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Combination generators for additive stream ciphers
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Divide-and-conquer attack involving k£ constituent devices
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where Pr[f(X1,..., Xpn) = g(X;,..., X5, )] > 5



Resilient functions

Definition A Boolean function f is t-resilient if

1
Prif(X1,..., Xn) = g(Xyp,..., X)) =5

for any k <t and for any function g of k variables.

The order of resiliency is the highest t such that f is t-resilient.

—— we have to consider t + 1 devices together.



Building parity-check relations [Johansson-Meier-Muller 06]

Property 1. xyx2...xs has period Th1I>...Ts.

Property 2. Let o(t) =Y 5 _;x; and

s
7T = Z c;T;, c; € {0,1}
=1

Then, for any t > 0,

Z o(t+ 1) =0.

TeT
Example. For o = x1 + x2:

O'(t) —|—0'(t—|—T1) —I—O'(t—I—Tz) —|—0'(t—|—T1 —|—T2) =0, Vt >0.



Building parity-check relations [Johansson-Meier-Muller 06]

Let o = g(xy5. -5 %;,).

For g = ;% m;(x;,, ..., z;, ), let us consider

m
T =3 ¢mi(T;y, ..., T;), ¢ € {0,1}
i—1

Then,

Z o(t+T1)=0.

TeT



Distinguishing attack [Johansson-Meier-Muller 06]

Let s = f(x1,...,Tn) Where

1
PrF (X1, oy Xn) = 9(Xips . Xjy)] = S(1+€) with & > 0.

For g = ;" m;(x4, ..., T3, ) and

Z cim (Tyy s .. zk) c; € {0,1}
Then,

]_ 2m
Pr|) s(t+7)=0] > S(L+e™).
TET 1
Complexity:
2m—|—1

Time complexity ~ e~ x 2™

2m—|—1

Data complexity >~ ™ + g(Til, ORI Tik)



Decimation by the period of a sequence [Hell-Johansson 06]

/
— . m . . . i

/
m

T =) emi(Tyy, - T;,), ¢ € {0,1}
i—1

Then,
1 m/
2
PrIY st+71)= ) i (t+7)] > 5(1 +e2),
T€T’ T€T’
implying
i ] ]_ 2m’
Pri > s(tT; +7)= cst| > 5(1 +e? ),
€T’ i
Complexity:
/
Time complexity ~ e—2" i x 2m/
_2m’—|—1

Data complexity ~ ¢ Tij + g'(Tq:l, I Tik)



Initial state recovery [Johansson-Meier-Muller 06]

/
For g = :;:1 T, + > imy mi(xg -0y x5, ), let us consider

m/
T =) emi(Tyy, ..., T;,), ¢ €{0,1}
i—1

Then,
S 1 zm,
PrY st+7)+ > > i (t+7)=0] > 5(1+e ).
T€T! 1=11&€7T’
Attack:
Perform an exhaustive search for the initial states of Dev 21,...,15.

For each possible initial state, compute the parity-check equations.

Complexity:

_2m’+1

Data complexity ~ € 2In2(L;; + ...+ L;,) + 4 (T;5 ..., Ty, )

2" 2(L, + ...+ L) x 2™ x 2R Tt

9

Time complexity ~ ¢



Achterbahn-80 [Gammel-G&ttfert-KnifflerO6]

11 NLFSRs of length L; = 21 + ¢ and of period T; = 2li 1,1 <4 <11.
f. 6-resilient combining function of degree 4:

r1 + 22 + 23 + 24 + 5 + 27 + g + 11 + T2x10 + T2x11 + T4x8 T+
T5T6 T TeLg T T6T10 T TeX11 + L7T8 + T8T9 + £gx10 + T9T10 + T9Z11 T+
T1T2T8 + T1T4T10 T T1T4T11 + T1L8T9 + T1L9T10 + £129T11 + T2x32g +
T2TATS + T2L4T10 + T2T4%11 + T2T7Lg + T2T8T10 + T2T8T11 + T2T9T10 T
T2TYT11 + T3TATG + TITTY + T4T7Lg 1 T4Lgx9 + T5Tex8 + T5TET10 T
T5T6T11+T6L8L10TL6T8L11 TL7T8TY+TELYT10TL8T9T11 T X1X2T3%8+
T1X2T7LG+ L1X3T5LZ+ T1T3LELY T T1T4L8T10 T L1L428T11 T T1T5L7Tg+
T1T7T8TY+T1TTYT10 T T1T8L9T11 T+ T2X3XT428 T T 2T3T5Tg T L2L4T7Xg+
TRXTATGL10TLT2TATEL 11 TXT2TEL7TZFT2LTGLYLT 10T T 2LGLYT11 TL3L4T8T9 T
TATTTLY + TELELZT10 T T5TELET11

