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What is an elliptic curve?

Elliptic curves appear in various areas in mathematics: number theory,
complex analysis, cryptography, mathematical physics. Their name
comes from the studies of elliptic integrals (Euler, Gauss).

An elliptic curve is
» a geometrical object: a nonsingular curve given by an equation

y? = f(x), with degf =3,4

o0 o & < <

» an algebraic object: one can “add” two points on a curve to obtain
a third point that is also on the curve.
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The equation of an elliptic curve

» An elliptic curve over a field K of characteristic # 2,3 is given by an
equation of the form

E:Y2=X3+aX+b, withabeK (1)

and A = —16(4a° +27b%) £ 0
> j-invariant: 1728a%/4A
» The set of K-rational points points of an elliptic curve is

E(K)={(x,y) e Kx K; Y?=X3+aX+b}U{0}

» In the general case, we consider the long Weierstrass form of an
elliptic curve

Y2 + a1 XY +a3Y = X3+ 2o X? + asX + a,

where a1, as, a3, a4, 36 € K.
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Adding points on an elliptic curve
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Algebraic description of the addition operation

Let P1 = (x1,y1) and P> = (x2, y2) be two points on

E:Y?*=X>+aX+b.
The slope of the line (P, P>) is

27N e p £ P2
X2 — X1

A=1
PAta yep —p,
2y1

The sum of P and Q is the point

P+Q:()\2—X1_X27 A(XI_X3)_'y1)'
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Properties of the addition on an elliptic curve

For all P, @, R € E, the addition law has the following properties:
» P+O=0+P=P

P+(-P)=0

(P+Q)+R=P+(Q+R)

P+Q=Q+P

vV vy

Thus, (E,+) forms an Abelian group.

Abelian groups are widely used in public-key cryptography!
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Group based cryptography

Many cryptographic protocols require the use of a finite Abelian group.
For practical use one wants a group G such that

» the group operation is easy to implement (finite algebraic groups are
good candidates),

» the computation of discrete logarithms in G is hard.

DLP: Find the least positive integer x (if it exists) such that h = g* for
two elements g, h € (G, x). If #G is prime such a discrete logarithm
always exists.

Examples:
» the (multiplicative) subgroup I, of a finite field

» the group of points of an elliptic curve defined over a finite field
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Elliptic curve over a finite field

34 E : y2 =x3-5x+38
2/ defined over F37

A P=6.3)
o S 7 Q=(9.10)

w AP A=7/3=27

o QiR e =272 —6-9=11
e e 2 27(6—11) —3 =10

DJ

R = (11,10)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
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What field can we use?

Software implementations: prime fields F,, p large prime
» Mersenne primes: M, =2" -1 (Mg =251 —1)

» Pseudo-Mersenne primes: 2" — ¢, ¢ small (225 — 19)

Hardware implementations: binary fields Fom, m large (prime)

» Reduction polynomial: trinomial, pentanomial, all-one
polynomial

» Bases: polynomial bases, normal bases

Why not? General extension fields Fym, p, m prime, p™ large

» Optimal Extension Fields (OEF)
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What about sizes?

Security RSA DH, DSA ECC
level Z/nZ, n = pq I, Fp

(in bits) p,q primes | g prime power p prime

(|n| in bits) (Ig| in bits) | (|p| in bits)

80 1024 1024 160
112 2048 2048 224
128 3072 3072 256
192 4096 4096 384
256 15360 15360 512
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What curves can we use?

For a given set of parameters (E, K, P, h,n), let q := #K = p™
A valid curve must satisfy:

» #E(K)=hxn

n is prime

n > 2160 to avoid BSGS/Pollard rho attacks

n # p to avoid anomalous attack

gt # 1 (mod n) for all t < 20 to avoid the MOV attack
m is prime to avoid Weil descent attacks

P is on the curve and has order n

These checks are usually done only once by the organisation deploying
elliptic curve based solutions.
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Cost estimation

» How do we estimate the cost of an algorithm?

