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Goal: how Grébner bases can be used to break
(block) ciphers 7

J.-C. Faugere

Plan

1. Use the same benchmark during the talk: non-trivial
iterated block ciphers from
"Block Ciphers Sensitive to Gréobner Basis
Attacks", [BPW] J. Buchmann, A. Pyshkin and R.-P.
Weinmann, CT-RSA 2006

2. Quick state of the art: zero-dimensional solving using
Grobner Bases

3. Test different algorithms and strategies: Direct,
Substitution of some variables, several
plaintexts/ciphertexts, several correlated
plaintexts/ciphertexts.

Results: Algebraic Crytptanalysis «— essentially
experimental results in this talk
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J.-C. Faugere

K a (finite) field (and w is a primitive element when

K =F,), K[xi, ..., x,| polynomials in n variables.
Definition (Buchberger)

< admissible ordering (lexicographical, total degree, DRL)
G C K[x,..., xp| is a Grébner basis of an ideal / if

Grébner bases:
properties

Vf € I, exists g € G such that L<T(g) | L<T(f)

Solving algebraic systems: -
Computing the algebraic variety: IK C IL (for instance L=IK
the algebraic closure)




Grébner - Crypto

Properties of Grobner bases Il
Solutions in finite fields:

We compute the Grobner basis of G, of
(Ao fm X2 — X1, ., X2 — xp], in Falx1, ..., xp]. Itisa Grobner bases:
description of all the solutions of Vp,. propertes
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Properties of Grébner bases Il
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Theorem
. . Grébner bases:
> Vi, = @ ( no solution) iff Gp, = [1]. oropertics
» VE, has exactly one solution iff
G, = [x1 — a1, ..., X, — ap| where (a1, ..., a,) € Fj.

Shape position:

If m > n and the number of solutions is finite ( # Vx < o),
then in general the shape of a lexicographical Grobner basis:
X1 > - > Xp!

ha (%) (= 0)
)

" Xp—-1 = hn—1(xa) (= 0)
Shape Position _

x1 — b (xp) (= 0)




Feistel cipher: FLURRY |
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Flurry(k, t, r, f, D) the parameters used are:

> k size of the finite field K: k = log (IK).

> tis the size of the message/secret key and m = 5 the FLO
half size.

> r the number of rounds.

» f a non-linear mapping giving the S-Box of the round

function.
In practice: f(x) = f,(x) = xP or f(x) = finy(x) = x* 2.

» D a m x m matrix describing the linear diffusion
mapping of the round function (coefficients in IK).
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Weset L= [Iy,..., Im] €K™ and R = [, ..., rm] the )
left /right side of the current state. and K = [kq, ..., k] the
secret key.
We define the round function
p:K” x K" x K" — K7 x K" as

Feistel cipher:
FLURRY

o(LR, K)= (R D."[f(rn+k),..., f(rm+ km)] + L)

The key schedule. from an initial secret key [Kp, Ki] (size
t = 2 m) we compute subsequent round keys for
2 <i<r+1 as follows:

Ki=D.Ki1+Kia+v, i=23...(r+1)

where v; are round constants.
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A plaintext [Lg, Ro| (size t) is encrypted into a ciphertext
(L,, R,) by iterating the round function p over r rounds:

Feistel cipher:
FLURRY

(L,,R,) :p(L,'_l,R,'_l,K,'_l) for i = 1,2 ..... (I’—l)
(Lry Rr) — p(erlv erlv Krfl) + (01 Kr+1)

and L,‘ = R,',l.
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SPN: Curry |

We describe now the Curry(k = log(IK), m, r, f, D) family
of SPN ciphers. Here :

J.-C. Faugere

» m € IN is the dimension of the plaintext space, the
ciphertext and secret key spaces are IK™ <™

» r € IN is the number of rounds

» K — K is a bijective non-linear mapping giving the
S-Box of the round function

» D € Myum(K) is a matrix describing the linear
diffusion mapping of the round function

The round function p : K> x IK™*™ — K™*™ of Curry
is given by :
p(S.K)=G(5K)-D,

with

G: X={x;} e K"™" - G(X)={f(x)} € K™




SPN: Curry Il

being the parallel application of the S-Box f to the
components of X.

