Generic Attacks on Feistel Networks With Internal Permutations

Joana Treger, Jacques Patarin

PRISM, Université de Versailles

2008-03-21

Summary

- Introduction
 - Definitions
 - Motivation
 - The work
- General technique
 - General remarks
 - ullet Distinguishing ψ^k from a random permutation
 - Example 1 : KPA on 3 rounds
 - ullet Distinguishing a ψ^k generator from a random permutation generator
 - Example 2 : CPA on 6 rounds
- Computation of the H-coefficients
 - The idea
 - General formula
- Table of results, conclusion

Plan

- Introduction
 - Definitions
 - Motivation
 - The work
- General technique
 - General remarks
 - ullet Distinguishing ψ^k from a random permutation
 - Example 1 : KPA on 3 rounds
 - ullet Distinguishing a $\psi^{m{k}}$ generator from a random permutation generator
 - Example 2 : CPA on 6 rounds
- Computation of the H-coefficients
 - The idea
 - General formula
- 4 Table of results, conclusion

Definitions

Let B_n be the permutation set of $[1, 2^n]$, $f \in B_n$ and $L, R, S, T \in [1, 2^n]$. A 1-round Feistel network with internal permutation is the permutation $\psi(f)$ (or ψ):

$$\psi([L,R]) = [R,L \oplus f(R)] = [S,T]$$

A k-round Feistel network with internal permutations :

$$\psi^{k}(f_{1},\ldots,f_{k}):=\psi(f_{k})\circ\ldots\circ\psi(f_{1})$$

Motivation

- Feistel networks widely used
- Little work done on Feistel networks with round permutations ([Knudsen-02]: attack on 5 rounds, [Piret-05]: security proofs for 3 and 4 rounds).
- These networks have been used to design some symmetric ciphers (DEAL, Camellia,...).
- Different behavior of these Feistel networks and the classical ones. Example (3 rounds) :

 $R_1 \oplus S_1 = R_2 \oplus S_2$ with probability :

- $1/2^n$: random permutation
- $2/2^n$: Feistel network with internal functions
- $1/2^n$: Feistel network with internal permutations

Generic attacks

Definition

A generic attack on a Feistel network with internal permutations, is an attack allowing to distinguish, with high probability, a Feistel network from a random permutation when the round permutations are randomly chosen.

- We interest ourselves in generic attacks, working with complexity $< \mathcal{O}(2^{2n})$ (exhaustive search on the inputs).
- When the complexity is $\geq \mathcal{O}(2^{2n})$, we interest ourselves in attacks on Feistel permutation generators.
- We consider attacks using correlations between pairs of messages.

Plan

- Introduction
 - Definitions
 - Motivation
 - The work
- General technique
 - General remarks
 - ullet Distinguishing ψ^k from a random permutation
 - Example 1 : KPA on 3 rounds
 - ullet Distinguishing a ψ^k generator from a random permutation generator
 - Example 2 : CPA on 6 rounds
- Computation of the H-coefficients
 - The idea
 - General formula
- 4 Table of results, conclusion

Chebyshev formula

Theorem (Chebyshev formula)

Let X be a random variable and $\alpha \in \mathbb{R}_+^*$. Then :

$$P\{|X - E(X)| \ge \alpha \cdot \sigma(X)\} \le \frac{1}{\alpha^2}$$

Let us consider m messages and the random variables :

- X_p counts the number of pairs of these messages verifying some equations on the inputs and outputs when they correspond to a random permutation
- X_{ψ^k} counts the same number for a k-round Feistel network with internal permutation.

We distinguish with high probability ψ^k from a random permutation if $|E(X_{\psi^k}) - E(X_p)| > \sigma(X_{\psi^k}) + \sigma(X_p)$

H-coefficient

Definition

 $[L_1, R_1] \neq [L_2, R_2]$ and $[S_1, T_1] \neq [S_2, T_2] \in [1, 2^{2n}]$. The H-coefficient for that case computes the number of $(f_1, \ldots, f_k) \in B_n^k$, such that $\psi^k(f_1, \ldots, f_k)([L_i, R_i]) = [S_i, T_i]$, i = 1, 2.