» A not-too-bad estimation can be obtained by counting the number
of field operations of each type:

» # field addition/subtraction (A)

# field multiplications (M)

# field squarings (S)

# field inversions (/)

# “small” field multiplications, e.g. xd is denoted by (D)

v

v

v

v

» Estimates: / ~ 30M, S ~ 0.8M over F,, S “negligible” over Fom
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We don't like inversions!

In projective coordinates, the equation of E becomes
E:Y?Z=X3+aXZ?+ bZ?
(X : Y : Z) denotes an element of P2/K; i.e. a class of K>\ {0,0,0}

modulo the equivalence relation

(X:Y:Z)~n(X':Y :Z)VesIMeK X =AX, Y =AY, Z =)\Z

Only one point of E satisfies Z = 0, the point at infinity O = (0:1:0)
» Projective: (X:Y :2); (x,y)=(X/Z,Y/2)
» Jacobian: (X :Y:2);(x,y)=(X/Z%Y/Z3)
» Chudnovsky Jacobian: (X : Y :Z:2Z2%:273)
» Modified Jacobian: (X : Y : Z:aZ*%)
>
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Elliptic curve operations

Curve shape ADD reADD mADD DBL mDBL
DIK2 12M + 55 | 12M + 55 | 8M 4+ 4S | 2M + 5S | 1M + 5S
DIK3 1IM +6S | IOM +6S | 7M +4S | 2M 4+ 7S | 1M + 5S
Edwards 10M 4+ 1S | 1I0M + 1S | 9M + 1S | 3M + 4S | 3M + 3S
ExtJQuartic 8M +3S| 8M+3S| 7™M +3S | 3M 4 4S5 | 1M + 6S
Hessian 12M 4+ 0S | 12M +0S | 10M 4+ 0S | 7TM 4+ 1S | 3M + 3S

InvEdwards OM+1S| OM+1S | 8M + 1S | 3M + 4S | 3M + 3S
JacIntersect | 13M + 2S5 | 10M +2S | 11IM + 2S5 | 3M + 4S | 2M + 4S

Jacobian 11M + 5S | 10M + 4S ™ +4S | IM + 85 | 1M + 5S
Jacobian-3 1IM +5S | IOM +4S | 7TM +4S | 3M + 55 | 1M + 5S
JQuartic IOM +3S | OM+3S| 8M+3S | 2M + 6S | 1M + 4S

Projective 12M + 25 | 12M + 25 | 9M 4+ 25 | 5M + 6S | 3M + 5S
Projective-3 | 12M + 2S5 | 12M +2S | 9M 4 2S | 7M + 3S | 3M + 5S
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Elliptic curve based protocols

Signatures, key agreement and encryption protocols have been adapted
to elliptic curves.

ECDSA: Elliptic Curve Digital Signature Algorithm
ECDH: Elliptic Curve Diffie-Hellman (key-agreement)

ECMQV: Authenticated DH key-agreement
(Menezes, Qu, Solinas, Vanstone)

ECIES: Elliptic Curve Integrated Encryption System
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Computations and arithmetic needs

Scalar multiplication:
k,P— [kKIP=P+P+---+ P, (ktimes)

is the main operation.
But various situations can occur...

which have a great influence on the implementation choices.
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Computations and arithmetic needs

generated online at random
unknown in advance; result of online computations
e known in advance; domain parameter; private key

ECDSA: Elliptic Curve Digital Signature Algorithm

Parameters: (E, K, P, h,n)
Signature: P [K]P x-coord only
Verification: P, [<1P + ]
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Computations and arithmetic needs

generated online at random
unknown in advance; result of online computations
e known in advance; domain parameter; private key

ECDH: Elliptic Curve Diffie-Hellman key-agreement

Parameters: (E, K, P, h,n)
Alice Bob
[[IP —
— b [P
[4] = 4]
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Computations and arithmetic needs

generated online at random
unknown in advance; result of online computations
e known in advance; domain parameter; private key

ECIES: Elliptic Curve Integrated Encryption System

Parameters: (E, K, P, h,n)
Encryption: [<]P  only the x-coord is used for decryption

[£]
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Addition chains

When the scalar k is known in advance, one computes [k]|P using “short”
addition chains.