A plaintext m = Sy € IK™*™ is encrypted into a ciphertext
c =& K™ by iterating the round function p exactly r
times followed by an additional key-addition after the last
round, namely :

Sp = p(Si1,Kpq), forall ¢, 1</0<r—1,
c=5 = p(5-1,K-1)+ K.

The key used for the first round key is the secret-key
Ky € K>, subsequent round keys K;, i > 1 are recursively
computed via the formula :

Ki = Ki-1- D+ M;,

M; = {wf+(j71)m+k}j’k’1§j’k§m e Kmxm being a round
constant.

Grébner - Crypto
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SPN case: Curry




Feistel /Curry ciphers: algebraic attack. |

Algebraic attack: The encryption process can be described
by very simple polynomial equations: introduce variables for
each round Lj == [lej, ce ,mej], Rj == [Xerl,j: ce vXt,j} and
Ki = ki), ... kmj] — F algebraic set of equations.

plaintext: p= Ly U Ry
for ciphertext: ¢ = L,41 UR,11 of size t equations:
secret key: k = Ky U K3

S;(p, ©) |is the corresponding algebraic system

In the following: if p is explicitly known then we note p*;
N,

hence we obtain S;(p*, ¢*)

Grébner - Crypto
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Feistel cipher
modelling
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Feistel /Curry ciphers: algebraic attack. Il
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Theorem

[Buchmann, Pyshkin, Weinmann]. If f(x) = xP, for an
appropriate variable order x; ;, k; ; then S;(p*,¢*) is already

a Grébner basis for a total degree ordering. modaling

Main problem: we are computing Vi and not Vi ! ‘
and many solutions:
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Algorithms: for computing Grébner bases.

» Buchberger (1965,1979,1985)
> F4 using linear algebra (1999) (strategies)
> F5 no reduction to zero (2002)

Fs (1999) linear algebra
Small subset of rows: Fs (2002) full rank matrix f5/2
(2002) full rank matrix GF(2) (includes Frobenius h* = h)

momoms degree d in xq, ..., Xn
monom X fj,
A4 = monom X f;
monom X f;,

Complexity: driven by the maximal degree Dp,., occurring in
the computation:
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Algorithms [l

Theorem
If Dax is the maximal degree occurring in the computation
of a Grobner basis of an ideal |, then the complexity of the
computation is:

O (M(n, Dmax)?)

where M(n, d) is the number of monomials in K[xi, ..., x|
of degree < d.

Sometimes we have a theoretical bound for D,,.y: for a
(semi)-regular sequence of m quadratic equations
(f,..., fm) we have

Buchberger and
Macaulay

m Dmax
m<n m+1
n+1 ”TH

n+1 | " —Herm; (/™ +o(1)

1
2n s + 0 (nt)




FLURRY: first step

Magma Magma

2.11 2.13 FGb

FIurry(m,r,f) deg(l) F4 F4 F5

(1,4, x°) 625 0s 0s Os

(m,r,x?) prm Os Os Os

(2,4,x%) 6521 0s 0s 0s
(1,10,x 1) | 221 22.1s 10.7 s 0.8s
(1,12,x 1) | 596 X 209.8s  9.1s
(2,5x° 1) 274 26.0 s 143 s 1.2s
(26,x71) | 1126 X 902s  469s
(3,4,x° 1) 583 X 83 s 12.2s

CPU Time: Grobner DRL

Grébner - Crypto

J.-C. Faugere

Buchberger and
Macaulay
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Solving zero-dimensional system
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When dim(/) = 0 (finite number of solutions); in general:

> |t is easier to compute a Grobner Basis of / for a total
degree (<prL) ordering

» Triangular structure of Gb valid only for a lex. ordering:

hn(x,) =0

Xn - hn ero dim solve

Shape Position ' 1) fero dim =
x1 = h1(x,)

Dedicated Algorithm: efficiently change the ordering‘

FGLM, Grébner Walk, LLL, ...
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‘ Dedicated Algorithm: efficiently change the ordering

FGLM = use only linear algebra.

Theorem (FGLM)
Ifdim(/) = 0 and D=deg(/). Assume that G a Grébner Zero dim solve

basis of | is already computed, then Gpe, a Grébner basis for

the same ideal | and a new ordering <peyncan be computed
in O(nD3).




