Lecture 4: Adaptive source coding algorithms

February 1, 2019
Outline

1. Motivation;
2. adaptive Huffman encoding;
3. Gallager and Knuth’s method;
1. Motivation

Huffman/arithmetic encoding needs two passes

1. first pass to compute the source statistics

2. second pass: Huffman/arithmetic encoding

Moreover additional information is needed for the decoder

- either the statistics are known;
- or the encoding table is known.
Universal source coding

Universal source coding: no assumption on the source.

Idea: Compute at each time a dynamic source model that could produce the observed text and use this model to compress the text which has been observed so far.

Illustration:

- adaptive Huffman algorithm (memoryless source model),
- adaptive arithmetic coding algorithm,
- Lempel-Ziv algorithm and its variants (using the dependencies between the symbols).
2. Adaptive Huffman – Outline

Assume that \(n \) letters have been read so far, and that they correspond to \(K \) distinct letters.

- Let \(X_n \) be the source over \(K + 1 \) symbols formed by the \(K \) letters observed so far with probability proportional to their number of occurrences in the text + void symbol whose probability 0.

- Compute the Huffman code tree \(T_n \) of this source,

- the \(n + 1 \)-th letter is read and encoded
 - with its codeword when it exists,
 - with the \(K + 1 \)-th codeword + ascii code of the letter otherwise.
Adaptive Huffman – Coding

The initial Huffman tree has a single leaf corresponding to the void symbol. Each time a new letter x is read

- if already seen
 - print its codeword,
 - update the Huffman tree,

- else
 - print the codeword of the void symbol followed by an unencoded version of x (ascii code for instance),
 - add a leaf to the Huffman tree,
 - update the Huffman tree.
Adaptive Huffman – Decoding

The initial tree is formed by a single leaf corresponding to the void symbol. Until all the encoded text is read, perform a walk in the tree by going down left when '0' is read and going down right when '1' is read until a leaf is reached.

• if the leaf is not the void symbol
 – print the letter,
 – update the tree,

• else
 – print the 8 next bits to write the ascii code of the letter
 – add a leaf to the tree,
 – update the tree.
Adaptive Huffman – preliminary definitions

Prefix code of a d.s. \(X \): binary tree with \(|X|\) leaves = letters of \(X \).

Definition Consider a prefix code.

- the leaf weight is the probability of the corresponding letter
- the node weight is the sum of the weights of its children.

Definition A Gallager order \(u_1, \ldots, u_{2K-1} \) on the nodes of an irreducible code (of a source of cardinality \(K \)) verifies

1. the weights of \(u_i \) are decreasing,

2. \(u_{2i} \) and \(u_{2i+1} \) are brothers for all \(i \) such that \(1 \leq i < K \).
Example

```
3 5 5
2 1
3 2
a
b d
c e f
11
1
23
5 4
7 5 6 6
10
98
2
```

Information Theory
Adaptive Huffman – Properties

Theorem 1. [Gallager] Let T be a binary tree corresponding to a prefix code of a source X. T is a Huffman tree of X iff there exists a Gallager order on the nodes of T.
Proof

T Huffman $\implies T$ admits a Gallager order.

The two codewords of minimum weight are brothers \Rightarrow remove them and keep only their common parent.

The obtained tree is a Huffman tree which admits a Gallager order (induction) $u'_1 \geq \cdots \geq u'_{2K-3}$.

The parent appears somewhere in this sequence. Take its two children and put them at the end. This gives a Gallager order.

$$u'_1 \geq \cdots \geq u'_{2K-3} \geq u_{2K-2} \geq u_{2K-1}$$
Proof

T admits a Gallager order $\implies T$ Huffman.

T has a Gallager order \implies nodes are ordered as

$$u_1 \geq \cdots \geq u_{2K-3} \geq u_{2K-2} \geq u_{2K-1}$$

where u_{2K-2} and u_{2K-1} are brothers, leaves and are of minimum weight.

Let T' be the tree corresponding to u_1, \ldots, u_{2K-3}. It has the Gallager order $u_1 \geq \cdots \geq u_{2K-3}$. It is a Huffman tree (induction).