An addition chain for k is a sequence 1 = up < u1 < -+ < up, = k such
that, forall m> 1, up = uj + vy with 0 <P < j < m.

» 280: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,...,289

» 289: 1,2.4.8,9,18,36,72,144, 288,289

Finding optimal addition chain is very difficult, but good heuristics exists
to get raisonably short addition chains.
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Scalar multiplication algorithms

Double-and-add: k = 375 k;2/, with k; € {0,1}
n — 1 doublings, n/2 additions on average
314159=1001100101100101111.

NAF, CSD: k; € {1,0,1}
n doublings, n/3 additions on average
NAF>(314159) =1010101010101010001

NAF,,, Window methods: |k;| < 2”~! (proces w bits at a time)

n doublings, n/(w + 1) additions on average
NAF3(314159) =1000300100300030001

Double-base chains: k = Z,.2a"3b", with a;, b; > 0, (a;, b;) \,
ap doublings, by triplings, O(log k/ log log k) additions (?)
314159 = 2439 — 2036 33 32 _3_1
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Montgomery curves

An elliptic curve in the Montgomery form is a curve given by
Ev: By’ =x*+Ax*+x, ABEFy, p>3
Arithmetic on such curves can be carried out with the x-coordinate only.
[m + 1P = [m]P + [MP = Xnsn : —: Zmsol
Xintn = Zin—n (X = Zm)(Xa + Zn) + (Xin + Zim) (X — Z1))
Zmsn = Xm—n ((Xm = Zm)(Xn + Zn) — (Xen + Zm)(Xn — Z1))?
For the doubling operation, we have

4')<nZn — (Xn + Zn)2 - (Xn - Zn)27
X2n = (Xn + Zn)2(Xn - Zn)za
Zon = 8XnZn (Xn — Zn)* + ((A+2)/4) (4XnZy)) .
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The Montgomery ladder

Input: A point P on Ep and a positive integer k = (kp—1. .. ko)2
Output: The point [k]P on Epy

1. PP, Py« [2]P

2: for i = k — 1 downto 0 do

3:  if n; =0 then

4 P — [2]P1, P, — P+ P;
5. else

6: Pi «— P1+ Py, Py [2]P;
7: return P

Note that P, — P; = P.

Cost: (6M +4S)(Jk|> — 1)
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Conversion to Montgomery curves

Ev: B’ =x3+Ax®> +x —— Epy:y’=x3+ax+b
Eym — Ew: always possible
a:=1/B? - A?/3B?
b:=—A3/27B3 — aA/3B

Ew — Ep: conditional
lfaclF,isa root of x3 + ax + b

and 3a? + a is a quadratic residue modulo p

Then set s := /(3a2 +a)~1, A:=3as, B:=s

The change of variables (x,y) — (x/s + «,y/s) gives a curve Epy
isomorphic to E
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DIK curves
In PKC 2006, C. Doche, T. Icart and D. Kohel suggested a family of

curves with nice arithmetic properties

DIK2: Elliptic curves such that the multiplication-by-2 map can be split
as the product of two isogenies of degree 2

DIK3: Elliptic curves such that the multiplication-by-3 map can be split
as the product of two isogenies of degree 3
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Isogenies

E1/K and E;/K are isogenous over K if there exists a rational map
¢ : E1 — E» with coefficients in K such that ¢(Ofg,) = Og,.

