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» Quantum key distribution with a security-proof only relying on

authenticated channel between Alice and Bob
laws of quantum physics

» Information theoretically secure : no computational assumptions

» Implemented in practice

2004 first bank transfer in Swiss

2007 ballot results of the Swiss canton of Geneva transmitted to the capital

Chinese network

— 2016: space mission — QKD channel between China and Austria (7500
km)

— 2017: 2000-km fiber line between Beijing, Jinan, Hefei and Shanghai

current optic fibre networks : infrastructure is in place for a more widespread

use
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KQD basic principles

» private key bits created by communicating qubits over a public channel

» Eve can not gain information from the qubits without disturbing the states

» Eve can not clone the qubits

» Non-orthogonal states are sent through the channel
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Exercise : distinguishing two non orthogonal quantum states

. Show how to distinguish perfectly two orthogonal states with just one
measurement

. Show that there is no (general) measurement that distinguishes perfectly two
non orthogonal states




A (general) measurement is given by a collection of My, ..

Measuring |1)

Recall: Measurement

_>

k
> MM,
m=1

M, [¥)

M, [4)]

=1

with prob. |[M,, |¢>”2

., M such that
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1. projective measurement along V @ V' where V contains the first state and V =+
the second one

2. Let the two states be |¢)1) and |1)2) and the measurement be given by a collection
My, ..., My which are such that >>%  M*M,, = Ls If it is possible to
distinguish perfectly between |¢1) and |i2) with these measurements, then if
we let f:{1,---  k} — {1,2} be the decision made on |¢1) and [1)2) based on

the measurement we should have

() 1= E, +Es
(i) (il Ei i) =1

where
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Since (¥1]Yp1) =1 and I = E; + E5 we have

1= (1] By 1) + (1] Bz 1)

Since (1| 1 |11) = 1 we deduce

0= (1| B2 [91) = ‘@Wﬁ”Q

Decompose |12) = « |1) + B|Y3) with |i3) orthogonal to [|¢1). We have
18] < 1 since |a|* +|8]*> = 1 and |¢1) and |¢5) are non-orthogonal. Since

VE2 [th2) = Bv/Ez [th3) we have

(2] Ba [0} = 181 | VEz2 us) | = 18 (sl B2 ls) < 182 < 1
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Exercise : information gain on non orthogonal states implies
disturbance

> and two non-orthogonal states.

» Process of Eve : unitarily interact [¢)) and |¢) with an ancilla |u) without
disturbance:

Prove that |v) = |v") meaning that Eve can not gain information on |¢) and |¢)




Solution

(|v') (¢[$)

(v]v')

<= 1 <=
=
£
]
—
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2. The BB84 protocol

» Proposed by Charles Bennett and Gilles Brassard in 1984

» Originally proposed/based on photon polarization
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Phase 1: Alice side

» Binary strings of length encoded with as a block of (4 + d)n qubits

= a1 A(4+8)n keybit string
= b1 brats)n basis string
={10),[1)} ={|+). 1)}
def|0) + 1) def|0) — [1)
V2 V2

» Alice sends to Bob
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Phase 2 : Bob’s side

» When Bob has received the (4 + §)n qubits he announces that to Alice

» He measures each of these qubits in either the {|0),|1)} or the {|+),|—)}
basis. Each basis is chosen uniformly at random
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. Alice announces b, Bob announces his own choice of bases
. They keep 2n bits corresponding to b; = b,

. Alice selects n positions among them to serve as check on Eve's interference
and tells Bob which bits she selected

. Alice and Bob compare a and a’ on these n positions. Abort if too many bits
disagree
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Information reconciliation/privacy amplification

> . ending with a common string from a and a’ by public
communication

> : ending with a common and private string by public
communication

14/46




BB84

||||||||||||||||||| — E1 —
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Receiver Bob
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.............. - B>
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.......... o EHe™>Ss
......... - B>
e © |

Sender Alice
Alice bit sequence 1

Bobs basis
Bobs result
Same basis?

Single
photon
source

15 /46

Resulting key



. Find a basis choice which gives Eve the same information on a; irrespective of
the basis choice b;

. Let d; be Eve's choice for a; that maximizes Prob(d; = a;). Give a formula for
Prob(a; = a;)

. What is in this case Prob(a; # a;) 7
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1. basis {cos 5 |[0) +sing |1),—sing |0) +cosg [1)}
2. Prob(d; = a;) = cos?(n/8) ~ 0.85

3. Prob(a} # a;) = sin*(7/8) ~ 0.15
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» Highlights that the impossibility of perfect distinction between non-orthogonal
states lies at the heart of quantum cryptography

» Alice prepares one classical bit © and sends to Bob

0) ifa=0
[¥) = O g = 1

» Bob generates a random classical bit a’.

he measures [) in the {|0),|1)} basis if a’ =0

he measures |1) in the {|0>\J/r§|1>, |O>\;§|1>} basis if a’ =1

—be {0,1}
» He publicly announces b

» keep only pairs for which b = 1. Final key = a for Alice =1 — a’ for Bob
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» Based on EPR pairs
00) + |11)

V2

» Symmetric protocol

» Alice and Bob share n EPR pairs, Alice has the first qubit of the pairs, Bob the
second one

1. Alice choose randomly b € {0,1}™ and Bob b’ € {0,1}"

2. According to b; (resp. b;) Alice (resp. Bob) measures her/his qubit of the i-th

pair in the {|0),|1)} basis for a 0 bit and in {|O>j§|1>, |O>\;§|1>} for a 1 bit and

obtain a; and a) respectively

3. Communicate b and b’ publicly and keep only the a;'s for which b; = b
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» Quantum information theory: if Alice and Bob share an entangled state |8y0)®
Eve has no information on a k-bit string they may have in common

