Lecture 2
Fundamentals of quantum information

January 14, 2020
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The Density Matrix

» How can we model the quantum state after a measurement ?
ex: |0) with prob. 3 and |1) with prob. % ?

» How can we describe the quantum state relative to a subsystem?
ex: the first qubit of the EPR pair % (]00) + |11))

What we want is a perfect and concise description of a quantum state

2 # states can not be distinguished iff they have the same description
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» An equivalent description of measurements
» Given by a self-adjoint operator VI (M"™ = M)

» M is diagonalizable in an orthonormal basis, the orthogonal projections P ) onto the eigenspaces
V\ determine the measurement

» Output of the measurement : eigenvalue A. Measurement = \ with probability e 1P [)]°

) = > Pxly)

A
M|y) = XAJAPAM
£ ZPV\
A
= EAIA||PA|¢>||2
= (Y| M)
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Measurements on a probability mixture of quantum states

» Quantum state

Quantum Information Theory

probabilistic mixture of quantum states : p = |v;) with probability
We have for any observable M:

(M), = > pi(M) 0

= ZPJ‘TI' (1| M |1;)

= ijTI‘(MWjH%D
= T | M) p;lvs) (¥

= define défz:j pj |5) (¥j]
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The density matrix

Définition| ] The density matrix » corresponding to a probabilistic mixture of states
|2);), the corresponding quantum state being equal to |1/;) with probability p; is given by

PEX s 1) (]
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The density matrix of a qubit

= ()@ 9= 55)=(5 o)
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Compute the density matrix of

1. the probabilistic mixture of |0) (prob 1) and |1) (prob 1)

def |0)

2. the probabilistic mixture of |4+) = 7T % (prob 1) and |—

3. What can you conclude ?
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Characterizations of density matrices

Theorem 1. An operator
1. p is self-adjoint

2. p is positive semidefinite
3 Tr(p) =1
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acting on a Hilbert space H is a density operator iff
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> Tr(p) =1

k
Tr (Z pj ;) (%‘l)

» p is positive semidefinite
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then for any | )

If p

(P| p|®)

k
ijT"“(Wﬁ (;])
ijTr(Wjo))

1

ij ;) (5]

D pi (Bl (1)

j=1

k
> pi(Bly;)* >0
j=1
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Pure and mixed states

Définition| ] A quantum system whose state |1)) is known exactly is said to be in
Définition| ] A quantum system which is not in pure state is said to be in
Theorem 2.

Tr(p’) < 1
Tr(p’) = 1< pisa pure state
Tr(p?) < 1< pisa mixed state
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Prove the previous theorem.
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Exercise
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The Bloch ball representation

def (O 1 def (0O —1 def (1 O
- \1 0 ~\7 0 ~\0 -1

def def
Let o= (g, ay,az) ( ) - (05, 0y, 0%)

1
Trp=1 4+Tr(o.) =0=p = E(Id—|—a-0)
= §Id—|—ax0$—|—ayay—|—azaz
B 1 l14+a, az—1iay
2 \aztia;, 1—a,
1 2
detp = 1(1—||a||)

1
T’ = (14 lall)

» pis a density matrix iff ||a|]| < 1, p is a pure state iff ||a|| = 1

Bloch ball representation : p is represented by a

Quantum Information Theory
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Quantum Information Theory

The Bloch ball

[4) = cos0/2]0) + €' ?sin6/2 1)

12
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M:Z:APA
A

» [nitial state . We measure \ with probability
2
= [Pxl)]
= (Y|P |¥)
2
= Tr(P)[¢) (¥])
- def Py|y) _ Py[Y)
and the output is =T~ Vo

» Output is a probabilistic mixtures of states 1) with prob. p,.
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Measurement for a density operator p

A
P. = P,
P, = P,
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In general
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Unitary Evolution

[y = UlY)
p=1¥) (Yl = Ulp) (| U
U'U = 1Id
p/ _ UpU*
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CPTP operation

» Most general quantum operation = (CPTP) operation

Définition A CPTP map & is defined from a collection of matrices A1, - - - , Ay such that

k
d ATA;=1d
j=1

and

(p)=

k *
Zj:l AjpA;
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Let
Ag=1d® |0) A;=1d®|1)

1. Show that they define a CPTP map as ®(p) = AopAj + Ai1pA]
2. What is the effect of this map on 1 ® o2 ?

Quantum Information Theory
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Partial trace = reduction to a subsystem

Problem 1. pup € A ® B, what is the quantum state with respect to A ?

= 'I‘I'B(,OAB) where
Trs(X®Y) = Tr(Y)X
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This is a CPTP map

Trp(p) = > 1d® (a| pld® |a)

d AA, = 1d
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Where does this expression come from ?

