Guilhem Castagnos

Équipe Algo - GREYC

Mardi 18 mars

(Travail commun avec Damien Vergnaud)



- Introduction
- 2 Polynômes de permutation à trappe de  $\mathbb{Z}/n\mathbb{Z}$
- 3 Nouveaux problèmes algorithmiques
- 4 Exemples de nouveaux cryptosystèmes
- 6 Conclusion



# Schéma de chiffrement asymétrique

## Trois algorithmes:

- Génération de clefs :
  - Entrée : un paramètre de sécurité k
  - Sortie : une paire  $(k_{\text{pub}}, k_{\text{priv}})$ , clef publique et privée
- Chiffrement:
  - ullet Entrée : un message m et  $k_{
    m pub}$
  - Sortie : un chiffré  $c \leftarrow \mathcal{E}_{k_{\text{pub}}}(m)$ , noté aussi  $c = \mathcal{E}_{k_{\text{pub}}}(m,r)$  pour un aléa r
- Déchiffrement :
  - Entrée : un chiffré c et  $k_{priv}$
  - Sortie de  $\mathscr{D}_{k_{\text{priv}}}(c)$  : un message m ou le symbole spécial  $\bot$
  - $\mathcal{D}_{k_{\text{priv}}}(\mathcal{E}_{k_{\text{pub}}}(m,r)) = m$



## Sécurité

#### • Buts de l'attaquant :

- Sens-unique : Étant donné un chiffré, un attaquant ne peut retrouver le message correspondant (OW)
- Sécurité sémantique : Étant donné un chiffré, un attaquant ne peut extraire aucune information sur le message correspondant
- Équivalent à la notion d'indistinguabilité (IND), Goldwasser et Micali 1984 :
  - un attaquant choisit deux messages
  - il reçoit un challenge : un chiffré de l'un des deux messages
  - l'attaquant doit deviner quel message a été chiffré
- Non malléabilité: Étant donné un chiffré, un attaquant ne peut produire un autre chiffré tel que les messages correspondants soient reliés (NM), Dolev, Dwork et Naor, 1991



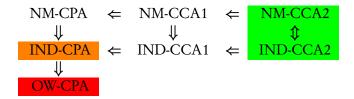
#### • Moyens de l'attaquant :

- Attaques à messages clairs choisis : accès à un oracle de chiffrement (CPA)
- Attaques non adaptatives à messages chiffrés choisis : accès à un oracle de déchiffrement avant le challenge (CCA1), Naor et Yung, 1990
- Attaques adaptatives à messages chiffrés choisis : accès illimité sauf sur le challenge, (CCA2), Rackoff et Simon, 1991



## Sécurité

#### • Relations:





#### • Comment prouver la sécurité :

- Preuve par réduction : si un attaquant IND-CPA existe alors tel problème algorithmique peut-être résolu
- Pour les attaques CCA:
  - modèle de l'oracle aléatoire (ROM), idéalise les fonctions de hachages, Bellare et Rogaway, 1993: les fonctions de hachages sont modélisées par un oracle aléatoire
  - notion de *Plaintext-awareness*: un attaquant ne peut construire un chiffré valide sans connaître le message correspondant (PA1): formalisé dans le modèle standard par Bellare et Palacio, 2004

#### Dans le modèle standard

PA1 + IND-CPA ⇒ IND-CCA1



## Plan

- 2 Polynômes de permutation à trappe de  $\mathbb{Z}/n\mathbb{Z}$
- 3 Nouveaux problèmes algorithmiques

Polynômes de permutation à trappe de  $\mathbb{Z}/n\mathbb{Z}$ 

- Conclusion



# Polynômes de permutation à trappe de $\mathbb{Z}/n\mathbb{Z}$

- Soit n = pq un entier RSA (p et q deux grands premiers distincts)
- P sera dit polynôme de permutation à trappe de  $\mathbb{Z}/n\mathbb{Z}$ :
  - si P induit une bijection de  $\mathbb{Z}/n\mathbb{Z}$
  - si étant donné a, P(a) est calculable en temps polynomial
  - si étant donné P(a) il est difficile de retrouver a à moins de connaître une trappe (factorisation de *n* ou description de la fonction inverse)
- On note  $P^{-1}$  et on appelle problème de l'inversion ponctuelle de P le problème suivant : étant donné  $\alpha = P(a) \in \mathbb{Z}/n\mathbb{Z}$ , retrouver a
- Un polynôme de permutation à trappe P de  $\mathbb{Z}/n\mathbb{Z}$  induit un système de chiffrement OW-CPA sous l'hypothèse que P-1 est difficile



