

Produire une collision pour SHA-0 en une heure

Stéphane Manuel Thomas Peyrin

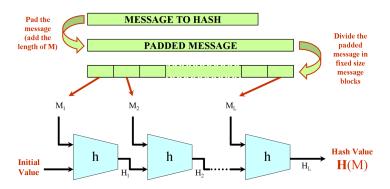
INRIA Rocquencourt, Équipe SECRET Orange Labs - AIST

Journées Codage et Cryptographie 17-21 mars 2008 Carcans Maubuisson

Outline

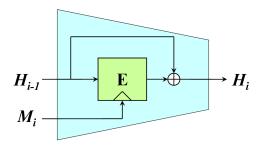
- Introduction
- 2 Précédentes attaques par collision
- Nouveaux résultats
- 4 Conclusion

Outline

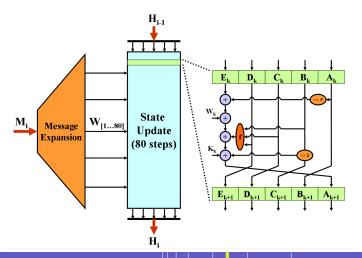

- Introduction
- 2 Précédentes attaques par collision
- Nouveaux résultats
- Conclusion

Fonction de hachage cryptographique

- Une fonction de hachage est un algorithme prenant en entrée une chaîne de bits de longueur arbitraire finie (le message) et restituant en sortie une chaîne de bits de longueur fixée (le haché).
- Propriétés cryptographiques classiques :
 - Résistance aux attaques par pre-image : étant donné un haché quelconque fixé, il est impossible de construire un message correspondant à ce haché.
 - Résistance aux attaques de seconde pre-image : étant donné un message quelconque fixé, il est impossible de trouver un autre message possédant le même haché.
 - ► Résistance aux attaques par collision : il est impossible de trouver deux messages distincts possédant un même haché.


Extenseur de domaine

• L'algorithme de Merkle-Damgard renforcé :


Fonction de compression

• La construction de Davies-Meyer :

La fonction SHA-0

• Construite en 1993, 160 bits en sortie.

La fonction SHA-0

Expansion de message :

$$W_k = \begin{cases} M_k, & \text{pour } 0 \le k \le 15 \\ W_{k-16} \oplus W_{k-14} \oplus W_{k-8} \oplus W_{k-3}, & \text{pour } 16 \le k \le 79 \end{cases}$$

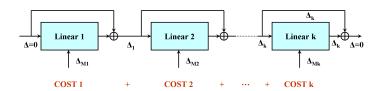
Fonctions booléennes :

pas <i>k</i>	$f_k(B,C,D)$
$1 \le k \le 20$	$f_{IF} = (B \wedge C) \oplus (\overline{B} \wedge D)$
$21 \le k \le 40$	$f_{XOR} = B \oplus C \oplus D$
$41 \le k \le 60$	$f_{MAJ} = (B \wedge C) \oplus (B \wedge D) \oplus (C \wedge D)$
$61 \le k \le 80$	$f_{XOR} = B \oplus C \oplus D$

Outline

- Introduction
- 2 Précédentes attaques par collision
- Nouveaux résultats
- 4 Conclusion

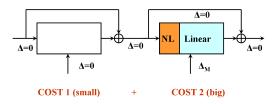
Chabaud et Joux [CRYPTO 98]


- Collisions locales: insertion d'une perturbation puis de corrections dans les 5 pas suivants.
- Trouver des chemins différentiels linéaires constitués de collisions locales entrelacées : caractéristique linéaire.
- Trois contraintes sur le vecteur de perturbations :
 - pas de collision locale tronquée,
 - pas de perturbations consécutives dans les 16 premiers pas,
 - pas de collision locale commençant après le pas 74.

La complexité de l'attaque est évaluée par la probabilité que toutes les collisions locales soient conformes.

Biham et al.

- Biham et Chen [CRYPTO 04]: bits neutres
 - ► Technique d'accélération durant la phase de recherche de collision.
 - Permet de générer efficacement un ensemble de messages qui se conforment au chemin différentiel jusqu'à un certain pas.
- Biham et al. [EUROCRYPT 2005] : blocs multiples
 - Utilisation de plusieurs blocs de message pour construire la collision.
 - ► Composition de pseudo-collisions et de quasi-collisions.


Wang et al. [CRYPTO 05]

- Relâcher les deux premières contraintes sur les vecteurs de perturbations.
- Modifier (à la main) les premiers pas du chemin différentiel pour compenser les collisions locales tronquées et les perturbations consécutives : caractéristique non-linéaire.
- Utiliser de "nouveaux" outils :
 - soustraction modulaire,
 - la propagation de retenue,
 - la non-linéarité de la fonction f_{IF}.