- This notion enables the study of $X_{\eta,k}$.
- From the study of $X_{ij,k}$ we get an attack.
- We consider all possible relations between pairs of messages and compute the corresponding *H*-coefficient value.
- All values are considered, thus we get the best attacks using correlation between two messages.

Attacks on Feistel networks

We consider a case where we have n_e equations between the inputs and outputs.

- $E(X_p) \simeq \frac{M}{2^{n_{\mathbf{e}\cdot n}}}$ (M: number of pairs considered) $|E(X_{\psi^k}) - E(X_p)| \simeq \frac{M}{2^{n_{\mathbf{e}\cdot n}}} \cdot |\frac{H \cdot 2^{4n}}{|B_n|^k} - \frac{1}{1 - 1/2^{2n}}|$ $\sigma(X_p) + \sigma(X_{\psi^k}) \simeq \sqrt{\frac{M}{2^{n_{\mathbf{e}\cdot n}}}}$
- We can solve $\frac{M}{2^{ne \cdot n}} \cdot |\frac{H \cdot 2^{4n}}{|B_n|^k} \frac{1}{1 1/2^{2n}}| > \sqrt{\frac{M}{2^{ne \cdot n}}}$ and find M.
- ullet We deduce the number m of messages needed to get these M pairs.
- We get an attack with complexity $\mathcal{O}(m)$.

Remark : best attacks : n_e minimal and $\left|\frac{H \cdot 2^{4n}}{|B_n|^k} - \frac{1}{1 - 1/2^{2n}}\right|$ maximal.

Example on 3 rounds, *KPA*. Table of values of $\frac{H \cdot 2^{4n}}{|B_n|^3} - \frac{1}{1 - 1/2^{2n}}$

case	1					
equalities :	0 eq.					
$\frac{H \cdot 2^{4n}}{ B_n ^3} - \frac{1}{1 - 1/2^{2n}}$	$1/2^{2n}$					
case :	2	3	4	5		
equalities	1 eq.	1 eq.	1 eq.	1 eq.		
$\frac{H \cdot 2^{4n}}{ B_n ^3} - \frac{1}{1 - 1/2^{2n}}$	1/2 ⁿ	1/2"	1/2"	1/2 ⁿ		
case :	6	7	8	9	10	11
			_	_	_	_
equalities :	2 eq.	2 eq.	2 eq.	2 eq.	2 eq.	2 eq.
equalities: $\frac{H \cdot 2^{4n}}{ B_n ^3} - \frac{1}{1 - 1/2^{2n}}$	2 eq. 1/2 ⁿ	2 eq.	2 eq. 1	2 eq. 1	2 eq. 1/2"	2 eq. 1/2 ⁿ
H 2 ⁴ n 1						
$\frac{H \cdot 2^{4n}}{ B_n ^3} - \frac{1}{1 - 1/2^{2n}}$	1/2"	1				

FIG.: Order of the leading term of $\frac{H \cdot 2^{4n}}{|B_n|^3} - \frac{1}{1 - 1/2^{2n}}$ in different cases

Example on 3 rounds, KPA

In case 1:

- $E(X_p) \simeq M$ (M: number of pairs of messages)
- $\mathcal{O}(\frac{H \cdot 2^{4n}}{|B_n|^3} \frac{1}{1 1/2^{2n}}) = 1/2^{2n} \Rightarrow |E(X_p) E(X_{\psi^3})| \simeq \frac{M}{2^{2n}}$
- $\bullet \ \frac{M}{2^{2n}} > \sqrt{M} \Leftrightarrow M > 2^{4n}$

In cases 2 to 5:

- $E(X_p) \simeq \frac{M}{2^n} (M : \text{number of pairs of messages})$
- $\mathcal{O}(\frac{H \cdot 2^{4n}}{|B_n|^3} \frac{1}{1 1/2^{2n}}) = 1/2^n \Rightarrow |E(X_p) E(X_{\psi^3})| \simeq \frac{M}{2^{2n}}$

In cases 7, 8 and 9:

- $E(X_p) \simeq \frac{M}{2^{2n}}$ (M: number of pairs of messages)
- $\mathcal{O}(\frac{H \cdot 2^{4n}}{|B_n|^3} \frac{1}{1 1/2^{2n}}) = 1 \Rightarrow |E(X_p) E(X_{\psi^3})| \simeq \frac{M}{2^{2n}}$
- $\bullet \ \tfrac{M}{2^{2n}} > \tfrac{\sqrt{M}}{2^n} \Leftrightarrow M > 2^{2n}$

Cases 7,8 and 9 are the cases leading to the best attack. $\mathcal{O}(2^n)$ computations are needed to get $\mathcal{O}(2^{2n})$ pairs. Complexity of the attack : $\mathcal{O}(2^n)$.

3 rounds, round functions, round permutations

3-round Feistel network ([Patarin-01]) :

- *KPA* with $\mathcal{O}(2^{n/2})$ computations.
- in case $R^1 \oplus S^1 = R^2 \oplus S^2$, $\mathcal{O}(\frac{H \cdot 2^{4n}}{|B_n|^3} \frac{1}{1 1/2^{2n}}) = 1$.

3-round Feistel network with round permutations:

- KPA with $\mathcal{O}(2^n)$ computations.
- ullet no case with 1 equation and $\mathcal{O}(rac{H\cdot 2^{4n}}{|B_n|^3}-rac{1}{1-1/2^{2n}})=1.$
- \Rightarrow Not just transposing attacks!

Attacks on Feistel permutation generators

When $m>2^{2n}$, we decide to attack a permutation generator. (λ number of permutations needed)

Here:

- $E(X_p) \simeq \frac{M \cdot \lambda}{2^{n_e \cdot n}}$ $|E(X_{\psi^k}) E(X_p)| \simeq \frac{M \cdot \lambda}{2^{n_e \cdot n}} \cdot |\frac{H \cdot 2^{4n}}{|B_n|^k} \frac{1}{1 1/2^{2n}}|$ $\sigma(X_p) + \sigma(X_{\psi^k}) \simeq \sqrt{\frac{M \cdot \lambda}{2^{n_e \cdot n}}}$
- We can solve $\frac{M \cdot \lambda}{2^{ne \cdot n}} \cdot |\frac{H \cdot 2^{4n}}{|B_n|^k} \frac{1}{1 1/2^{2n}}| > \sqrt{\frac{M \cdot \lambda}{2^{ne \cdot n}}}$, with M maximal per permutation, and find λ .
- We get an attack with complexity $\mathcal{O}(2^{2n} \cdot \lambda)$.

Remark : best attacks : n_e minimal, $\left|\frac{H \cdot 2^{4n}}{|B_n|^k} - \frac{1}{1 - 1/2^{2n}}\right|$ maximal and M maximal.

Example on 6 rounds, *CPA*. Table of values of $\frac{H \cdot 2^{4n}}{|B_n|^6} - \frac{1}{1 - 1/2^{2n}}$

case : equalities : maximal <i>M</i> :	1 0 eq. 2 ⁴ "	2 0 eq. 2 ³ⁿ	3 0 eq. 2 ³ n		
$\frac{H \cdot 2^{4n}}{ B_n ^6} - \frac{1}{1 - 1/2^{2n}}$	$1/2^{3n}$	$1/2^{3n}$	$1/2^{3n}$		
case : equalities : maximal <i>M</i> :	4 1 eq. 2 ⁴ⁿ	5 1 eq. 2 ³ⁿ	6 1 eq. 2 ³ⁿ	7 1 eq. 2 ³ⁿ	8 1 eq. 2 ³ⁿ
$\frac{H \cdot 2^{4n}}{ B_n ^6} - \frac{1}{1 - 1/2^{2n}}$	$1/2^{2n}$	$1/2^{3n}$	$1/2^{2n}$	$1/2^{2n}$	$1/2^{2n}$
case : equalities : maximal <i>M</i> :	9 2 eq. 2 ⁴ "	10 2 eq. 2 ⁴ "	11 2 eq. 2 ³ⁿ		
$\frac{H \cdot 2^{4n}}{ B_n ^6} - \frac{1}{1 - 1/2^{2n}}$	$1/2^{3n}$	$1/2^{2n}$	$1/2^{n}$		