- Rivest, Shamir, Adleman, 1978
- Soit *e* premier avec  $\varphi(n) = (p-1)(q-1)$
- $P(X) = X^e$  est un polynôme de permutation à trappe de  $\mathbb{Z}/n\mathbb{Z}$
- La trappe est d l'inverse de e modulo  $\varphi(n)$
- P s'évalue en moyenne en  $\frac{3}{2}|e|M$



- Smith et Lennon, 1993
- Soit la suite de Lucas V(a, b), suite d'entiers définie par :

$$\forall k \ge 1, V_{k+1}(a, b) = aV_k(a, b) - bV_{k-1}(a, b)$$

et 
$$V_1(a, b) = a, V_0(a, b) = 2$$

- Le polynôme de degré e,  $P(X) = V_e(X, 1)$  avec e premier à  $(p^2 1)(q^2 1)$  est un polynôme de permutation à trappe de  $\mathbf{Z}/n\mathbf{Z}$  (polynôme de Dickson)
- La trappe est d l'inverse de e modulo  $(p^2 1)(q^2 1)$
- P s'évalue en 2|e|M



# Autres polynômes de permutation à trappe de $\mathbb{Z}/n\mathbb{Z}$

- Le polynôme utilisé dans LUC provient de « l'automorphisme RSA »,  $\alpha \mapsto \alpha^e$ , du groupe des entiers algébriques de norme 1 modulo n d'un corps quadratique, que l'on transporte sur  $\mathbf{Z}/n\mathbf{Z}$  en utilisant l'application trace
- Cet automorphisme peut aussi être transporté sur  $\mathbb{Z}/n\mathbb{Z}$  par paramétrisation du tore algébrique : on obtient alors des fonctions de Rédéi. Proposé pour construire un cryptosystème par Lidl et Muller (1983)
- L'automorphisme  $P \mapsto e.P$  d'une courbe elliptique définie sur  $\mathbb{Z}/n\mathbb{Z}$  peut aussi être transporté sur  $\mathbb{Z}/n\mathbb{Z}$  en utilisant les polynômes de division (Demytko 1993)



- Introduction
- 2 Polynômes de permutation à trappe de  $\mathbb{Z}/n\mathbb{Z}$
- 3 Nouveaux problèmes algorithmiques
- 4 Exemples de nouveaux cryptosystèmes
- Conclusion



- Dans la suite n sera toujours un entier RSA, P et Q seront deux polynômes de permutations de Z/nZ de degrés respectifs e<sub>P</sub> et e<sub>Q</sub> et R∈Z/nZ[X,Y] un polynôme bivarié avec e<sub>R</sub> = deg<sub>X</sub>(R)
- On définit un nouvelle famille de problèmes algorithmiques :

## Computational Polynomial DH: C-POL-DH(n, P, Q, R)

Étant donnés  $\alpha = P(a) \in (\mathbf{Z}/n\mathbf{Z})^{\times}$  et  $\beta = Q(b) \in (\mathbf{Z}/n\mathbf{Z})^{\times}$ Trouver :  $R(a,b) \in (\mathbf{Z}/n\mathbf{Z})^{\times}$ 



## Notations et définitions

## Computational Polynomial DH : C-POL-DH(n,P,Q,R)

Étant donnés 
$$\alpha = P(a) \in (\mathbf{Z}/n\mathbf{Z})^{\times}$$
 et  $\beta = Q(b) \in (\mathbf{Z}/n\mathbf{Z})^{\times}$   
Trouver :  $R(a,b) \in (\mathbf{Z}/n\mathbf{Z})^{\times}$ 