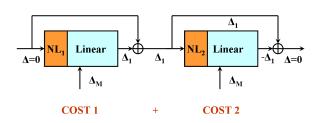
Wang et al. [CRYPTO 05]

- Modifications de message : nouvelle technique d'accélération.
- Construction d'un premier bloc de message aléatoire dont la variable de chaînage vérifie des conditions spécifiques (16 conditions).

La complexité est donnée en terme de nombre de conditions à vérifier (avec un décompte commençant au pas 20).

Naito et al. [ASIACRYPT 06]

- Utilise les caractéristiques, linéaire et non-linéaire, de Wang et al.
- Modifications sous-marines : décompte des conditions à partir du pas 24.
- Complexité :
 - ▶ théoriquement 2³⁶ appels à la fonction ...
 - ... mais en moyenne 100 heures de calcul.
 - ▶ Notre estimation : 2^{40,5} appels à la fonction en pratique.


De Cannière *et al.* [Hash Workshop 2007] ont proposé que la complexité soit donnée en nombre d'appels à la fonction relativement à une implémentation efficace (*i.e.* OpenSSL) sur une plate-forme standard.

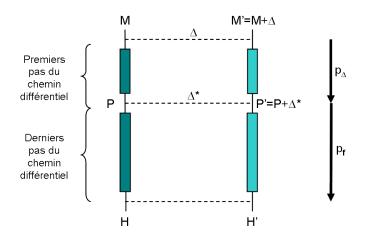
Outline

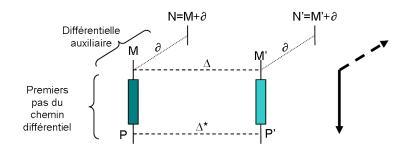
- Introduction
- 2 Précédentes attaques par collision
- Nouveaux résultats
- 4 Conclusion

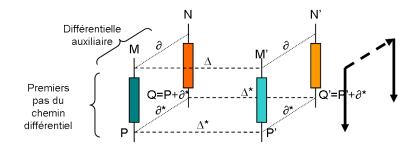
Améliorations possibles

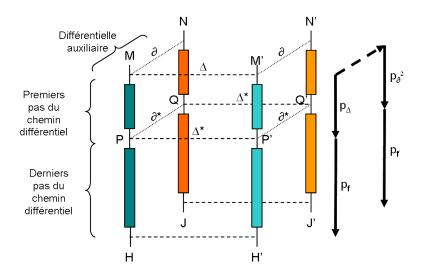
- Relâcher la dernière contrainte afin de trouver les "meilleurs" vecteurs de perturbations :
 - pas de collision locale commençant après le pas 74.
- Ce qui implique :
 - d'utiliser la technique des blocs multiples,
 - de trouver des caractéristiques non-linéaires adaptées,
 - d'utiliser une technique d'accélération générique.

Améliorations possibles


Adapter les outils développés pour les dernières attaques contre SHA-1.


- Caractéristique non-linéaire :
 - générateur de caractéristiques non-linéaires de De Cannière et Rechberger (2006).
- Technique d'accélération :
 - attaques par boomerang de Joux et Peyrin (2007).


Nouveau vecteur de perturbations


- Critères de recherche :
 - minimiser le nombre de conditions entre les pas 16 et 80,
 - le pas de départ pour le décompte des conditions dépend de la technique d'accélération,
 - ▶ adéquation avec le générateur de caractéristiques non-linéaires.
- Plusieurs bons candidats possible.
 - ► Notre vecteur :

- Les boomerangs sont une trame :
 - L'attaquant construit des différentielles auxiliaires utilisables dans les contextes de bits neutres ou de modifications de message.
 - ▶ Dans le contexte des bits neutres elles constituent un outil facile à utiliser durant la phase d'accélération.
 - Les contraintes sont choisies et imposées au chemin différentiel afin de donner de bons bits neutres.
- Notre approche :
 - Trouver de bonnes différentielles auxiliaires génériques.
 - 2 Les placer de façon à ce qu'elles n'interfèrent pas avec la caractéristique linéaire.
 - Saire tourner le générateur de caractéristiques non-linéaires en prenant en compte ces différentielles auxiliaires.

Différentielles auxiliaires

- Deux types de différentielles auxiliaires :
 - légère mais courte (peu de contraintes mais peu étendue),
 - lourde mais longue (plus étendue mais de nombreuses contraintes).
- Ces différentielles auxiliaires sont utilisées comme bits neutres pour les pas 23 et 28 respectivement.
- Nous avons placé 5 différentielles auxiliaires (7 dans le cas du premier bloc) :
 - amélioration d'un facteur 2⁵ sur l'attaque brute.