FIG.: Order of the leading term of $\frac{H \cdot 2^{4n}}{|B_n|^6} - \frac{1}{1 - 1/2^{2n}}$ in different cases

Example on 6 rounds, CPA

In case 1:

- $E(X_p) \simeq \lambda \cdot 2^{4n}$
- $\mathcal{O}(\frac{H \cdot 2^{4n}}{|B_n|^6} \frac{1}{1 1/2^{2n}}) = 1/2^{3n} \Rightarrow |E(X_p) E(X_{\psi^6})| \simeq \lambda \cdot 2^n$
- $\lambda \cdot 2^n > \sqrt{\lambda} \cdot 2^{2n} \Leftrightarrow \lambda > 2^{2n}$

In case 4:

- $E(X_p) \simeq \frac{\lambda \cdot 2^{4n}}{2^n}$
- $\mathcal{O}(\frac{H \cdot 2^{4n}}{|B_n|^6} \frac{1}{1 1/2^{2n}}) = 1/2^{2n} \Rightarrow |E(X_p) E(X_{\psi^3})| \simeq \lambda \cdot 2^n$
- $\lambda \cdot 2^n > \sqrt{\lambda \cdot 2^{3n}} \Leftrightarrow \lambda > 2^n$

In case 11:

- $E(X_p) \simeq \frac{\lambda \cdot 2^{3n}}{2^{2n}}$
- $\mathcal{O}(\frac{H \cdot 2^{4n}}{|B_n|^6} \frac{1}{1 1/2^{2n}}) = 1/2^n \Rightarrow |E(X_p) E(X_{\psi^6})| \simeq \lambda$
- $\lambda > \sqrt{\lambda \cdot 2^n} \Leftrightarrow \lambda > 2^n$

Cases 4 and 11 are the cases leading to the best attacks. $\mathcal{O}(2^n)$ permutations and $\mathcal{O}(2^{2n})$ computations per permutation are needed. **Complexity of the attacks**: $\mathcal{O}(2^{3n})$.

Plan

- Introduction
 - Definitions
 - Motivation
 - The work
- - General remarks
 - Distinguishing ψ^k from a random permutation
 - Example 1 : KPA on 3 rounds
 - Distinguishing a ψ^k generator from a random permutation generator
 - Example 2 : CPA on 6 rounds
- Computation of the H-coefficients
 - The idea
 - General formula
- Table of results, conclusion

General idea

- ullet Fix a possible sequence $\mathbf{s} \in \{=,
 eq\}^k$, such that $X_1^i \ s_i \ X_2^i$.
- ullet $\mathbf{N}(\mathbf{d_i})$: number of possible values for $X_1^i \oplus X_2^i$.
- Then $N(d_i) \cdot 2^n$: number of possibilities for (X_1^i, X_2^i) .

