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Quantum simulation—
The HHL algorithm
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1. Quantum simulation
2. The HHL algorithm
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1. Quantum simulation; the dream of Feynman
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Feynman (1982) “Can physics be simulated by a quantum computer? [...] the full description

of quantum mechanics for a large system with R particles has too many variables, it cannot be
simulated with a normal computer with a number of elements proportional to R [. . . but it can be

n

simulated with] quantum computer elements.
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The Hamiltonian

» Dynamical behavior of quantum systems governed by Schrodinger's equation

4
’Lﬁahm = H [vy)

» Key challenge in simulating quantum systems: exponential number of differential equations
that have to be solved: a system of n qubits = solving 2" differential equations . . .
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Applications of quantum simulation

solving problems that are classically intractable: Hubbard model (simplest model of
interactings particles on a lattice), spin systems..;
understanding phase transitions, disordered systems, high-temperature superconductivity,...
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Application to quantum chemistry

calculating the thermal rate constant
obtaining the energy spectrum of a molecular system
simulate the static and dynamical chemical properties of molecules

simulate chemical reactions
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quantum simulation

Exponentiating the Hamiltonian
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Hamiltonian simulation

Problem 1. | ]
Input: Hamiltonian |1 acting on . qubits, time | € R", accuracy - € R™
Output: a quantum circuit/algorithm implementing a unitary | which is such that

Cost: the number of gates implementing U

otH UH <e

» His if the quantum circuit consists of poly(n, t, %) gates
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1. Show that if the unitary transform U can be efficiently implemented and the Hamiltonian H be
efficiently simulated, then UHU™ can be efficiently simulated

2. if H is diagonalizable in a basis corresponding to a unitary U that can be efficiently implemented
and if its eigenvalues can be efficiently computed, show that such H can be efficiently simulated

=
N
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itUHU™ = (itUHU*)i
e s
> tH)!
_ ZU(Z . )U*
i=0 !
— UethU*

2. Assume first that H is diagonalizable in the computational basis. Then H can be efficiently
simulated by performing the following steps

la,0) +— |a, A(a))
— Y a, A(a))
— e’it)\(a) |a, O>

itH
= €' |a)|0)

The general case is handled by using the previous principle

=
N
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The Hamiltonian encountered in practice

H:iﬂi

J=1
where the H; only involve a few qubits
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Method 1: the Lie-Suzuki-Trotter method

» |f and can be efficiently simulated, then H; and Hs can also be efficiently simulated

Theorem 1.
A+B A B
" =e%e” + O (A - |B]))

Zassenhaus formula

1
A+B A B —i[AB
eATB — cABealABl
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» In general for a sum of
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| ]

choose r

Tt
= e’

(eth/T)T‘

<€iH1t/r—|—iH2t/r> "
(eiHlt/T’eiH2t/T _|_ E)T
(e

’iHlt/T‘eiHZt/T)r + O(?“ ”E”)
O ([iHat/r| - |iHat/r|)

t2
O (“Hl” - | Ha| ﬁ)
t2
O
e ||Hy| - | H]

(eq;Hlt/rengt/r) " +O(e)

12

hamiltonians : O(mt”/e) simulations of individual hamiltonians
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Method 2: quantum walk approach

» Dependency in t of the previous approach O(t?)
» Optimal dependency in t : O(t)

» Can be obtained by a quantum walk approach
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» A recent and flexible approach with a logarithmic dependency in €

» Assume that A acts on n qubits with operator norm ||A| < 1 and we know how to implement
an (n + a)-qubit unitary operator
A -
o= (")

Definition 1. | ] U issaid to be an f

A ~
u= (%) e Ja-a] <

then U is an of A
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» We assume that A is and have sparse access to A
Oa:i,g) [0) = 1,4} [Ay)
O, :|i, ) —  |i,r(i,£))

O.:|£,5) w— |c(4,9),7)

where
Ajj is a D-bit description of A,
r(i, £) denotes the location of the ¢-th nonzero entry of the i-th row of A,
c(£, 7) denotes the location of the ¢-th nonzero entry of the j-th column of A
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Let

