1968).

March 2008 14 / 30
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Capacity of MIMO channels (1)

A single antenna (also single user) ideal channel without fading, known as AWGN

channel, is described by
y=x+n z,yneC

Capacity is given by the famous formula (Shannon 1948)

Cawan = logy(1+7).

@ Recall that it is possible to find a code C such that P, — 0 when N — 400
iff R < C (e.g., see Cover & Thomas 1993, Gallager 1968).

At high SNR, on a single antenna AWGN channel, doubling the transmitted energy
increases the capacity by one bit only

CAWGN(Q’Y) ~ Iog2(27) ~1+ CAWGN(’Y) bpcu.

March 2008 14 / 30
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Capacity of MIMO channels (2)

On a fading channel with L parallel branches (diagonal MIMO), where the L
fading coefficients H = Diag(hs, ..., hr) are only known at the receiver side and
the SNR per branch is v; = v/L, we have

L L
CH) = Y loga(1-+]u:) = log, (H(l - |hi|2%)> = logy det (1. + L HH').

i=1 i=1

March 2008 15 / 30

age et Cryptographie, C

Joseph J. Boutros



MIMO Capacity
(o] le]e]

Capacity of MIMO channels (2)

On a fading channel with L parallel branches (diagonal MIMO), where the L
fading coefficients H = Diag(hs, ..., hr) are only known at the receiver side and
the SNR per branch is v; = v/L, we have

L L
CH) = Y loga(1-+]u:) = log, (H(l - |hi|2%)) = logy det (1. + L HH').
i=1 1=1

The above result is still valid for any n; x n, MIMO channel (Telatar 1995) where
the exact proof is based on the fact that a circularly symmetric complex gaussian
vector with covariance matrix I yields a maximal differential entropy equal to

log, det(mel).

For the MIMO channel y = Hz +n, x € C™,y € C™, the conditional capacity
C(H) is defined as the average mutual information I(z;y) between z and y for a
given channel matrix H. The capacity C(H) is obtained by assuming that the
input is gaussian with covariance matrix Q = nltlnt (uniform gaussian input).

Joseph J. Boutros ourr >ryptographie, Carcans, Gironde March 2008 15 / 30
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Capacity of MIMO channels (3)

Assume a uniform gaussian input and H only known at the receiver side.

Definition 5: Capacity of an ergodic iid Rayleigh MIMO channel

The ergodic capacity of the ny x n, MIMO channel is

C(y,ne,nr) = Enm [Iogz det (Inr + anHT>] .
t

At high SNR (v > 1), It can be shown that (Foschini 1996)
C(v,n¢,ny) = min(ng, n,.) logy () + O(1).
Then, for a symmetric channel ny = n, = n, we have
C(2y,n) = nlogy(27) = n+ C(v,n)

Doubling the transmitted energy increases the capacity by n bits. In the next slide,
the ergodic capacity is plotted versus E, /Ny = n,.v/C(v, n¢,n,), recall that
Q= Elxal] = Ly,
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Capacity of MIMO channels (4)

Capacity (bits/channel use)
w IS
\
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Outage probability (2)

e For general non-ergodic fading channels, a key idea is to consider the mutual
information I(z; y|H) betweeen the channel input and output as a random
variable. Each time we pick up a random instance of the channel H, it renders a
new instantaneous value of I(x;y|H). For a given information rate R to be
transmitted, an information theoretical limit on the word error probability is given
by (Ozarow, Shamai, Wyner 1994, see also Biglieri, Proakis, Shamai 1998)

Pyt =P(I(x;y|H) < R)

March 2008 18 / 30
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Outage probability (2)

e For general non-ergodic fading channels, a key idea is to consider the mutual
information I(z; y|H) betweeen the channel input and output as a random
variable. Each time we pick up a random instance of the channel H, it renders a
new instantaneous value of I(x;y|H). For a given information rate R to be
transmitted, an information theoretical limit on the word error probability is given
by (Ozarow, Shamai, Wyner 1994, see also Biglieri, Proakis, Shamai 1998)

