Parallel generation of ℓ-sequences

Cédric Lauradoux Andrea Röck
Université de Princeton
Équipe SECRET, INRIA
Journées "Codage et Cryptographie" 2008

Outline

- Introduction
- LFSRs
- Synthesis of sub-sequences
- Multiple steps LFSR
- FCSRs
- Synthesis of sub-sequences
- Multiple steps FCSR
- Conclusion

Part 1
 Introduction

Sub-sequences generator

- Goal: parallelism
- better throughput
- reduced power consumption

Notations

- $S=\left(s_{0}, s_{1}, s_{2}, \cdots\right)$: Binary sequence with period T.
- $S_{d}^{i}=\left(s_{i}, s_{i+d}, s_{i+2 d}, \cdots\right)$: Decimated sequence, with $0 \leq i \leq d-1$.
- $S_{d}^{0}=\left(s_{0}, s_{d}, \cdots\right), \cdots, S_{d}^{d-1}=\left(s_{d-1}, s_{2 d-1}, \cdots\right)$
- x_{j} : Memory cell.
- $\left(x_{j}\right)_{t}$: Content of the cell x_{j}.
- X_{t} : Entire internal state of the automaton.
- next ${ }^{d}\left(x_{j}\right)$: Cell connected to the output of x_{j}.

LFSRs

- Automaton with linear update function.
- Let $s(x)=\sum_{i=0}^{\infty} s_{i} x^{i}$ be the power series of $S=\left(s_{0}, s_{1}, s_{2}, \ldots\right)$. There exists two polynomials $p(x), q(x)$:

$$
s(x)=\frac{p(x)}{q(x)}
$$

- $q(x)$: Connection polynomial of degree m.
- $Q(x)=x^{m} q(1 / x)$: Characteristic polynomial.
- m-sequence: S has maximal period of $2^{m}-1$.
(iff $q(x)$ is a primitive polynomial)
- Linear complexity: Size of smallest LFSR which generates S.

Fibonacci/Galois LFSRs

Fibonacci setup.

FCSRs

[Klapper Goresky 93]

- Instead of XOR, FCSRs use additions with carry.
- Non-linear update function.
- Additional memory to store the carry.
- S is the 2-adic expansion of the rational number: $\frac{h}{q} \leq 0$.
- Connection integer q : Determines the feedback positions.
- ℓ-sequences: S has maximal period $\varphi(q)$.
(iff q is a prime power and $\operatorname{ord}_{q}(2)=\varphi(q)$.)
- 2-adic complexity: size of the smallest FCSR which produces S.

Fibonacci/Galois FCSRs [Klapper Goresky 02]

Fibonacci setup.

Galois setup.

Part 2
 LFSRs

Synthesis of Sub-sequences (1)

- Use Berlekamp-Massey algorithm to find the smallest LFSR for each subsequence.
- All sub-sequences are generated using d LFSRs defined by $Q^{\star}(x)$ but initialized with different values.

Synthesis of Sub-sequences (2)

Theorem [Zierler 59]: Let S be produced by an LFSR whose characteristic polynomial $Q(x)$ is irreducible in \mathbf{F}_{2} of degree m. Let α be a root of $Q(x)$ and let T be the period of S. For $0 \leq i<d, S_{d}^{i}$ can be generated by an LFSR with the following properties:

- The minimum polynomial of α^{d} in $\mathbf{F}_{2^{m}}$ is the characteristic polynomial $Q^{\star}(x)$ of the new LFSR with:
- Period $T^{\star}=\frac{T}{\operatorname{gcd}(d, T)}$.
- Degree m^{\star} is the multiplicative order of 2 in $\mathbf{Z}_{T^{\star}}$.

Multiple steps LFSR [Lempel Eastman 71]

- Clock d times the register in one cycle.
- Equivalent to partition the register into d sub-registers

$$
x_{i} x_{i+d} \cdots x_{i+k d}
$$

such that $0 \leq i<d$ and $i+k d<m$.

- Duplication of the feedback:

The sub-registers are linearly interconnected.