Zero dim solve

( Initial System |

[ Grobner Basis DRL order j

'y

A

(Grdbner Bas

is Lexico order)

( C{J
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Zero dim solve
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Solving FLURRY |
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[BPW]
) #Sols | Magma FGb
) 3* <0.1s. | <0.1s.
)
)

Flurry(k, m, r, f, D
Flurry(64,1,4,1f3, 1
/

(

Flurry(64,1,4, f5, I 54 23s. | <0.1ls.
Flurry(64, 1,4, f7, I 74 82.62 s. 19.4 s.
Flurry(64,1,6,f 1, I1) 26 0.1s. 0.7s.
Flurry(64,1,6, f3, 1) 3% ]145.08s. | 21s.
Flurry(64, ]_, 8, f;l, /1) 79 1.46 s. 0.9 s.
Flurry(64,1,10,f 1, /1) | 221 | 60.61s. | 19s. Zero dim solve
Flurry(64,1,12,7 1, 1) | 596 | 2064s. | 16.5s.
Flurry(32,2,4, f_1, D) 59 65.78 s. 0.9 s.




Solving FLURRY I

Interpretation of the Results.

» non-negligible practical gain when using a sparse version
of FGLM.

» this approach becomes quickly impractical due to huge
dimension.
— mainly due to the fact that the field equations are
not included in the input system. Therefore, the variety
associated to these systems will mostly contain spurious
solutions.

Zero dim solve

Intractable systems for large t, r‘

For x —— x” the complexity is O (p% mr log (#]K))




Substitution of 1 variable Grobner - Crypto

J.-C. Faugere

Compute a Grébner basis of /| + (x, — «) for some « € K
(finite field).

Now we have an overdetermined algebraic system and only 1
or 0 solution !

[DRL + FGLM| <~ [ (#K) (CPU overdetermined)

Substitution of 1
variable
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Substitution of 1 variable
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Magma 2.13 FGb
Flurry(m,r,f) | deg(/) F4 Fs
(2,4,X%) 6521 15s 021s
(26,x71) | 1126 6.0s
(34x71) | 583 0.22's 0.10s

CPU Time: Grdbner overdetermined

to be compared with:

Magma 2.13 FGb s e
Flurry(m,r.f) | deg(/) | FGLM FGLM
(2,4,5°) 6521 | out of memory 991s
(26,x71) | 1126 | 20m 35
(3.4,x°1) 583 441.2s 26.8s
CPU Time: Grébner DRL + FGLM
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Substitution of 1 variable
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FGb FGb
Flurry(m,r,f) | deg(/) | FGLM Fs
(2,4,5°) 6521 991s 0.21s
(26, 1) | 1126 |[1m21]| [0.39s]
(3.4,x1) 583 26.8s  0.10s
CPU Time: Grébner overdetermined

Hence the second method is more efficient when

#K < 8021 o for FGb

#K < 20*69”5 ~ for Magma 2.13-10

Substitution of 1
variable

the complexity is O ((#K) log (#K))
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Several plaintexts |
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We choose randomly several plaintexts: pj, ..., py and we
assume that we known the corresponding ciphertext: ¢
We obtain an algebraic system:

Surprisingly, in this form this approach will not lead to any
improvement !

N Nb of plain/cipher text 1 2 3 e
CPU 0.43s 25.8s 16m42s
Nb of solutions 184 1 1

Flurry(K =GF(27), m = 4, x 1)

Same behavior if we fix k19 (1 component of the secret key):
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Several plaintexts |l
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N Nb of plain/cipher text 1 2 5 10
CPU 0.01s 0.09s 2.3s 99.5s
Nb of solutions 1 1 1 1

Flurry(K =GF(27), m = 4, x 1), substitution of 1 variable

This is likely due to the fact that we have increased the
number of equations/variables.

Several plaintexts
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Chosen plaintexts |

In order to take advantage of the use of several pairs, we
have considered set of messages highly correlated.

The intuition behind this approach is the following: we
expect that the quadratic terms of equations corresponding
to different messages will be canceled.

For instance, consider a quadratic polynomial

p € K[xi, ..., x,], then its differential in

ac K" p(x+a)— p(x) is linear.