Première différentielle auxiliaire

	W ₀ to W ₁₅	W ₁₆ to W ₃₁
perturbation mask	0000001000000000	
differences on $W^{m{j}}$	0000001000000000	0000101101100111
differences on $W^{m{j+5}}$	0000000100000000	0000010110110011
differences on $W^{ar{j}-2}$	000000000010000	000100100000010

i	A_i	W_{i}
-1:		
00 :		
01:		
02 :		
03 :		
04 :		
05 :	b	
06 :	b	a-
07 :	a-	 ā
08:	0	
09:	1	
10:		
11:		<u>ā</u>
12:		
13 :		
14:		
15 :		

Seconde différentielle auxiliaire

	W ₀ to W ₁₅	W ₁₆ to W ₃₁
perturbation mask	101000000100000	
differences on <i>W</i> ^j	101000000100000	00000000 <u>1</u> 0110110
differences on W^{j+5}	010100000010000	000000001011011
differences on $W^{oldsymbol{j-2}}$	0001111100000011	000000000001110

i	Ai	W _i
-1:	d	
00 :	d	a-
01:	e-a-	 ā
02 :	e1	b-
03 :	b-0	<u>b</u> <u>a</u>
04 :	0	<u>ā</u>
05 :	0	<u>ā</u>
06 :		 <u>b</u>
07 :		b
08:		
09:	f	
10	f	c-
11:	c-	
12 :	0	
13	0	
14		c
15		

Exemple de collision

	1 st block		2 nd block	
	M ₁	M_{1}'	M ₂	M_2'
Wo	0x4643450b	0x46434549	0x9a74cf70	0x9a74cf32
W ₁	0x41d35081	0x41d350c1	0x04f9957d	0x04f9953d
W_2	0xfe16dd9b	0xf e16dddb	0x ee 26 22 3 d	0xee26227d
W ₃	0x3ba36244	0x3ba36204	0x9a06e4b5	0x9a06e4f5
W ₄	0xe6424055	0x66424017	0xb8408af6	0x38408ab4
W ₅	0x16ca44a0	0x96ca44a0	0xb8608612	0x38608612
W ₆	0x20f62444	0xa0f 62404	0x8b7e0fea	0x0b7e0faa
W ₇	0x10f7465a	0x10f7465a	0xe17e363c	0xe17e363c
W ₈	0x5a711887	0x5a7118c5	0xa2f1b8e5	0xa2f1b8a7
Wg	0x51479678	0xd147963a	0xca079936	0x4a079974
W ₁₀	0x726a0718	0x726a0718	0x02f2a7cb	0x02f2a7cb
W ₁₁	0x703f5bfb	0x703f5bb9	0xf724e838	0xf 724e87a
W ₁₂	0xb7d61841	0xb7d61801	0x37ffc03a	0x37ffc07a
W ₁₃	0xa5280003	0xa5280041	0x53aa8c43	0x53aa8c01
W ₁₄	0x6b08d26e	0x6b08d26c	0x90811819	0x9081181b
W ₁₅	0x2e4df0d8	0xae4df0d8	0x312d423e	0xb12d423e

A ₂	B ₂	C ₂	D ₂	E ₂
0x6f84b892	0x1f9f2aae	0x0dbab75c	0x0afe56f5	0xa7974c90

Outline

- Introduction
- 2 Précédentes attaques par collision
- Nouveaux résultats
- 4 Conclusion

Comparaison des complexités

Équipe	Théorique	Pratique	Temps sur PC
Chabaud et Joux (1998)	2 ⁶¹		
Biham <i>et al.</i> (2004)	2 ⁵¹	2^{51}	20 ans
Wang <i>et al.</i> (2005)	2 ³⁹		
Naito <i>et al.</i> (2006)	2 ³⁶	2 ^{40.3}	100 heures
Manuel et Peyrin (2008)	2 ³³	$2^{33.6}$	1 heure

Références

- Differential Collisions in SHA-0, F. Chabaud and A. Joux. CRYPTO'98, LNCS 1462, pages 56-71.
- Near-Collisions of SHA-0, E. Biham and R. Chen. CRYPTO'04, LNCS 3152, pages 290–305.
- Collisions of SHA-0 and Reduced SHA-1, E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet and W. Jalby. EUROCRYPT 2005, LNCS 3494, pages 36–57.
- Efficient Collision Search Attacks on SHA-0, X. Wang, H. Yu and Y.L. Yin.
 CRYPTO'05, LNCS 3621, pages 1–16.
- Improved Collision Search for SHA-0 Y. Naito, Y. Sasaki, T. Shimoyama, J. Yajima, N. Kunihiro and K. Ohta.
 ASIACRYPT'06, LNCS 4284, pages 21–36.
- Collisions on SHA-0 in one hour, S. Manuel and T. Peyrin. FSE 2008.