10



First attack against Achterbahn-80

Quadratic approximation:

—5
x] + x2 + 7 + x3T10 + T4T9, € =2 .

T = {c1T3T10 + c2TyTy, c1,c2 € {0,1}}
e Decimation by Tx
e Exhaustive search on R1 and R2.
For o = o1 + 9,
s(tT7) + s(tT7 + T3T10) + s(tT7 + TyTg) + s(tT7 + T3T10 + TyTo) =
o(tTy) + o(tTy + T3T1g) + o(tTh + TyTy) + o (tThy + T3T19 + TyT9) + cst

with bias > 2720,

Data complexity = 2%  Time complexity = 2°1 .

11



First attack against Achterbahn-80 [Hell-Johansson06]

The exact bias of

s(tT7) + s(tT7 + T3Tho) + s(tT7 + TyTo) + s(tT7 + T3Tyo + TyTh) =
o(tT7) 4+ o(tTy + T3T1g) + o(tTy + TyTg) + o (tT7 + T3T19 + TyTy) + cst

is not 220 put 2712

Then,

258.3

Data complexity = Time complexity = 275

12



Second attack against Achterbahn-80 [Naya-Plasencia06]

Linear approximation:

r1 + @2 + x7 + (23 + 10) + (T4 + T9), € =275,

T = {c1T3T10 + c2TyTy, ci1,c2 € {0,1}}
e Decimation by T%
e Exhaustive search on R1 and R2.
For o = 1 + x9,

s(tT7) + s(tTy + T3T19) + s(tT7 + TyTg) + s(tT7 + T3T1g + TyTy) =
o(tTy) + o(tTh + T3T1g) + o(tTh + TyTy) + o (tThy + T3T19 + TyT9) + cst

with bias > 2712,

Data complexity = 2°83  Time complexity = 27 .

13



Related issues

e Is the exact bias always given by the bias of the linear approxima-
tion?

e Can we get a better result with higher degree approximations?

e Can we build better parity checks (higher bias) from approxima-
tions with more than t41 variables?

14



has bias .

h(xq,...

Reminder on parity-check relations

7'Tn) f(:c].)"'am??)+g(xj17“‘7xj8+k)

f/(x]_a K 7377”&) -I—g,(le, K 7£st)

pe(t) = > ht+7)= ) f(t+7).

€T TeT

Pripe(t) = 0] > _(1+¢2"),

15



Examples on building parity-check relations

e g1(x1, 2,3, Ty, T7, X9, T10) = T1 + T2 + T7 + T3T10 + T4T9
/ __09—5
hi(x1,...,211) = f'(z1,...,T11) + x3T10 + T4T9. € = 27°.

e g2(x1, 2, T3, Ty, x7, L9, T10) = 1 + T2 + T7 + x3 + 10 + T4 + T9

hao(x1, ..., 211) = (@1, .., %11) + 3 + 10 + T4 + 9. € = 277,

hi(t) + hi(t + T3T10) + hi(t + T4To) + h;(t + T3T10 + T4To)
@) + f(t+ T5Tio) + f(t + TaTo) + f'(t + TsTho + T4 To),

pc(t)

e =212,

16



Building parity-check relations from one approximation

e g2(x1,x2,x3, Ty, X7, X9, L10) = T1 + T2 + T7 + T3 + T10 + T4 + X9
ha (x1,y...,x11) = fl(T1,...,211) + 93($j17 ey X ). €= 273,

pe1(t) = f1() + f1(t+T3T10) + f1(t +T4To) + f1(t +T3T10+ T4 To)
e > 2712,

peo(t) = f1(@) + f1t+T3) + f1(t+TyT10To) + f1(t+ T3+ T4T10To)
e > 2712,

pe3(t) =55 (HET TSI A (HTSTAT STy o A5 (T T T T ST AT 6T o)
e > 2712,

e Any parity check can be generated by an affine approximation/function.

e What is the exact bias of each pc(t)?