Fibonacci LFSR

$$
\begin{aligned}
& n e x t^{1}\left(x_{0}\right)=x_{3} \\
& n e x t^{1}\left(x_{i}\right)=x_{i-1} \text { if } i \neq 0 \\
& \left(x_{3}\right)_{t+1}=\left(x_{3}\right)_{t} \oplus\left(x_{0}\right)_{t} \\
& \left(x_{i}\right)_{t+1}=\left(x_{i-1}\right)_{t} \text { if } i \neq 3
\end{aligned}
$$

$$
n e x t^{2}\left(x_{0}\right)=x_{2}
$$

$$
n \operatorname{ext}^{2}\left(x_{1}\right)=x_{3}
$$

$$
n \operatorname{ext}^{2}\left(x_{i}\right)=x_{i-2} \text { if } i>1
$$

$$
\left(x_{i}\right)_{t+2}=\left(x_{i-2}\right)_{t} \text { if } i<2
$$

$$
\left(x_{2}\right)_{t+2}=\left(x_{3}\right)_{t} \oplus\left(x_{0}\right)_{t}
$$

$$
\left(x_{3}\right)_{t+2}=\underbrace{\left(x_{3}\right)_{t} \oplus\left(x_{0}\right)_{t}}_{\left(x_{3}\right)_{t+1}} \oplus\left(x_{1}\right)_{t}
$$

1-decimation

11
2-decimation

Comparison

Method	Memory cells	Logic Gates
LFSR synthesis	$d \times m^{\star}$	$d \times w t\left(Q^{\star}\right)$
Multiple steps LFSR	m	$d \times w t(Q)$

Part 3
FCSRs

Synthesis of Sub-sequences (1)

- We use an algorithm based on Euclid's algorithm [Arnault Berger Necer 04] to find the smallest FCSR for each sub-sequence.
- The sub-sequences do not have the same q.

Synthesis of Sub-sequences (2)

- A given S_{d}^{i} has period T^{*} and minimal connection integer q^{*}.
- Period: (True for all periodic sequences)
- $T^{*} \left\lvert\, \frac{T}{\operatorname{gcd}(T, d)}\right.$,
- If $\operatorname{gcd}(T, d)=1$ then $T^{*}=T$.
- If $\operatorname{gcd}(T, d)>1: T^{*}$ might depend on i !
E.g. for $S=-1 / 19$ and $d=3: T / \operatorname{gcd}(T, d)=6$.
- S_{3}^{0} : The period $T^{*}=2$.
- S_{3}^{1} : The period $T^{*}=6$.

Synthesis of Sub-sequences (3)

- 2-adic complexity [Goresky Klapper 97]:
- General case: $q^{*} \mid 2^{T *}-1$.
- $\operatorname{gcd}(T, d)=1: q^{*} \mid 2^{T / 2}+1$.
- Conjecture [Goresky Klapper 97]: Let S be an ℓ-sequence with connection integer $q=p^{e}$ and period T. Suppose p is prime and $q \notin\{5,9,11,13\}$. For any d_{1}, d_{2} relatively prime to T and incongruent modulo T and any i, j :

$$
S_{d_{1}}^{i} \text { and } S_{d_{2}}^{j} \text { are cyclically distinct. }
$$

- Based on Conjecture: Let q and p be prime and $T=q-1=2 p$:

$$
\text { If } 1 \leq d<T \text { and } d \neq p \text { then } q^{*}>q \text {. }
$$

Multiple steps FCSR

- Clock d times the register in one cycle.
- Equivalent to partition the register into d sub-registers

$$
x_{i} x_{i+d} \cdots x_{i+k d}
$$

such that $0 \leq i<d$ and $i+k d<m$.

- Interconnection of the sub-registers.
- Propagation of the carry computation.