Pyt =P(I(x;y|H) < R)

e A similar approach is used for non-ergodic MIMO channels (Telatar 1999,
Foschini & Gans 1998). There is an outage each time C(H, Q) is less than the
targeted information rate. Here, the average mutual information between = and
y = Hx + n is indexed by the MIMO channel matrix H and the covariance

Q = E[zx']. The outage probability is

Py = P (logdet (I, + HQH') < R)

It is conjectured that P,,; is minimized by using a uniform power allocation over a
subset of the transmit antennas.
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Outage probability (3)
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Space-Time Coding

Coding for MIMO channels (1)

Coding for ergodic channels
e The problem of designing error-correcting codes for ergodic MIMO channels (fast

fading) is not an issue.
e Any capacity-achieving code designed for the AWGN channel will do the job when

transmitted on a channel with an infinite number of degrees of freedom.

March 2008 20 / 30
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Coding for MIMO channels (1)

Coding for ergodic channels

e The problem of designing error-correcting codes for ergodic MIMO channels (fast
fading) is not an issue.

e Any capacity-achieving code designed for the AWGN channel will do the job when
transmitted on a channel with an infinite number of degrees of freedom.

Coding for non-ergodic channels

e The problem of designing error-correcting codes for non-ergodic MIMO channels
(slow fading) is a difficult issue.

e For example, an outage-approaching code should mix both randomness and de-
terminism in its structure.
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Space-Time Coding
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Coding for MIMO channels (2)

Unless otherwise stated, we restrict the rest of this lecture to static channels
(non-ergodic) where a codeword undergoes a unique channel instance (n. = 1).
When n, > 1, the diversity is multiplied accordingly and the code design is similar.

@ As shown in the first part of this lecture, a rate 1/2 repetition code C[2,1],
can achieve diversity 2 on a block erasure channel with two independent

blocks per codeword, P. = €.

@ Let us start with a simple example on a 2 x 1 MIMO channel. What is the
equivalent of C[2,1], on a MIMO channel?
One simple solution: the Alamouti code.

March 2008 21/ 30
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Coding for MIMO channels (3)

Consider the following codeword (Alamouti 1998) written in matrix format
x = [ 1T ]
X2 Ty
where x; € ¢ — QAM C 72.

@ Row 1 is transmitted on antenna 1. Row 2 is transmitted on antenna 2.

@ Two time periods are needed to transmit z on a 2 x 1 MIMO channel. The
rate is R = n; X R. x logy(q) = log,(q) bpcu, where ny =2 and R, = 1/2.

@ The channel output is
y=Hr+n

where H = [hy hy] and y,n € C**2.

Joseph J. Boutros ourr dage et Cryptographie, Ca
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Coding for MIMO channels (4)

@ Develop the expression of the channel output when Alamouti code is

transmitted.
y1 =  hixy +howo +m

Yo = —hixy + hoxi +m2
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Coding for MIMO channels (4)

@ Develop the expression of the channel output when Alamouti code is
transmitted.
y1. = hizit+hara+m
Yo = —hixy + hoxi +m2

@ To decode, let us compute
hiyi +hays = (|l +[haf?) 21 + my
hsyr —hiys = (|l + [hal?) 22 + 1)
@ Transmit diversity 2 is achieved since (see Tse & Viswanath 2005)

1
P((|haP +[hoP)y < 1) « =
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Coding for MIMO channels (5)

@ Alamouti code belongs to the family of Orthogonal Space-Time Block codes
(OSTBC). The codewords satisfy

zx’ o I,
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Coding for MIMO channels (5)

@ Alamouti code belongs to the family of Orthogonal Space-Time Block codes
(OSTBC). The codewords satisfy

xa!h I,

@ Two examples of OSTBC for n; = 3 and n; = 4 antennas both with rate
R = 2 log,(q). Four time periods are needed to transmit a codeword.

xI1 0 T2 —I3
* *
ST 0 0 T s ah
T 3 0 —xi ! 3 2
2 1 3 S * 0
* * 1132 z3 1131
zz 0 —z7 23 .

x5 —x2 0 27
@ OSTBC is an important subclass of linear STBC. For more information See

the book by Larsson & Stoica 2003, or the book by Oestges & Clercks 2007.