- On se limitera aux cas suivants :
  - R(X, Y) = XY, noté C-POL1(n, P, Q)
  - $R(X,Y) = P((XY)^{\ell})$ , noté C-POL2 $(n,\ell,P,Q)$
  - R(X,Y) = Q(X) noté C-DPOL(n,P,Q)
- C-DPOL(n, P, Q) peut être ré-écrit : étant donné P(a) calculer Q(a) : généralisation de Dependent-RSA : étant donné  $a^e$ , calculer  $(a + 1)^e$  (Pointcheval 1999)



## Notations et définitions

• On définit la variante décisionnelle :

#### Decision Polynomial DH: D-POL-DH(n, P, Q, R)

Étant donnés 
$$\alpha = P(a) \in (\mathbf{Z}/n\mathbf{Z})^{\times}$$
,  $\beta = Q(b) \in (\mathbf{Z}/n\mathbf{Z})^{\times}$  et  $\gamma \in (\mathbf{Z}/n\mathbf{Z})^{\times}$  Décider si  $\gamma = R(a, b)$ 

• On définit également 3 problèmes décisionnels D-POL1(n, P, Q), D-POL2(n,  $\ell$ , P, Q) et D-DPOL(n, P, Q) pour les trois cas R(X, Y) = XY,  $R(X, Y) = P((XY)^{\ell})$  et R(X, Y) = Q(X)



## Notations et définitions

Polynômes de permutation à trappe de  $\mathbb{Z}/n\mathbb{Z}$ 

• Pour l'étude des relations entre les problèmes on définit un problème d'extraction

## E-POL-DH(n, P, Q, R)

Étant donnés 
$$\alpha = P(a) \in (\mathbf{Z}/n\mathbf{Z})^{\times}$$
,  $\beta = Q(b) \in (\mathbf{Z}/n\mathbf{Z})^{\times}$  et  $\gamma = R(a, b) \in (\mathbf{Z}/n\mathbf{Z})^{\times}$   
Trouver  $a$  and  $b$ 

• On définit également les 3 problèmes E-POL1, E-POL2, E-DPOL pour les trois cas R(X, Y) = XY,  $R(X, Y) = P((XY)^{\ell})$ et R(X,Y) = O(X)



# Les problèmes C-POL1 et C-POL2

#### Théorème

D-POL1
$$(n, P, Q) \stackrel{\mathscr{P}}{\longleftarrow} C$$
-POL1 $(n, P, Q) \stackrel{\mathscr{P}}{\Longleftrightarrow} P^{-1}(n) \wedge Q^{-1}(n)$ 

#### Théorème

$$C\text{-POL}2 \land E\text{-POL}2 \stackrel{\mathscr{P}}{\Longleftrightarrow} P^{-1} \land Q^{-1} \stackrel{\mathscr{P}}{\Longrightarrow} \begin{array}{c} C\text{-POL}2 \\ F\text{-POL}2 \end{array} \stackrel{\mathscr{P}}{\Longrightarrow} D\text{-POL}2$$



## Les problèmes D-POL1 et D-POL2

- Pour résoudre les problèmes décisionnels on résout les problèmes d'extraction (cf. Coppersmith, Franklin, Patarin, Reiter, 1996)
- Étant donnés P(a), Q(b) et R(a, b) on veut trouver a et b
- On calcule

$$S(X) = \underset{Y}{\text{Res}}(R(X, Y) - R(a, b), Q(Y) - Q(b))$$

• S(X) est un polynôme de degré  $e_R e_O$  avec S(a) = 0, donc

$$(X - a) \mid \operatorname{pgcd}(S(X), P(X) - P(a))$$

- En fait, on a très souvent égalité et on retrouve donc *a*
- Dans le cas E-POL1, on connaît *ab*, donc on retrouve *b*
- Pour le cas E-POL2, on peut retrouver b par le calcul de gcd(R(a, Y) - R(a, b), Q(Y) - Q(b))



# Les problèmes D-POL1 et D-POL2

- Le calcul du résultant peut se faire en  $\mathcal{O}(e_{\rm p}^2 e_{\rm O} \log^2(e_{\rm R} e_{\rm O}) \log \log(e_{\rm R} e_{\rm O}))$  opérations dans  $\mathbf{Z}/n\mathbf{Z}$
- On a  $e_R = 1$  pour E-POL1 et  $e_R = \ell e_D$  pour E-POL2, donc même si  $e_{\rm D}$  est petit, si  $\ell$  est assez large cette méthode échouera
- Le calcul du premier pgcd peut être fait en  $\mathcal{O}(e \log^2 e \log \log e)$ opérations dans  $\mathbf{Z}/n\mathbf{Z}$ , où  $e = \max(e_{\mathbf{R}}e_{\mathbf{O}}, e_{\mathbf{P}})$  et celui du second en  $\mathcal{O}(e \log^2 e \log \log e)$  opérations avec  $e = \max(e_R, e_O)$