An isogeny is a group homomorphism from E;(K) to Ex(K):
p(P+ Q) = ¢(P) + ¢(Q)

For every (non constant) isogeny ¢ : E; — Ej, there exists a unique dual
isogeny ¢ : E — Ej such that

@ogp:[ﬁ],

where ¢ is the degree of the isogeny .
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(-division polynomials

There exists explicit formulas to compute [¢]P relying on ¢-division
polynomials .

[4(x,y) = <X et VeVl — wg_2w§+l>

U7 4y}
The v,'s are defined recursively

The degree of 1, is (¢2 —1)/2
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Isogenies in practice

Every isogeny of degree ¢ over K can be described as a rational map

_(eix,y) we2(x,y)
eloy) = <¢<x,y)2’ w(x,y)3>

where 1, 2,1 are polynomials of degree < /

Scalar multiplication [¢]P as the composition of two degree-¢ isogenies
should be better than computing [¢]P using ¢-division polynomials of
degree (¢2 —1)/2.

Problem: given ¢ small, find suitable elliptic curves such that [¢] can be
split as the product of two isogenies of degree /.
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Finding isogenies

Let £1 and E; be two elliptic curves over K with j-invariants j; and j,
respectively.

There exists a polynomial ®,(X, Y) € Z[X, Y], called modular
polynomial such that

®y(j1,/2) = 0 iff E; and E, are (-isogenous

Given the j-invariant j of an elliptic curve E, the roots of ®,(X, ) are
the j-invariant of the elliptic curves that are /-isogenous to E.

For £ =2,3,5,7,13, the degree of ®; in Y is equal to 1, such that
deducing a parameterization of j is straightforward.
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Explicit parameterization of curves

Using modular equations, C. Doche, T. Icart and D. Kohel were able to
find explicit parameterization of elliptic curves over [F, with 3-isogenies
with coefficients over IFp,.

For j = (u+3)3(u +27)/u, we have ®3(u, ) = 0 for all v.

For p > 3 prime and u € [, the families of elliptic curves given by
y? =x3 4+ 3u(x + 1)

has a multiplication-by-3 map that can be split as the product of two
3-isogenies over [Fp,,
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Elliptic curves with degree 3 isogenies

(x1, 1) — (xe, y¢)

1
Xy = x1 +4u+12u (Xl—; )
X1

2
Ve =y <1—12u <X1§ >>
X1

(xt, yt) — (x3,¥3) = [3]P

1 12u(4u — 4u(4u — 9)?
x3 == | xx — 12u+ u(tu 9)— u( u2 %
32 Xt Xt
1 12u(4u —9)  8u(4u —9)?

= —_— 1 —_
y3 33yt < X1_-2 + X?
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Efficiency aspects

C. Doche, T. lcart and D. Kohel used a variant of Jacobian coordinates
where a point P is represented by (X1 : Y1 : Z; : 212) where x = X1/212
and y = Y1/Z3.

One can verify that [3]P = (X3 : Y3 : Z3 : Z2) is given by

A= (X1 +32%)? B = uZ}A Xe=YZ+B
Y, = Yi(Y? - 3B) Zi = X124 C=2?
D = ((4u —9)C — X;)? E=-3uCD Xs=Y?+E
Y3 = Yi(Xs — 4E) 73 = 3X: Zy Z2

Cost: 8M + 65, can be reduced to 6M 4 65 when multiplication by v is
negligible.
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Edwards curves

» H. M. Edwards, A Normal Form for Elliptic Curves, Bulletin of the
AMS, 44, 393-422, 2007. The elliptic curve given by

x* 4+ y? = a%(1 4+ x°y?), with a° # a (2)
describes an elliptic curve over a field K of odd characteristic
» There is a birational equivalence between (2) and
Z=(a-x*)(1-a*x?) — z=y(1-a*?

» Every elliptic curve can be written in this form, over some extension
field

» Edwards gives addition law, shows equivalence with Weierstrass
form, proves addition law, gives theta parameterization, ...
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Edwards curves shaped for crypto

» D. Bernstein and T. Lange introduced parameter d to cover more
curves over K

E:x?+y? = c?(1 4 dx?y?), avec cd(1 — dc*) # 0.