17



Approximation of a resilient function

Theorem [Canteaut-Trabbia 00] [Zhang 00]
Let f be t-resilient function of m variables. Then, for any K of
size t + 1 the best approximation is achieved by the affine function

Zw,,;—l—e, e € {0,1} .

teK

18



Bias of parity-checks involving (t 4+ 1) variables

Theorem [Naya-Plasencia 07]
Let f be t-resilient function. The bias of any parity-check equation
built from a (¢ 4+ 1)-variable linear approximation of f with bias e is
eM \where M is the number of terms in the parity-check equation.

19



Examples of parity-checks involving (¢t + 1) variables

e go(x1, T2, T3, Tyg, X7, L9, T10) = T1 + T2 + 7 + 3 + T10 + T4 + T9g
hoy (@1, ..., 211) = fi(z1,. . 211) + g (@), 25,). € = 277

pe1(t) = f1() + f1 @+ T3T10) + f1(t+TyTo) + f1(¢+T5T10+ TaTy)
e =212,
pea(t) = f1(8) + f1E+T3) + f1(E+TaT10To) + f1(¢+ T3+ T4 T10T0)
e =212,
pe3(t) =f3 (O3 (TS H-f5 (HHTSTATGT o A5 (TS T34 6T o)
e =212

pea(t) = f4(t) + fo(t + T1T5Ty), € = 27F.

20



What happens with ¢t + k£ variables when k£ > 17

o f(x1,x2,x3) = T1x2 + 223 + T1x3. O-resilient.
e We consider g = x1 + x2, with € = 0.

e \We build the parity check associated to that function:
pe(t) = f(t) + fE+T1) + fE+T2) + f(t + T112)

o Pripc(t) = 0] = 3(1+273) # 2(1+0%) = 0.

21



Bias of parity-checks involving (¢t 4+ k) variables

e W (x1,...,2pn) = f(®1y...,%pn) + ®1 + ... + T¢11, With €.

e h(xy,...,xzn) = h (x1,...,2n) + Tt42 + ... + X1 g, With e.

pe(t) = > > f&+ 71+ 72)

TE<Tiyo,. ., T4 > 1E<T,....; T4 1>

Prlpce(t) = 0] > %(1 2

where £/ = MaTy () =t4+16(f + alz1, ... T4 p))

22



Previous example with 0 4+ 2 variables

e With the O-resilient function f:
f(z1,22,23) = 2172 + 273 + T173.

x1 is an approximation of f with bias e =21,

e \We consider the previously defined parity check, that can be de-
rived from g = x1 + x2, that has a bias ¢4 = 0.

pc(t) = ft) + fE+T) + fE+To) + f(t+ T1T)
e Pripc(t) = 0] = 2(1+273) > L1+ (21 =11+ 27%).

e Question: is it possible that
- 1 /2M 2
Pripc(t) = 0] > 5(1 +¢&" )~

23



Trade-off on divide-and-conquer attacks

e At the attacks of the type that we have described, to find the
best complexity we have to make a trade-off between several pa-
rameters affecting time complexity and data complexity.

e With a combining function f(x1,...,zn) we can build a parity
check equation with the highest possible bias, e = 1, and with the
lowest possible number of terms:

fO+fE+NT.. . Th).

This parity check equation needs 1115 ...1T), bits of keystream to
be computed. In the case of Achterbahn as in the case of all the
other reasonable algorithms, this quantity is much too high.

24



Cconclusions

So we have found some information about the bias of parity checks
when using t-resilient combining functions, which will be the case in
cryptographic applications as the one described.

For a t-resilient combining function:

e the bias of any parity-check relation involving (t + 1) variables is
derived from the bias of the corresponding linear approximation.

e the bias of any parity-check relation involving more than (t + 1)
variables has a lower bound that is the bias of its corresponding
best linear approximation of ¢t + 1 variables raised to the number
of terms of the parity check.

25



