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Classical computation on a quantum computer

I Efficient classical computation⇒ efficient quantum computer ?

I Unitary transform→ reversible computation
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First example, computing a ∧ b

I The Toffoli gate

T |a〉 |b〉 |c〉 = |a〉 |b〉 |c⊕ (a ∧ b)〉

I Implementing a ∧ b
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Exercise : NOT, XOR, OR, COPY

Give a quantum gate or circuit based on X, c-NOT and the Toffoli gate for computing for a,

b ∈ {0, 1}:

1. ā

2. a⊕ b
3. a ∨ b
4. a copy of a, namely a 7→ (a, a)
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Exercise : implementing the classical Toffoli gate with 1 and 2-bit
permutation gates ?

Is it possible to implement the Toffoli gate by using only 1 and 2 permutation gates ?
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Exercise

Show that the following circuit implements the Toffoli gate

H S SS* H

where S is the following transform

S (α |0〉+ β |1〉) = α |0〉+ βi |1〉
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Classical circuit

f(x)x
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Reversible circuit
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A better reversible circuit
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Universal Quantum Computation with one or two qubit gates

I Universal quantum computation with one qubit gates + CNOT gate

I Approximation with accuracy ε of one qubit unitaries with O(logc(1/ε)) gates H, S and T

where c ≈ 2 and

H
def
=

1
√

2

(
1 1

1 −1

)
S

def
=

(
1 0

0 i

)
T

def
=

(
1 0

0 eiπ/4

)
I Approximation with accuracy ε of every n qubit gate with O

(
n24n logc(n24n/ε)

)
gates H,

T and c-NOT.
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The fundamental theorem

Theorem 1. The basis consisting of all one-qubit and two-qubit unitary operators allows the

realization of an arbitrary unitary operator
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Breaking up a unitary into two-level unitaries

Lemma 1. An arbitrary unitary operator U on Cm can be represented as a product of at most

m(m− 1)/2 two-level unitary matrices, i.e. matrices of the form

1 0 . . . . . . . . . . . . . . . 0

0 . . . 0 . . . . . . . . . . . . ...
... . . . 1 0 . . . . . . . . . ...
... . . . . . . a b . . . . . . ...
... . . . . . . c d 0 . . . ...
... . . . . . . . . . 0 1 . . . ...
... . . . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . 0 1


where

(
a b

c d

)
∈ U(2)
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Proof

For any numbers c1, c2 there exists V ∈ U(2) s.t.

V

(
c1

c2

)
=

(√
|c1|2 + |c2|2

0

)

U =


u11 u12 . . . u1m

u21 u22 . . . u2m
... ... . . . ...

um1 um2 . . . . . .



Um−1 · · ·U1U =


∗ ∗ . . . ∗
0 ∗ . . . ∗
... ... . . . ...

0 ∗ . . . ∗

 = U
(1)

U
(1)

=


1 0 . . . 0

0 ∗ . . . ∗
... ... . . . ...

0 ∗ . . . ∗


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Corollary

I A unitary acting on n qubits can be decomposed as a product of 2n−1(2n − 1) two-level

unitary matrices
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Exercise

Show that there is a unitary on n qubits that can not be decomposed in a product of less than

2n − 1 two-level unitary matrices
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Implementing a 2-level unitary with a c-U unitary

c-U
n |x1 · · · xn〉 |ψ〉 = |x1 · · · xn〉Ux1···xm |ψ〉

corresponds to 

1 0 . . . . . . . . . 0

0 1 0 . . . . . . ...
... . . . . . . . . . . . . ...
... . . . . . . 1 0 0
... . . . . . . 0 a b

0 . . . . . . 0 c d


where U =

(
a b

c d

)
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Exercise

1. Give a quantum circuit that realizes c-U2 from c-U, c-NOT and one qubit gates

2. Give a quantum circuit that realizes c-Un from c-U, c-NOT and one qubit gates. What is its

complexity (in the number of gates) ? What is its depth ?
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c-U with c-NOT and one qubit gates

Lemma 2. Any unitary U ∈ U(2) can be written as

U = e
iα
AXBXC

where ABC = Id.
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Proof

Ry(θ)
def
=

(
cos θ/2 − sin θ/2

sin θ/2 cos θ/2

)

Rz(θ)
def
=

(
e−iθ/2 0

0 e−iθ/2

)

Lemma 3. Suppose U ∈ U(2), then there exist real numbers α, β, γ and δ such that

U = e
iα
Rz(β)Ry(γ)Rz(δ)

Set

A
def
= Rz(β)Ry(γ/2)

B
def
= Ry(−γ/2)Rz(−(β + δ)/2)

C
def
= Rz((δ − β)/2)
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Exercise

Show that

=

S
α

C B AU

where

Sα (a |0〉+ b |1〉) = a |0〉+ be
iα |1〉
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Exercise : implementing an arbitrary unitary two-level matrix in U(2n) with
a c-U

Show how to implement an arbitrary two-level matrix in U(2n) with a non trivial two-level part

U ∈ U(2) with c-Un and X and c-NOT gates with gate complexity O(n2).
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Approximating any one qubit gate with a discrete gate set

H
def
=

1
√

2

(
1 1

1 −1

)
T

def
=

(
1 0

0 eiπ/4

)
I Up to a global phase T and HTH are rotations around the ẑ axis and the x̂ axis of the Bloch

sphere

I Composing them gives a rotation about an axis along n = (cosπ/8, sinπ/8, cosπ/8) of

an angle θ defined by cos θ/2 = cos2 π/8

I approximate any unitary U ∈ U(2)
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Approximating arbitrary unitary gates is generically hard

I With O(1) different types of gates acting each on O(1) qubits we have poly(n) different

gates on n qubits

|0n〉 U−→ |ψ〉

|0n〉 Uε−→ |ψε〉

|||ψ〉 − |ψε〉|| ≤ ε

I
#dif. Uε obtained by a circuit with m gates = poly(n)

m
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Approximating arbitrary unitary gates is generically hard (II)

I |ψ〉 and |ψε〉 belong to the 2n+1 − 1-sphere and are at distance ≤ ε

#dif. Uε × Vol(ball of radius ε in S
2n+1−1

) ≥ Vol(S
2n+1−1

)

Vol(S2n+1−1)

Vol(ball of radius ε in S2n+1−1)
=

√
πΓ(2n − 1/2)(2n+1 − 1)

Γ(2n)ε2n+1−1

= Ω

(
1

ε2n+1−1

)
I We should therefore have

poly(n)
m ≥

(
1

ε2n+1−1

)
⇓

m = Ω

(
2n log(1/ε)

logn

)
I Solovay-Kitaev m = O

(
n24n logc(n24n/ε)

)
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