Thus, we expect to generate new linear equations allowing
the ease Grobner basis computation. In particular, we hope
to keep the maximal degree reached during the Grébner
basis computation as small as possible.

In our experiments, we have generated the set of messages
by fixing :

Several plaintexts

g = (0,...,0), and
B = (1,...,0)




Chosen plaintexts I rovner Comee

We then constructed messages m;, for all /,2 </ < N, using
the relation :

i = P +é with j<i, 1<k<t
or pi = wp,

where é = [...,0,1,0,...] canonical basis of K*.
We obtain an algebraic system:

N Several plaintexts
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Experimental results |

In the table below, we have quoted the results we have
obtained on Flurry and Curry with different values of .
Note that we selected the parameters for having a secret-key

of 128-bit. In the table :
> Tppw is the estimated complexity of the attack of BPW
» T is the total time of our attack

> Dpax is the maximal reached during the Grébner basis T
A everal plaintexts
computation




Experimental results |l

N T Dmax T

Flurry(k, m, r, f, D) Tepw

Flurry(32,2,4, 5, D;) | ~ 2% | 2 3 0.1s.
Flurry(32,2,4,f5, D) | ~ 2% | 3 5 <0.1s.
Flurry(32,2,4,f,, D)) | ~20 | 3 7 0.13 s.
Flurry(32,2,4,f,,D,) | ~ 270 | 4 7 3.8s.
Flurry(32,2,5, 3, D) | ~2% | 3 5 58.8 s.
Flurry(32,2,5, 3, D) | ~ 2% | 4 4 2.2s.
Flurry(32,2,5, 5, D) | ~2* | 5 3 0.1s.
Flurry(32,2,6, 3, D5) | ~ 200 | 6 4 | 1438.4 s.
Flurry(32,2,6, 3, D) | ~2°06 | 14| 3 8.14 s.
Flurry(32,2,7, 5, D) | ~2°0% [ 30 | 3 |31751s.
Flurry(16,4,4,f;, D) | ~ 2% | 3 3 <0.1s.
Flurry(16,4,4, fs, D) | ~ 22 | 3 5 3.99s.
Flurry(16,4,4,f7, D) | ~ 27 | 3 7 105.4 s.

Grébner - Crypto
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Several plaintexts
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N | Dmax T

| Curry(k,m,r,f,D) | Tepw
Curry(32,2,3,f3, D) | =~ 220 2 10 1.3 s.
Curry(32,2,3,f3, D)) | =2°" | 17| 6 05s.
Curry(32,2,3,f3, D) | = 257120 3 <0.1s.

Several plaintexts
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Interpretation of the results

We can observe that our approach is significantly faster than
the Grébner conversion attack of BPW.

The most important is to observe that — in all cases — we
have been able to find a number of pairs N* > 1 such that
the maximal degree reached during the Grébner basis
computation is equal to the degree d of the S-box function.
In practice, we have found this N* by performing the
following test incrementally on N > 2 : we compute a DRL
Grobner basis of PV, If the maximal degree reached during
this computation is greater than d then we stop the
computation and set N «— N + 1, otherwise N «— N*.

J.-C. Faugere

On this basis, we can extrapolate the (experimental) Several plintexts
complexity of our attack. Let by (resp. bc) be the number

of variables of the system Pé\{;rry (resp. Pé’;rry), we evaluate
the complexity of our attack to :

@) (b; deg(f)) ,for Flurry(n, m, r, f, D)

@] (bidegm\ for Currv(n m r £ D)
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Conclusion

» One test example: Flurry(log (K), m,r,f,D)
Buchmann, Pyshkin, Weinmann

> Several efficient algorithms for computing Grobner
Bases: F4, F5, FGLM

» Several implementations: Magma, FGb, Singular, ...
» Different strategies: Direct, Substitution of some
variables, chosen plaintexts
» Direct computation: Gb + FGLM O <p% mr, #]K)
» Chosen plaintexts:

> Flurry broken (?) when f = x3 and chosen plaintexts,
complexity O ((t r)P log (#H()) and 5 <0.
» The attack does not work for f = L (or too big)

Conclusion

» Need some theory to predict/explain the behavior of
Grobner bases with correlated messages.
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