# Les problèmes C-DPOL et D-DPOL

#### Théorème

$$\text{C-DPOL} \land \text{E-DPOL} \overset{\mathscr{P}}{\Longleftrightarrow} \text{P}^{-1} \overset{\mathscr{P}}{\Longrightarrow} \overset{\text{C-DPOL}}{\text{E-DPOL}} \overset{\mathscr{P}}{\Longrightarrow} \text{D-DPOL}$$

- Pour le problème E-DPOL, on connaît P(a) et Q(a) et on veut calculer a
- On a

$$(X-a) \mid \operatorname{pgcd}(P(X) - P(a), Q(X) - Q(a))$$

- Et encore, on a très souvent égalité et on retrouve donc a
- Calcul du pgcd en  $\mathcal{O}(e \log^2 e \log \log e)$  opérations dans  $\mathbb{Z}/n\mathbb{Z}$ , avec  $e = \max(e_{\rm P}, e_{\rm O})$ . Si  $e_{\rm P}$  et  $e_{\rm O}$  sont supérieurs à  $2^{60}$ , cette méthode échoue



# Relations entre les trois classes de problèmes

- On peut également définir plusieurs réductions entre les trois classes de problèmes
- Et d'autres dans le cas particulier où les polynômes induisent des morphismes de  $(\mathbf{Z}/n\mathbf{Z})^{\times}$



- 1 Introduction
- 2 Polynômes de permutation à trappe de  $\mathbb{Z}/n\mathbb{Z}$
- 3 Nouveaux problèmes algorithmiques
- 4 Exemples de nouveaux cryptosystèmes
- Conclusion



Cryptosystèmes

- Clef publique : (n, P, Q) ou (n, P, Q, R)
- Clef secrète:  $P^{-1}$  ou  $(P^{-1}, Q^{-1})$
- Fonctions de chiffrement :
  - Fonction 1:  $(m, r_0, r_1) \mapsto (P(r_0), Q(r_1), mR(r_0, r_1))$
  - Fonction 2:  $(m,r) \mapsto (P(mr), Q(r^{-1}))$
- Déchiffrement : on utilise  $P^{-1}$  ou  $(P^{-1}, Q^{-1})$  pour récupérer l'aléa et on en déduit *m*



# Cryptosystèmes IND-CPA

#### Théorème

Les schémas sont OW-CPA et IND-CPA sûrs relativement aux problèmes suivants:

| Fonction de chiffrement        | OW                       | IND                            |  |
|--------------------------------|--------------------------|--------------------------------|--|
| $F_1, R(X,Y) = XY$             | C-POL1 $(n, P, Q)$       | $D	ext{-POL1}(n,P,Q)$          |  |
| $F_1, R(X,Y) = P((XY)^{\ell})$ | C-POL2 $(n, \ell, P, Q)$ | D-POL2 $(n, \ell, P, Q)$       |  |
| F <sub>2</sub>                 | C-POL1 $(n, P, Q)$       | $\text{D-POL1}(n, P, Q)^{(*)}$ |  |

(\*) Si P ou Q est un morphisme

$$F_1: (m, r_0, r_1) \mapsto (P(r_0), Q(r_1), mR(r_0, r_1)),$$
  
 $F_2: (m, r) \mapsto (P(mr), Q(r^{-1}))$ 



- On utilise pour P le polynôme issu de LUC et pour Q le polynôme RSA, paramétrés par le même exposant *e*
- On ajuste e et  $\ell$  pour avoir une sécurité de  $2^{80}$

| Schéma   | Chiffré                                   | Clef publique                   |
|----------|-------------------------------------------|---------------------------------|
| Schéma 1 | $V_e(r_0, 1), r_1^e, m r_0 r_1$           | $e = 2^{67} + 3$                |
| Schéma 2 | $V_e(r_0, 1), r_1^e, mV_e((r_0r_1)^\ell)$ | $e = 5$ et $\ell = 2^{31} + 65$ |
| Schéma 3 | $V_e(mr,1), r^{-e}$                       | $e = 2^{67} + 3$                |