@ Main drawback: they suffer from a weak information rate R (the equivalent
embedded R, is too small).
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Coding for MIMO channels (6)

@ Consider a linear code C[Nny, K], of rate R, = Nn;/K. Write a codeword as

A oA
C: B B .
e Tt Tt
oo cy

@ Using the mapping f : F, — Z2, transmit z = f(c) on n; x n, channel.

Joseph J. Boutros
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Coding for MIMO channels (6)

@ Consider a linear code C[Nny, K], of rate R, = Nn;/K. Write a codeword as

a o civ

c= : .
e Tt Tt
oot .. ey

@ Using the mapping f : F, — Z2, transmit z = f(c) on n; x n, channel.

@ It can be shown (e.g., see El Gamal & Hammons 2003) that the pairwise error
probability is upper bounded as (ML decoder assumed)

| 1 N, ﬁ —tn,
Ple—d) < <H§=1(1+>\ﬂ/4nt)> - <4nt>

where t = rank(f(c) — f(c)), the coding gain is g = (A A2 --- \¢)*/?, and
{\;} are the eigen values of [f(c) — f()][f(c) — f()].
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Coding for MIMO channels (7)

From the expression of the pairwise error probability, we can state
(Guey, Fitz, Bell, & Kuo 1996, and Tarokh, Seshadri, & Calderbank 1998)

Design criterion for static MIMO

Under ML decoding, a space-time code should satisfy (over all pairs of distinct
codewords ¢ and ¢’)

e Rank: Maximize the transmit diversity t = rank(f(c) — f(c')).

e Product distance: Maximize the coding gain g = (A Az - -~ A\s)Y/%

@ The above design criterion cannot guarantee the construction of
outage-achieving codes.

@ The above design criterion cannot be used to build iteratively decodable graph
codes (e.g., LDPC codes) for MIMO channels.

@ Nevertheless, it has been used to successfully build space-time block codes
(not including an error-correcting code C) that guarantee excellent
performance for uncoded ¢-QAM modulations.
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Coding for MIMO channels (8)

Let us study an example of full-diversity LDPC coding for a 2 x 2 MIMO channel.
@ Each transmit antenna behaves like a channel state. The state generates an
erasure with a probability €/
1
€ =P ((|h11|2—|— |h21|2)’)/ < 1) X —

@ Our aim is to achieve (¢/)?, i.e., P. o %
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Coding for MIMO channels (9)

Rate-1/2 Full-diversity root-LDPC code for a 2-state block fading channel
(Boutros, Guillén i Fabregas, Biglieri, & Zémor 2007)

N/4nodes  1j

1c N/4 nodes

N/4 nodes ]_p

N/4 nodes 2p
2c N/4 nodes

N/4nodes  2i 1

White-colored bits: antenna 1  Red-colored bits: antenna 2
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The parity-check matrix of the root-LDPC code has the following structure
(mixture of randomness and determinism).

12 1p 24 2p
[1 l l l 1
1 | | |
1 ! 0 ! Hs; ! Hy, lc
H= | .1 S S [
l 1 l
| | 1 |
Hy 0+ Hypy o 1 0 2c
I I I
I I 1 I

Theorem 6: threshold in absence of fading

On a gaussian channel, under iterative decoding, a (A(x), p(z)) root-LDPC code
has the same decoding threshold as a random (A(z), p(z)) LDPC code.

Theorem 7: full-diversity for a rate-1/2 root-LDPC
x))

Consider a static 2 x n,, MIMO channel. Under iterative decoding, a (A(z)
root-LDPC code achieves full state diversity (¢/)?, i.e., P. oc 1/(7)?"".
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@ The erasure channel can be a starting point for the study of more complex
channels such as the MIMO channel.

@ The MIMO channel offers a higher capacity (higher data rates) than a single
antenna medium.

@ Several coding techniques are well established for space-time coding, practical
applications are slowed down by the decoding complexity.

Joseph J. Boutros
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