.y 1 |
Wi :10)10%) ) = \/§|0> kgj;olkaﬁ

W : |0 [k, 5) |ob> = (Ak 10) + /1142, 11)) [k, 5) ‘ob>
Wi : [0) [07) 3) %m SO i e

We assume s = 2™,

1. Show how to implement W5 and W3 using an O, and O,. queries and a few other A-independent
gates.

2. Show how to implement W5 using an O 4-query, an Ogl—query, and a few other A-independent
gates.

3. Show that the (0™ 114, 0" )-entry of W, W is exactly 1/s if A;; # 0, andis 0 if A;; = 0
3 j j
4. Show that the (0™"'i, 0! j)-entry of W5 'WoW] is exactly A;;/s

N
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[0) 107) 1)
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g0, ; % 0) |e(¢, 7)) 1)
1
V'S k:%;éo :

R(6) def ((3089 —sm@)

sin 6 cos 6
0 = cos '(Ayg))

R; = R(2n/2)
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0) Ik, [07) 10} Ik, ) | Agy)

Id(X)cos_1 .
— [0) [k, 5) |0k;)
i (cos 0y, |0) + sin Oy, |1)) |k, 5) |Ok;)

Id®cos
—_—

(Aks 10y + /1= A2, 11)) IR, 5) | As)
1d@0 ;!

—2 (kg 10) + /1 - A2, 11) [k, ) |0")

1
<O"+1‘ (i| W, W, O"+1> 17) = B if A;; # 0 and O otherwise

<o”+1‘ (i| WEWa W,

0" ) 13) =
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Low-degree approximation

» We want to implement
A -
V=)

U :[0%) [¢) = [0%) Alg) + > |5) [45)

given a block encoding of A,

§>0
examples of interest:
f(z) = e
flz) =3
» We have a degree polynomial P approximating f
Theorem 2. Let P : [—1,1] — {z € C : |z| < 1/4} be a polynomial and let

U an (s, a,e) approximate block encoding of A. We can implement an (1,a + 2,4d+/e/s)
approximate block encoding of P(A /s) with d applications of U and U™, a single application of
c-U and O(ad) other 1 and 2-qubit gates
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Show that a sufficiently large constant ¢ can be chosen such that for all hermitian A with operator
norm ||A| < 1, we have

c(t+log(l/e))—1 ,.
JitA gz: (itA)" <.
0 k! -
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c(t+log(1l/e))—1

>

k=0

(itA)F
k!

IA

IA

0. @)

2.

k=c(t+log(1/¢e))

(itA)F
g

> 6

k=c(t+log(1/¢e))

>

k=c(t+log(1l/¢e))
(g) c(t+log(1/¢€))

C

1 — ¢

C
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Let ¢ = €
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Hamiltonian simulation via transforming block-encoded matrices

» Approximate f(x) = "' with a degree d = O(t + log(1/¢)) polynomial P

» If H is s-sparse = block encoding U of H/s using O(1) queries to H and O(n) other gates
evolving H for time ¢ = evolving H/s for time st

» Previous theorem =- block-encoding V of P(z) = e by invoking U an U™! O(st +

1
log(1/€)) times and mapping

V :|0) [¢) = |0) P(H) |¢) + |9)

where |¢) has no support on basis states starting with |0)

» Complexity of e-precise Hamiltonian simulation of s-sparse H is O(st + log(1/g)) queries to
H and O(n(st + log(1/g))) 2-qubit gates
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Problem 2. |

Quantum Information Theory

The HHL algorithm
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Find « s.t. Ax

)

Find an n-qubit state

(@) =) =101 <
(i) Ax = b

such that
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Assumptions

1. A is non-singular

2. |b) can be prepared using a circuit of /7 2-gates

3. A is s-sparse

4. \; € (0, 1] for all ¢ where Ay, --- , Ay are the singular values of A

Quantum Information Theory
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Complexity

def max; fj

min; [i;
Problem Algorithm Complexity
LSP Conjugate Gradient O(ngl;)g(l/s))
QLSP HHL 2009 O (rleal)
QLSP | VTAA-HHL (Ambainis 2010) O (rl=d)
QLSP Childs et al 2017 O (skpolylog(sk/€))
QLSP QLSA 2018 O (“2p°'y'°g<”)'v MAA*))

Quantum Information Theory
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Application: recommendation system

Problem 3. | ] Anunknown (hidden) m xn binary matrix P modelling
customers preferences and P is of low rank k. For a customer @ one should output columns j such
that it is likely that P;; = 1.