> an observable on system A and M the corresponding observable for the composite system
AB

M=) AP, ®Id)
A

Physical consistency

<M>pA — <1\~/I>pAB
(M),, = Tr(Mpa)
M),, = Tr(M®Idpap)
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Consider the EPR pair
1

75 (100) +|11))

1. Compute the density matrix pap of the EPR pair,

2. Compute the reduced density matrices p4 and pp with respect to the first and second qubit
respectively

3. Ispap = pa @ pB?
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Exercise : teleportation

1. Compute the reduced density operator of Bob's system once Alice has performed her
measurement but before he has learned ab

2. What can you conclude 7
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Schmidt decomposition

Theorem 3. V |¢y) € A®B, 3!d, an orthonormal set |a1) , - - - , |aq) € A and an orthornormal
set |by1),--- ,|ba) € A and positive A1, - - - , Agq such that
d
) = A |ai) |bs) (1)
i=1
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Consider|v) € A ® B

1. Consider p4 = Trp|y) (¢|. Show that we can write
pa= > _pjlv;) (¥
j=1

for a certain orthonormal set {|v1),--- , [1k)} and a certain probability vector (p1, . .., pk)

2. Show that we can write |¢) as
) = luy) |vy)
j=1

for some choice of vectors vy, - - - , vy,
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The Schmidt number

Définition| ] The number of non zero \;'s is called the Schmidt number of the
decomposition. This number does not depend on the decomposition and it depends only on |1).

Theorem 4. A pure state |v) is entangled iff its Schmidt number is > 1.
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Exercise

Find the Schmidt decomposition of the states

1 l00)+[11)
' V2

o 100)+[01)+]10)+[11)
: 2

3 |00)+]01)4-]10)
' V3
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» Alice and Bob do not trust each other
» Alice has chosen a bit

» Right now she does not want to reveal b to Bob, but wants to convince him that indeed she
chose b and not 1 — b

» Much later Alice reveals b to Bob and Bob is convinced that this is indeed the value she chose
in the past

The protocol must be

Alice should not be able to change the b she committed

Bob should not be able to identify b until Alice reveals it
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Very useful tool in cryptography

coin flipping
zero knowledge proofs

secure multiparty computation...

Can be done classically under computational security assumptions
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Bit commitment with a safe

Alice writes 1 on a piece of paper
She puts the paper in a safe. She is the only one to have the code of the safe
she hands the safe to Bob

’f’ x € {0,1} ’\/3; SN

&

Alice reveals x and the code to unlock the safe

Bob opens the safe to check =

Quantum Information Theory
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Unconditionally secure bit quantum commitment protocol ?

= {lo), 1)}
= {+), 1)}, with
def |0) +[1)
-2
aor 10 —[1)

V2

When Alice wants to commit to
1. Commit phase : Alice choose |t¢/) uniformly at random in S; and sends [¢) to Bob

2. Reveal phase : Alice reveals ab to Bob where ab is a classical description of |):

00 < |0)
10 < |1)
01 <+ |+)
11 +— |-)

3. Verification phase : Bob measures |1) in the basis S;,
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Exercise (warm up)

Suppose that |¢) and |¢) € A ® B satsify

Trg |¢) (¢ = Tra [¥) (]

Show that there exists a unitary U such that

Quantum Information Theory

(Id®U) [¢) = |) .
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1. Verify that the protocol is concealing

Find a cheating strategy for Alice

Use the previous exercise to show that there is always a cheating strategy for Alice, irrespective
of the protocol whenever the protocol is concealing

Quantum Information Theory
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Alice
= +1
= 41

Quantum Information Theory

The EPR paradox

Bob
= 41
= 41
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Exercise: the Bell inequality

1. Show that QS + RS + RT — QT = =£2. You may use that QS + RS + RT — QT =
(R+R)S+ (R-Q)T

2. Deduce the Bell inequality | (QS)+(RS)+(RT)_(QT)<2
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The quantum experiment

det |01) —[10)
V2

Alice :  first qubit
Bob : second qubit
def :
Q = meas. according to oy
def .
R = meas. according to ox
def . —0z — 0X
S = meas. according to 7
def . Oz —O0Xx
T = meas. according to ————

V2

What is (QS);(RS)(RT)_(QT)>

Quantum Information Theory
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(1) the physical properties have definite values ), R, S and T which exist
independent of observation.

(2) Alice measurement does not influence Bob's measurement.

One of these assumptions is violated by these quantum experiments.
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Exercise : a maximal violation of Bell’'s inequality

Let A, , Bo, be observables with eigenvalues in [—1, 1] and be a quantum state upon
which the A; ® B;’s act. Let

Ay @By +Ag®@B1 + A, @By — A, ® By

1. Show that (1| M [¢) < [M |)]
2. Show that [M |9) || < [[|do) + [d1)] + o) — |61)] for ) = (1d @ By) |4).

3. Deduce from this Tsirelson’s inequality, namely

(Ao @ Bo) gy + (Ao @ Bi)jyy + (A1 ® Bo)jyy — (A1 @ By < 2v2 (2)
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