General idea

Fig.:
$$\psi^k(f_1,\ldots,f_k)([L,R])=[S,T]$$

$$f_i(X^{i-1}) = X^{i-2} \oplus X^i,$$

- $N(d_i) \cdot 2^n$: number of possibilities for $(f_i(X_1^{i-1}), f_i(X_2^{i-1}))$.
- If $X_1^{i-1} \neq X_2^{i-1}$, number of possibilities for f_i :

$$\mathbf{F_i}(\mathbf{s}) := 2^n \cdot N(d_i) \cdot (2^n - 2)!$$

• If $X_1^{i-1} = X_2^{i-1}$, number of possibilities for f_i :

$$\mathbf{F_i}(\mathbf{s}) := 2^n \cdot N(d_i) \cdot (2^n - 1)!$$

Formula

Then, given a specific pair of input/output couples, the wanted number H is :

$$\mathbf{H} = \sum_{\text{possible } s} \left(\prod_{i=1}^{k} F_i(s) \right)$$

$$= \sum_{\text{possible } s} (2^n - 1)!^{n_e(s)} (2^n - 2)!^{n_d(s)} \cdot N(d_1) \cdots N(d_k).$$

We have to:

- find the possible sequences s for each input/output couples
- for each one, compute the product $N(d_1) \dots N(d_k)$.

This can be done using combinatorial facts. Thus:

- We obtain general formulae for the H-coefficients
- We obtain all attacks using correlations between two messages.

Plan

- Introduction
 - Definitions
 - Motivation
 - The work
- General technique
 - General remarks
 - ullet Distinguishing ψ^k from a random permutation
 - Example 1 : KPA on 3 rounds
 - ullet Distinguishing a ψ^k generator from a random permutation generator
 - Example 2 : CPA on 6 rounds
- Computation of the H-coefficients
 - The idea
 - General formula
- Table of results, conclusion

Table of results

number <i>k</i> of rounds	KPA	CPA-1	CPA-2	CPCA-1	CPCA-2
1	1	1	1	1	1
2	$2^{n/2}$	2	2	2	2
3	2 ⁿ (+)	$2^{n/2}$	$2^{n/2}$	$2^{n/2}$	3
4	2 <i>n</i>	$2^{n/2}$	$2^{n/2}$	$2^{n/2}$	$2^{n/2}$
5	$2^{3n/2}$	2 <i>n</i>	2 <i>n</i>	2 <i>n</i>	2 <i>n</i>
6	$2^{3n}(+)$	$2^{3n}(+)$	$2^{3n}(+)$	$2^{3n}(+)$	$2^{3n}(+)$
7	2 ³ⁿ	2 ³ⁿ	2 ³ⁿ	2 ³ⁿ	2 ³ⁿ
8	2 ⁴ n	2 ⁴ n	2 ⁴ n	2 ⁴ n	2 ⁴ n
9	$2^{6n}(+)$	$2^{6n}(+)$	$2^{6n}(+)$	$2^{6n}(+)$	$2^{6n}(+)$
10	2 ⁶ⁿ	2 ⁶ⁿ	2 ⁶ n	2 ⁶ n	2 ⁶ n
11	2 ⁷ⁿ	2 ⁷ⁿ	2 ⁷ n	2 ⁷ n	2 ⁷ n
12	$2^{9n}(+)$	$2^{9n}(+)$	$2^{9n}(+)$	$2^{9n}(+)$	$2^{9n}(+)$
$k \ge 6, k=0 \mod 3$	$2^{(k-3)n}$	$2^{(k-3)n}$	$2^{(k-3)n}$	$2^{(k-3)n}$	$2^{(k-3)n}$
$k \ge 6$, $k=1$ or 2 mod 3	$2^{(k-4)n}$	$2^{(k-4)n}$	$2^{(k-4)n}$	$2^{(k-4)n}$	$2^{(k-4)n}$

FIG.: Maximum number of computations needed to get an attack on a k-rounds Feistel network with internal permutations.

Conclusion

- Similar results for Feistel networks with internal permutations and for classical Feistel networks, when the number of rounds is ≤ 5 , except for KPA on 3 rounds.
- For $k \ge 6$ rounds, different results on all 3i rounds.
- The attacks fit with the results of Gilles Piret.
- When the complexities are $\ll 2^{n/2}$, same results for Feistel networks with round permutations and round functions.
- The attacks on Feistel networks with internal permutations seem to be as difficult or sometimes more difficult to perform as the ones on classical Feistel networks.