» Quantum algorithm based on HHL that is of complexity O (poly(k)polylog(mmn)) (we do not
use all the entries of P!)

44
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Application: support vector machine

Problem 4. | ]
Input: training data points of the form
Output: w € RN and ! that minimizes |w| under the constraint y;(w - x; + b) > 1

» best classical algorithm takes poly(M\, N') whereas quantum complexity O (log(M N))

Lok
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1. Solve the following system over [Fs:

2

T1x2 + T1T3
T1X3 + Tox3 + Taly
T1x2 + T2T3
| T1Z2 + T2x4

Il
R O = O

2. Outline a strategy for solving a polynomial system involving the multiplication of the polynomial
equations by all monomials of degree < D

3. Can you associate to a polynomial system over F5 a polynomial system over C that has as only
solutions the solutions of the previous system ?

4. What happens if you apply HHL to this system over C ?
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Exercise : A hermitian ?

1. Give a 2N X 2N hermitian matrix A’ and b’ € C?" such that a solution x of Ax = b can
be read off from a solution x’ to A’x = b’

2. Relation between the condition number of A and A’ ?
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k(A)

Solution
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» \We assume that

> A~ is not unitary in general

» A is hermitian = e is unitary

Quantum Information Theory

Approach
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Theorem 3. For every unitary operator U acting on m qubits, there exists a quantum circuit
acting on m + s qubits satisfying the following properties

1. the circuit PE(U) uses 2s Hadamard gates, O(s?) controlled phase rotations and makes 2511
calls to c-U

2. maps with probability 1 — 1/poly(n)

Z%‘ [1;5) |0) — Z%‘ ;)

2

% is the associated eigenvalue and |0, — 6;] < 27™

where |1);) are the eigenvectors of U, e’
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» With Hamiltonian simulation we can implement ¢**

0) [0) Joi) 5 10) [A5) vy)

1 1
- <K o) + \/1 - = |1>> A0 o)
pPE~1 1 1
— (R—)\J 10) + \/1 T ) |1>> 10) |vj)

o) 10)10) = ey) [0) <ﬁi/\j|o>+\/1—(mij)2|1>>
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10) [6)

Quantum Information Theory

Approach (111)

0) Zﬁj [v;)

1 0 1 1
/‘i—)\j‘>+ TS

= K |0) |z) + [1) [¢)

BE |1>> Zﬁj |v5)
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1. Show that the probability of measuring |0) in the first register is > -
K
2. How can this probability be improved ?

Quantum Information Theory
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1. Let p = Prob(meas. 0), then

2. amplitude amplification = O(k) calls of the algorithm for having a probability of success €2(1)
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Give a quantum circuit performing

Quantum Information Theory

0) [ A7) > (R

Exercise

1
— |0
— 10} +

J

Vl

B 1
(KAj)?

|1>> A7)
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HHL

Circuit
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Complexity

» Leads to an algorithm that produces a state |#) that is e-close to |z) using k*s/e queries to
A and roughly ks(kn/e + B) other 2-qubit gates

44
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Improving the efficiency of HHL

» Use the block encoding method of quantum simulation to perform f(A) with

aef 11— (1—2a%)°
- T

= k' In(k/e)

» Complexity: O(rx*slog(k/e)) queries to A and O(ks(knlog(k/e) + B)) 2-qubit gates

Quantum Information Theory 42 /44




1. Let I =[—1,—1/k] U [1/k,1]. Give an upperbound on |f(z) — 2| on I.
2. Show that the polynomial p(z) = f(x)/(4(k 4+ €)) meets the conditions of Theorem 1
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HHL
Solution
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