## Efficacité

- On compare l'efficacité de ces schémas avec le Dependent RSA de Pointcheval ( $e = 2^{67} + 3$ ) et Catalano *et al.*( $e = 2^{16} + 1$ )
- L'unité est la multiplication modulo *n*

| Schéma        | D-RSA | Catalano | Schéma 1 | Schéma 2 | Schéma 3 |  |
|---------------|-------|----------|----------|----------|----------|--|
| Entrée        | 1024  |          |          |          |          |  |
| Sortie        | 2048  |          | 3072     |          | 2048     |  |
| Chiffrement   | 139   | 52       | 205      | 44       | 214      |  |
| Déchiffrement | 567   | 570      | 1204     | 1228     | 1196     |  |



- On modifie la construction précédente pour avoir un niveau de sécurité IND-CCA2, dans le ROM
- Clef publique : (n,P,Q,h) ou (n,P,Q,R,h) avec h une fonction de hachage vu comme un oracle aléatoire
- Clef secrète :  $P^{-1}$  ou  $(P^{-1}, Q^{-1})$
- Fonctions de chiffrement :
  - Fonction 1:  $(m, r_0, r_1) \mapsto (P(r_0), Q(r_1), mR(r_0, r_1), h(m||r_0||r_1))$
  - Fonction 2:  $(m,r) \mapsto (P(mr),Q(r^{-1}),h(m||r))$
- Déchiffrement : on utilise  $P^{-1}$  ou  $(P^{-1}, Q^{-1})$  pour récupérer l'aléa et on en déduit m et on le retourne si le haché est correct



# Cryptosystème IND-CCA1 dans le modèle standard

- Knowledge of preimage assumption (KPA): Étant donnés  $P_1$  et  $P_2$  deux polynômes de permutation de  $\mathbf{Z}/n\mathbf{Z}$ , si un adversaire produit un couple (x,y) tel qu'il existe  $a \in \mathbf{Z}/n\mathbf{Z}$  tel que  $(x,y) = (P_1(a),P_2(a))$  alors il connaît a
- Nouveau système :
  - Clef publique :  $(n, P_1, P_2, Q)$  avec  $P_1, P_2$  et Q des polynômes de permutation de  $\mathbb{Z}/n\mathbb{Z}$
  - Clef secrète :  $P_1^{-1}$
  - Fonction de chiffrement :

$$(m,r) \mapsto (P_1(r), P_2(r), mQ(r))$$

• Déchiffrement : étant donné un chiffré (x, y, C), on vérifie que  $P_2(P_1^{-1}(x)) = y$ , si c'est le cas, on retourne  $C/Q(P_1^{-1}(x))$ , sinon on retourne  $\bot$ 



- On montre que ce système est IND-CPA sous l'hypothèse que le problème D-DPOL $(n, P_1, Q)$  est difficile
- De plus, le système est PA1 sous KPA
- Le système est donc IND-CCA1 sous ces deux hypothèses, dans le modèle standard
- En prenant  $P_1(X) = X^e$ ,  $P_2(X) = (X+1)^e$  and  $Q(X) = (X+2)^e$  avec e de 60 bits, on obtient un système plus rapide que le Damgård's ElGamal, autre schéma prouvé sûr IND-CCA1 dans le modèle standard sous les hypothèses DDH et KEA (hypothèse qui a inspirée KPA!)



- Introduction
- 2 Polynômes de permutation à trappe de  $\mathbb{Z}/n\mathbb{Z}$
- 3 Nouveaux problèmes algorithmiques
- 4 Exemples de nouveaux cryptosystèmes
- 6 Conclusion



#### Conclusion

- Nouveaux problèmes algorithmiques, généralisant le problème RSA et étude de leurs difficultés
- Construction de nouveaux systèmes IND-CPA sûrs et IND-CCA2 sûrs dans le ROM
- Construction du système le plus rapide IND-CCA1 sûr dans le modèle standard