» Addition: (x1,y1) + (x2,¥2) = (x3,¥3)
3 = X1y2 + y1X2 Vs = Yiyo — X1X2
c(1+ dxaxayry2)’ c(1 — dxixay1y2)
» Neutral element: affine point of coordonates (0, ¢)
» Negative of a point: —(x,y) = (—x,y)
. Xy + yx Yy —xx
» Doubling: [2](x,y) = )
oubling: [2(x, ) <C(1 + dxxyy) c(1 - dXXYY))
» Unified group operations
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Unified operations

» If d is not a square then Edwards addition law is complete
- if (x1,y1) and (x2, y2) on the curve then dx;xpy1ys # +1

» Formula is correct for all affine point including (0,¢) , P+ (—P).

» Doubling formula is exactly identical to addition formula
- no re-arrangement like in Hessian form where
[2](X1 Yy Zl) = (Zl c X1 Yl) + (Yl AR Xl).
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Edwards addition law in projective coordinates

» The point (X : Y : Z) such that
(X% +Y?2)Z% = 2(Z* + dX?Y?)

corresponds to the affine point (X/Z,Y/Z).
» Neutral element: (0:c:1)
» Negative of a point: —(X:Y :Z)=(-X:Y:2)
» Addition : (Xl Yy Zl) + (X2 Yo 22) = (X3 D Y3 Z3)

A=27, B = A? C = X1 X5 D=Y1Ys
E = dCD F=B-E G=B+E

X3 = AF((Xl + Yl)(X2 + Yz) —C — D)

Y3 = AG(D - C)

Z3:CFG

» Cost: 10M + 1S + 1C + 1D + 7A
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Comparisons with other fast unified formulas

Coordinates

Cofit add/dbl

Ref

Projective
Projective (a = —1)
Jacobi intersection
Jacobi quartic
Hessian

Edwards (c = 1)

11M + 6S + 1D
13M + 3S

13M + 2S5 + 1D
10M + 3S + 1D
12M

10M + 1S + 1D

Brier/Joye 03
Brier/Joye 03
Liardet/Smart 01
Billet/Joye 01
Joye/Quisquater 01
Bernstein/Lange 07
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Optimizing Edwards doubling (¢ = 1)

Affine: [2](x,y)

Xy +yx yy —xx
1+ dxxyy’ 1 — dxxyy

_ 2xy y? —x?
A\ 14+ dx2y2’ 1 — dx2y2
_ 2xy y2 —x?

T\ 222

_ <(X+y)2 L = 2>

X2 1 y2 2 X2y

Projective: [2](X1: Y1 : Z1)

B = (X1 + Y1)?
C=X?
D=2
E=C+D
H=2?
J=E—-2H
Xs=(B—E)J
Y; = E(C — D)
Z3 = EJ

Cost: 3M + 4S + 6A
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Comparisons

Jac-3 vs. Edwards:

Doubling:

System Cost

Proj. 5M + 6S
Proj. (a=-3) | 7TM + 3S
Hessian ™ + 1S
DIK 3 2M + 7S
Jac. 1M + 8S
Jac. (a=-3) | 3M +5S
Jacobi quartic | 2M + 6S
Jacobi intersec. | 3M + 4S
Edwards 3M + 4S
DIK 2 2M + 5S

Jac-3 Edwards
Double | 3M + 55 | 3M + 4S
Triple ™ + 7S | 9M + 4S
Add 11IM + 55 | 10M + 1S + 1D
Re-Add | 10M + 4S | 10M + 1S + 1D
Mixed ™ + 4S OM + 1S + 1D

http://wuw.hyperelliptic.org/EFD/
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EFD : Explicit-Formulas Database
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http://www.hyperelliptic.org/EFD/

That's all folks!
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