By using Huffman’s algorithm, we know that the binary tree corresponding to u_1, \ldots, u_{2K-1} is a Huffman tree, since once of its nodes is the merge of u_{2K-2} and of u_{2K-1}.
Proposition 1. Let X_n be the source corresponding to the n-th step and let T_n be the corresponding Huffman tree.

Let x be the $n + 1$-th letter and let u_1, \ldots, u_{2^K-1} be the Gallager order on the nodes of T_n.

If $x \in X_n$ and if all the nodes $u_{i_1}, u_{i_2}, \ldots, u_{i_\ell}$ that are on the path between the root and x are the first ones in the Gallager order with this weight, then T_n is a Huffman tree for X_{n+1}.

Proof Take the same Gallager order.
Adaptive Huffman – Updating the tree

Let T_n be the Huffman tree at Step n and let u_1, \ldots, u_{2K-1} be its corresponding Gallager order.

Assumption: $x \in T_n$ (at node u).

repeat until u is not the root

– let \tilde{u} be the first node in the Gallager order of the same weight as u,
– exchange u and \tilde{u},
– exchange u and \tilde{u} in the Gallager order,
– Increment the weight of u \textit{(weight = nb occurrences)}
– $u \leftarrow$ parent of u

This algorithm is due to D. Knuth.
Example

```
3
5 5
1110
2111
32
a
b d
c e f
11
1
23
5 4
7 5 6 6
10
98
3
```
Example
Example
Adaptive Huffman – Adding a Leaf

When the current letter \(x \) does not belong to the tree, the update uses the void symbol. It is replaced by a tree with two leaves, one for the void symbol and one for \(x \).

The two new nodes are added at the end of the sequence \((u_i)\).
Methods based on dictionaries

Idea: maintaining a dictionary (key,string).

The keys are written on the output, rather than the string.
The hope is that the keys are shorter than the strings.
Lempel-Ziv 78 – Outline

The Lempel-Ziv algorithm (1978) reads a text composed of symbols from an alphabet \mathcal{A}. Assume that N symbols have been read and that a dictionary of the words which have been seen has been constructed.

- Read the text by starting from the $(N + 1)$-th symbol until a word of length n which is not in the dictionary is found, print the index of the last seen word (it is of length $n - 1$) together with the last symbol.

- Add the new word (of length n) to the dictionary and start again at the $(N + n + 1)$-th symbol.
We need an efficient way of representing the dictionary. Useful property: when a word is in the dictionary all its prefixes are also in it.

⇒ the dictionaries that we want to represent are $|\mathcal{A}|$-ary trees. Such a representation gives a simple and efficient implementation for the functions which are needed, namely

- check if a word is in the tree,
- add a new word
Lempel-Ziv 78 – Coding

The dictionary is empty initially. Its size is $K = 1$ (empty word). Repeat the following by starting at the root until this is not possible anymore

- walk on the tree by reading the text letters until this is not possible anymore

 Let $b_1, \ldots, b_n, b_{n+1}$ be the read symbols and let i, $0 \leq i < K$ (K being the size of the dictionary), be the index of the word (b_1, \ldots, b_n) in the dictionary,

- $(b_1, \ldots, b_n, b_{n+1})$ is added to the dictionary with index K,

- print the binary representation of i with $\lceil \log_2 K \rceil$ bits followed by the symbol b_{n+1}.
Lempel-Ziv 78 – Example

<table>
<thead>
<tr>
<th>Dictionary</th>
<th>pair (index,symbol)</th>
<th>codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ε</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(0,1)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>(0,0)</td>
</tr>
<tr>
<td>3</td>
<td>01</td>
<td>(2,1)</td>
</tr>
<tr>
<td>4</td>
<td>011</td>
<td>(3,1)</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>(1,0)</td>
</tr>
<tr>
<td>6</td>
<td>00</td>
<td>(2,0)</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>(1,1)</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>(5,0)</td>
</tr>
</tbody>
</table>

Information Theory
Lempel-Ziv 78 – Decoding

The dictionary is now a table which contains only the empty word $M_0 = \emptyset$ and $K = 1$. Repeat until the whole encoded text is read

- read the $\lceil \log_2 K \rceil$ first bits of the encoded text to obtain index i. Let M_i be the word of index i in the dictionary

- read the next symbol b,

- add a K-th entry to the table $M_K \leftarrow M_i \parallel b$,

- print M_K.

