Parallel generation of ℓ -sequences

Cédric Lauradoux

Andrea Röck Université de Princeton Équipe SECRET, INRIA

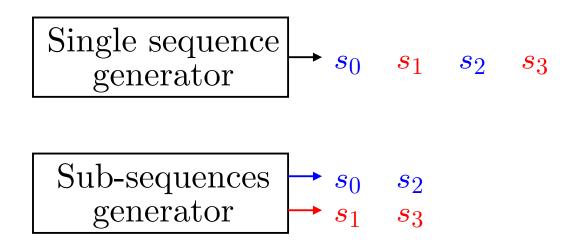
Journées "Codage et Cryptographie" 2008

Outline

- Introduction
- ► LFSRs
 - Synthesis of sub-sequences
 - Multiple steps LFSR
- ► FCSRs
 - Synthesis of sub-sequences
 - Multiple steps FCSR
- Conclusion

Part 1 Introduction

Sub-sequences generator



- ► Goal: parallelism
 - better throughput
 - reduced power consumption

Notations

- $ightharpoonup S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.
- $\triangleright S_d^i = (s_i, s_{i+d}, s_{i+2d}, \cdots)$: Decimated sequence, with 0 < i < d - 1.
 - $S_d^0 = (s_0, s_d, \cdots), \cdots, S_d^{d-1} = (s_{d-1}, s_{2d-1}, \cdots)$
- $\triangleright x_i$: Memory cell.
- $(x_i)_t$: Content of the cell x_i .
- $\triangleright X_t$: Entire internal state of the automaton.
- $ightharpoonup next^d(x_i)$: Cell connected to the output of x_i .

LFSRs

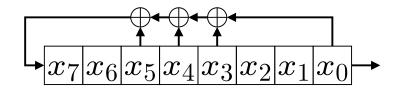
- Automaton with linear update function.
- ▶ Let $s(x) = \sum_{i=0}^{\infty} s_i x^i$ be the power series of $S = (s_0, s_1, s_2, \ldots)$. There exists two polynomials p(x), q(x):

$$s(x) = \frac{p(x)}{q(x)}.$$

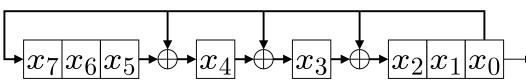
- ightharpoonup q(x): Connection polynomial of degree m.
- $ightharpoonup Q(x) = x^m q(1/x)$: Characteristic polynomial.
- ▶ m-sequence: S has maximal period of $2^m 1$. (iff q(x) is a primitive polynomial)
- \triangleright Linear complexity: Size of smallest LFSR which generates S.

Fibonacci/Galois LFSRs

Fibonacci setup.



Galois setup.



FCSRs

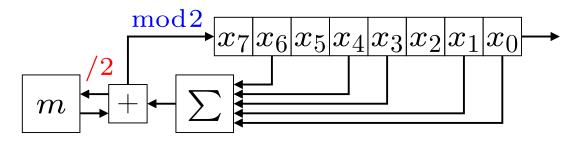
[Klapper Goresky 93]

- ▶ Instead of XOR, FCSRs use additions with carry.
 - Non-linear update function.
 - Additional memory to store the carry.
- ► S is the 2-adic expansion of the rational number: $\frac{h}{q} \leq 0$.
- \triangleright Connection integer q: Determines the feedback positions.
- ▶ ℓ -sequences: S has maximal period $\varphi(q)$. (iff q is a prime power and $ord_q(2) = \varphi(q)$.)
- ightharpoonup 2-adic complexity: size of the smallest FCSR which produces S.

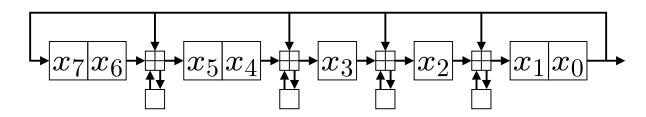
Fibonacci/Galois FCSRs

[Klapper Goresky 02]

Fibonacci setup.



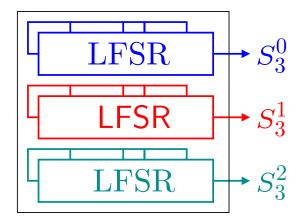
Galois setup.



Part 2

LFSRs

Synthesis of Sub-sequences (1)



- Use Berlekamp-Massey algorithm to find the smallest LFSR for each subsequence.
- ▶ All sub-sequences are generated using d LFSRs defined by $Q^*(x)$ but initialized with different values.