Fibonacci FCSR (1)

- Let the feedback function be defined by

$$
g\left(X_{t}, c_{t}\right)=\sum_{j=0}^{m-1}\left(x_{j}\right)_{t} a_{j}+c_{t}
$$

- We can use the following equations:

$$
\begin{aligned}
\left(x_{i}\right)_{t+d} & = \begin{cases}g\left(X_{t+d-m+i}, c_{t+d-m+i}\right) \bmod 2 & \text { if } m-d \leq i<m \\
\left(x_{i+d}\right)_{t} & \text { if } i<m-d\end{cases} \\
c_{t+d} & =g\left(X_{t+d-m+i}, c_{t+d-m+i}\right) / 2
\end{aligned}
$$

Fibonacci FCSR (2)

1-decimation

Galois FCSR (1)

- Example $q=-19$:

- Description at the bit-level:

$$
\left\{\begin{array}{l}
\left(x_{0}\right)_{t+1}=\left(x_{0}\right)_{t} \oplus\left(x_{1}\right)_{t} \oplus\left(c_{0}\right)_{t} \\
\left(c_{0}\right)_{t+1}=\left[\left(x_{0}\right)_{t} \oplus\left(x_{1}\right)_{t}\right]\left[\left(x_{0}\right)_{t} \oplus\left(c_{0}\right)_{t}\right] \oplus\left(x_{0}\right)_{t}
\end{array}\right.
$$

Galois FCSR (2)

- $d=2$, description for the automaton at $t+1$ and $t+2$

$$
\begin{aligned}
& t+1\left\{\begin{array}{l}
\left(x_{0}\right)_{t+1}=\left(x_{0}\right)_{t} \oplus\left(x_{1}\right)_{t} \oplus\left(c_{0}\right)_{t} \\
\left(c_{0}\right)_{t+1}=\left[\left(x_{0}\right)_{t} \oplus\left(x_{1}\right)_{t}\right]\left[\left(x_{0}\right)_{t} \oplus\left(c_{0}\right)_{t}\right] \oplus\left(x_{0}\right)_{t}
\end{array}\right. \\
& t+2\left\{\begin{array}{l}
\left(x_{0}\right)_{t+2}=\left(x_{0}\right)_{t+1} \oplus\left(x_{2}\right)_{t} \oplus\left(c_{0}\right)_{t+1} \\
\left(c_{0}\right)_{t+2}=\left[\left(x_{0}\right)_{t+1} \oplus\left(x_{2}\right)_{t}\right]\left[\left(x_{0}\right)_{t+1} \oplus\left(c_{0}\right)_{t+1}\right] \oplus\left(x_{0}\right)_{t+1}
\end{array}\right.
\end{aligned}
$$

2-bit ripple carry adder

Galois FCSR (3)

1-decimation

$$
\begin{aligned}
& A=\boxplus\left[\left(x_{0}\right)_{t},\left(x_{1}\right)_{t},\left(c_{0}\right)_{t}\right] \bmod 2 \\
& B=\boxplus\left[\left(x_{0}\right)_{t},\left(x_{1}\right)_{t},\left(c_{0}\right)_{t}\right]_{\div 2} \\
& \left(x_{0}\right)_{t+2}=\boxplus\left[A, B,\left(x_{2}\right)_{t}\right] \bmod 2 \\
& \left(c_{0}\right)_{t+2}=\boxplus\left[A, B,\left(x_{2}\right)_{t}\right]_{\div 2} \\
& \left(x_{1}\right)_{t+2}=\left(x_{3}\right)_{t} \\
& \left(x_{2}\right)_{t+2}=\left(x_{0}\right)_{t} \\
& \left(x_{3}\right)_{t+2}=A
\end{aligned}
$$

Comparison

- Synthesis of Sub-sequences:
- Period: If $\operatorname{gcd}(T, d)>1$ it might depend on i.
- 2-adic complexity: q^{*} can be much bigger than q.
- Multiple steps FCSR:
- Same memory size.
- Propagation of carry by well-known arithmetic circuits.

Part 4

Conclusion

Conclusion

- The decimation of an ℓ-sequence can be used to increase the throughput or to reduce the power consumption.
- A separated FCSR for each sub-sequence is not satisfying.

However, the multiple steps FCSR works fine.

- Sub-expressions simplification:
- classical for LFSR.
- new problem for FCSR.