The Welsh variant

• Initially, all words of length 1 are in the dictionary.

• Instead of printing the pair \((i, b)\) print only \(i\).

• Add \((i, b)\) to the dictionary.

• Start reading again from symbol \(b\).

⇒ slightly more efficient.

used in the unix compress command, or for GIF87.

In practice, English text is compressed by a factor of 2.
Lempel-Ziv-Welsh – Example

```
1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0 1 . . .
```

<table>
<thead>
<tr>
<th>indices</th>
<th>words</th>
<th>word</th>
<th>index</th>
<th>codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>00</td>
</tr>
<tr>
<td>4</td>
<td>01</td>
<td>0</td>
<td>0</td>
<td>00</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>10</td>
<td>2</td>
<td>010</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td>7</td>
<td>110</td>
<td>11</td>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>8</td>
<td>000</td>
<td>00</td>
<td>3</td>
<td>011</td>
</tr>
<tr>
<td>9</td>
<td>011</td>
<td>01</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>10</td>
<td>1100</td>
<td>110</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>11</td>
<td>010</td>
<td>01</td>
<td>5</td>
<td>0101</td>
</tr>
</tbody>
</table>

Information Theory
Lempel-Ziv-Welsh, encoding

1. Read the text until finding m followed by a letter a such that m is in the dictionary, but not $m||a$,

2. print the index of m in the dictionary,

3. add $m||a$ to the dictionary,

4. Continue by starting from letter a.
Lempel-Ziv-Welsh, decoding

1. read index i,

2. print the word m of index i,

3. add at the end of the dictionary $m||a$ where a is the first letter of the following word (a will be known the next time a word is formed).
This variant appeared before the previous one. More difficult to implement.

Assume that N bits have been read.

Read by starting from the $N + 1$-th bit the longest word (of length n) which is in the previously read text (=dictionary) and print (i, n, b), where b is the next bit.

In practice, implemented by a sliding window of fixed size, the dictionary is the set of words in this sliding window.

Used in gzip, zip.
Example

\[(0,0,0) \]

0 1 0 1 1 1 0 0 0 1 1 1 0 0 1
Example

\[
\begin{array}{c}
0 \\
(0,0,0)
\end{array}
\quad
\begin{array}{c}
0 1 \\
(1,1,1)
\end{array}
\quad
0 1 1 1 0 0 0 1 1 1 0 0 1
\]
Example

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(0,0,0)</td>
<td>(1,1,1)</td>
<td>(2,2,1)</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c c c c c c c c}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
\end{array}
\]
Example

\[
\begin{array}{cccc}
0 & 01 & 011 & 100 \\
(0,0,0) & (1,1,1) & (2,2,1) & (3,2,0) \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}
\]
Example

\[
\begin{array}{cc|cc|cc|cc}
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
(0,0,0) & (1,1,1) & (2,2,1) & (3,2,0) & (4,6,1)
\end{array}
\]
Stationary Source

Definition A source is *stationary* if its behavior does not change with a time shift. For all nonnegative integers n and j, and for all $(x_1, \ldots, x_n) \in \mathcal{X}^n$

$$p_{X_1\ldots X_n}(x_1, \ldots, x_n) = p_{X_1+j\ldots X_n+j}(x_1, \ldots, x_n)$$

Theorem 2. For all stationary sources the following limits exist and are equal

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \ldots, X_n) = \lim_{n \to \infty} H(X_n \mid X_1, \ldots, X_{n-1}).$$

the quantity $H(\mathcal{X})$ is called the entropy per symbol.
The fundamental property of Lempel-Ziv

Theorem 3. For all stationary and ergodic sources \mathcal{X} the compression rate goes to $H(\mathcal{X})$ with prob. 1 when the text size goes to ∞.