Synthesis of Sub-sequences (2)

Theorem [Zierler 59]: Let S be produced by an LFSR whose characteristic polynomial Q(x) is irreducible in \mathbf{F}_2 of degree m. Let α be a root of Q(x) and let T be the period of S. For $0 \le i < d$, S_d^i can be generated by an LFSR with the following properties:

- ullet The minimum polynomial of $lpha^d$ in ${f F}_{2^m}$ is the characteristic polynomial $Q^{\star}(x)$ of the new LFSR with:
- Period $T^* = \frac{T}{acd(d,T)}$.
- Degree m^* is the multiplicative order of 2 in \mathbf{Z}_{T^*} .

Multiple steps LFSR

[Lempel Eastman 71]

- ▶ Clock *d* times the register in one cycle.
- ightharpoonup Equivalent to partition the register into d sub-registers

$$x_i x_{i+d} \cdots x_{i+kd}$$

such that $0 \le i < d$ and i + kd < m.

Duplication of the feedback:

The sub-registers are linearly interconnected.

Fibonacci LFSR

$$next^{1}(x_{0}) = x_{3}$$

$$next^{1}(x_{i}) = x_{i-1} \text{ if } i \neq 0$$

$$(x_{3})_{t+1} = (x_{3})_{t} \oplus (x_{0})_{t}$$

$$(x_{i})_{t+1} = (x_{i-1})_{t} \text{ if } i \neq 3$$

$$next^{2}(x_{0}) = x_{2}$$

$$next^{2}(x_{1}) = x_{3}$$

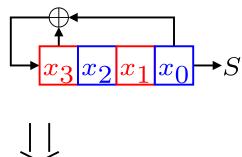
$$next^{2}(x_{i}) = x_{i-2} \text{ if } i > 1$$

$$(x_{i})_{t+2} = (x_{i-2})_{t} \text{ if } i < 2$$

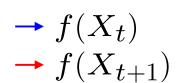
$$(x_{2})_{t+2} = (x_{3})_{t} \oplus (x_{0})_{t}$$

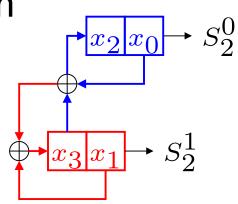
$$(x_{3})_{t+2} = \underbrace{(x_{3})_{t} \oplus (x_{0})_{t}}_{(x_{3})_{t+1}} \oplus (x_{1})_{t}$$

1-decimation



2-decimation





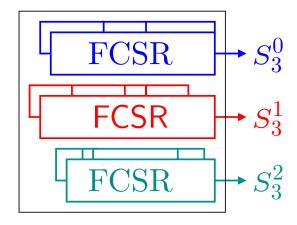
Comparison

Method	Memory cells	Logic Gates
LFSR synthesis	$d \times m^{\star}$	$d \times wt(Q^{\star})$
Multiple steps LFSR	m	$d \times wt(Q)$

Part 3

FCSRs

Synthesis of Sub-sequences (1)



- We use an algorithm based on Euclid's algorithm [Arnault Berger Necer 04] to find the smallest FCSR for each sub-sequence.
- \blacktriangleright The sub-sequences do **not** have the same q.

Synthesis of Sub-sequences (2)

- ightharpoonup A given S_d^i has period T^* and minimal connection integer q^* .
- Period: (True for all periodic sequences)
 - $ullet T^* \left| \frac{T}{\gcd(T,d)} \right|$
 - If gcd(T,d) = 1 then $T^* = T$.
- ▶ If gcd(T,d) > 1: T^* might depend on i!E.g. for S = -1/19 and d = 3: T/gcd(T, d) = 6.
 - S_3^0 : The period $T^* = 2$.
 - S_3^1 : The period $T^* = 6$.

Synthesis of Sub-sequences (3)

- 2-adic complexity [Goresky Klapper 97]:
 - General case: $q^*|2^{T*}-1$.
 - gcd(T, d) = 1: $q^* | 2^{T/2} + 1$.
- **Conjecture** [Goresky Klapper 97]: Let S be an ℓ -sequence with connection integer $q = p^e$ and period T. Suppose p is prime and $q \notin \{5, 9, 11, 13\}$. For any d_1, d_2 relatively prime to T and incongruent modulo T and any i, j:

 $S_{d_1}^i$ and $S_{d_2}^j$ are cyclically distinct.

Based on Conjecture: Let q and p be prime and T = q - 1 = 2p: If $1 \leq d < T$ and $d \neq p$ then $q^* > q$.

Multiple steps FCSR

- ► Clock *d* times the register in one cycle.
- ightharpoonup Equivalent to partition the register into d sub-registers

$$x_i x_{i+d} \cdots x_{i+kd}$$

such that $0 \le i < d$ and i + kd < m.

- ▶ Interconnection of the sub-registers.
- ▶ Propagation of the carry computation.

Fibonacci FCSR (1)

► Let the feedback function be defined by

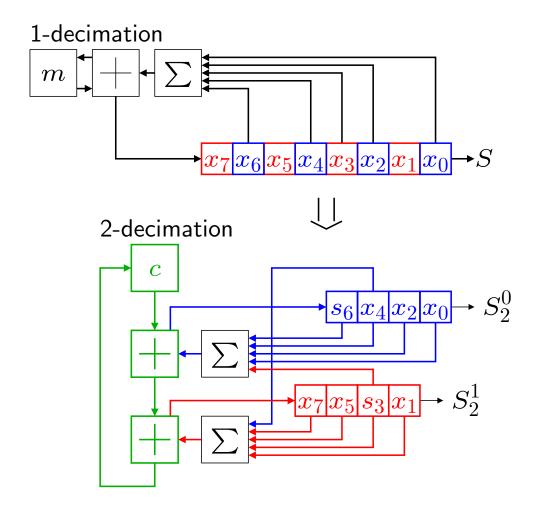
$$g(X_t, c_t) = \sum_{j=0}^{m-1} (x_j)_t a_j + c_t$$

We can use the following equations:

$$(x_i)_{t+d} = \begin{cases} g(X_{t+d-m+i}, c_{t+d-m+i}) \mod 2 & \text{if } m-d \le i < m \\ (x_{i+d})_t & \text{if } i < m-d \end{cases}$$

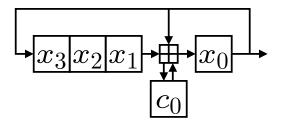
$$c_{t+d} = g(X_{t+d-m+i}, c_{t+d-m+i})/2$$

Fibonacci FCSR (2)



Galois FCSR (1)

ightharpoonup Example q=-19:



▶ Description at the bit-level:

$$\begin{cases} (x_0)_{t+1} = (x_0)_t \oplus (x_1)_t \oplus (c_0)_t \\ (c_0)_{t+1} = [(x_0)_t \oplus (x_1)_t] [(x_0)_t \oplus (c_0)_t] \oplus (x_0)_t \end{cases}$$

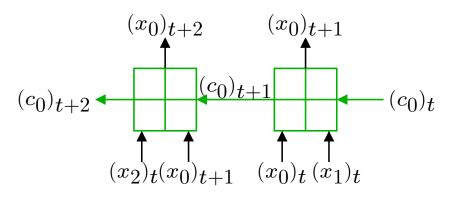
Galois FCSR (2)

ightharpoonup d=2, description for the automaton at t+1 and t+2

$$t+1 \begin{cases} (x_0)_{t+1} = (x_0)_t \oplus (x_1)_t \oplus (c_0)_t \\ (c_0)_{t+1} = [(x_0)_t \oplus (x_1)_t] [(x_0)_t \oplus (c_0)_t] \oplus (x_0)_t \end{cases}$$

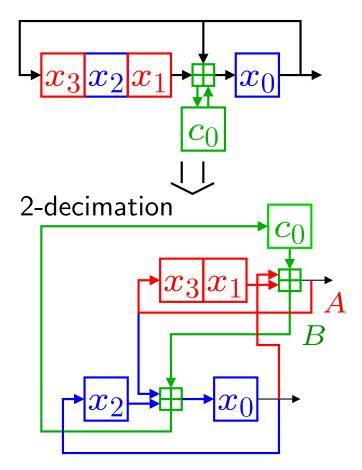
$$t+2 \begin{cases} (x_0)_{t+2} = (x_0)_{t+1} \oplus (x_2)_t \oplus (c_0)_{t+1} \\ (c_0)_{t+2} = [(x_0)_{t+1} \oplus (x_2)_t] [(x_0)_{t+1} \oplus (c_0)_{t+1}] \oplus (x_0)_{t+1} \end{cases}$$

2-bit ripple carry adder



Galois FCSR (3)

1-decimation



$$A = \boxplus [(x_0)_t, (x_1)_t, (c_0)_t] \mod 2
 B = \boxplus [(x_0)_t, (x_1)_t, (c_0)_t] \div 2
 (x_0)_{t+2} = \boxplus [A, B, (x_2)_t] \mod 2
 (c_0)_{t+2} = \boxplus [A, B, (x_2)_t] \div 2
 (x_1)_{t+2} = (x_3)_t
 (x_2)_{t+2} = (x_0)_t
 (x_3)_{t+2} = A$$

Comparison

Synthesis of Sub-sequences:

- Period: If gcd(T,d) > 1 it might depend on i.
- 2-adic complexity: q^* can be much bigger than q.

▶ Multiple steps FCSR:

- Same memory size.
- Propagation of carry by well-known arithmetic circuits.

Part 4 Conclusion

Conclusion

▶ The decimation of an ℓ -sequence can be used to increase the throughput or to reduce the power consumption.

► A separated FCSR for each sub-sequence is not satisfying.

However, the multiple steps FCSR works fine.

- Sub-expressions simplification:
 - classical for LFSR.
 - new problem for FCSR.