» Random sampling can upper-bound eavesdropping

|Boo)
|B10)
|Bo1)

|B11)

00) + [11)

V2
00) —|11)

V2
01) + |10)

V2
01) — |10)

V2

k

bit flips detected by the projectors |Bo1) (Bo1| + |B11) (B11| and |Boo) (Boo| +

|B10) (B0l

phase flips detected by the projectors |31¢) (6104 |5811) (B11| and |Boo) (Boo|+

|ﬁ01> <601‘
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5. The Lo-Chau protocol

Rn noise/Eve\ entanglement distillation

k
| Boo) P » 0~ |Boo)®
» Sacrificing half of the EPR pairs for measuring the noise

» Based on a random CSS code to correct a fraction 6 of X, Y and Z errors in p
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. Alice creates 2n EPR pairs

. Alice chooses randomly b € {0,1}2", performs Hadamard H on the 2nd qubit
for which b is 1, sends these qubits to Bob

. After receiving the announcement that Bob received its qubits, Alice announces
b and the n pairs that serve as check qubits, Bob performs H when b =1

. Alice and Bob measure their n check qubits in the {|0),|1)} basis and publicly
share their results, abort if # disagreements > ¢

. Alice and Bob measure their remaining qubits according to the check matrix
of an [[n,k,t]]-CSS code, share the results and correct the quantum state

— \500>®k: entanglement distillation

. Alice and Bob measure the k EPR pairs in the {|0),|1)} basis to obtain a
shared secret key
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1. Alices prepares |500>®n and sends the second qubit of each EPR pair to Bob

2. There is channel noise which results in (I ® E)|Boo)®" where I is the identity
acting on Alice’s side and E is a Pauli error of weight ¢ acting on Bob's side

generate |Boo)®”

[[n, k, t]] stabilizer code
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Consider an [[n, k]| stabilizer code with generators g1, - -+ , gn—x. What happens if

(i) we start from an arbitrary n-qubit quantum state |¢)
(ii) perform the measurement according to g1, - , Gn_k
(iii) find a Pauli error E whose syndrome corresponds to the measurement

(iv) and finally apply E* to the measured state ?
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1. For any matrix M € C2"*2" show that there exists M’ such that

(M ®1I) |Boo)*" = (I®@ M) |Boo) "

where M acts on Alice's side whereas M’ acts on Bob's side

2. Let Py, ,Pynr be the projectors corresponding to £1 eigenspaces of the
generators g1, -+ , gn—k. Show that for all ¢

(P @ I @ E) [Boo)”" = (1@ E)(P; @ P]) |Bo0) "
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1. First we notice that

From this we deduce

(M ®1) [Boo) "

ﬁl

x€{0,1}" yc{0,1}"

y€{0,1}"

(I®MT) |Boo)™"

xe{0,1}"

= XY Ml

& S S M)
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(P, @ I ®E)[foo)*" = (I@E)P;®1I)|8oo)"

IRE)(P;, @ I)(P; ®1)|Bo0)*"

10 E)(P; @ I)(I® PI)[By0)®"
)(

I2E)(P; @P)|Bp)"

—_~~ N N
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The entanglement distillation protocol consists in

1. Alices measures the n — k generators of C on her side

2. she performs the inverse of a unitary Pauli error that has the measured syndrome
0A

3. she tells Bob her syndrome

4. Bob computes his syndrome and performs the unitary transform of weight < ¢
that would give him the same syndrome as Alice

5. they both perform the decoding unitary corresponding to C
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6. Another modification of the Lo-Chau protocol : the CSS
protocol

» Problem of the Lo-Chau protocol : needs full power of quantum computing to
perform entanglement distillation + entanglement

» This protocol can be simplified without compromising security
» We begin to simplify it by removing the need to distribute EPR pairs

» Idea: Alice’s measurements collapse the pairs into n single qubits
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. Alice creates random bits ayq, ..., a,, qubits |a1), -+ ,|a,) and \500>®n

. Alice chooses randomly n positions (out of 2n) puts the |a;)’s in them and half
of each EPR pair in the remaining positions

. Alice chooses randomly b € {0,1}?" and performs Hadamard H on the qubit
for which b is 1 then sends each of those qubits to Bob

. Bob ack. the rec. of the qubits, Alice announces b and the n check qubits,
Bob performs H when b =1

. Bob measures check qubits in |0), |1), shares results, aborts if # disagree. >t

. Alice and Bob measure their remaining qubits accord. to the check matrix of
an [[n, k, t]]-CSS code, share results and correct the quantum state — |Bgo)%"

. Alice and Bob measure the k EPR pairs in the {|0),|1)} basis to obtain a
shared secret key
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» Based on two binary linear codes and such that

» Quantum

» Encodes

» Corrects

Cé‘C:CX'

code © defined by

T Vect {|&a) s u € Cx/Cx }

vEC,
= dimCz
qubits where
kX = (ﬁHlCX'
k= kx—ky

errors if Cx and Cyz correct t errors
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» Error e € {I, X, Y, Z}" decomposes as

e=exX t+ezs

» Syndrome measurement yields
ox =— ELye}—

oy = HZe}

» After error + measurement, the code state |£;;) becomes

of 1 v
L Z(—l)ez u+v+ex)

1
2kz 1
VGCZ

» The code state gets projected to one of the (orthogonal) spaces

L Vect {‘fu,ex,ez> ,u € CX/Cé}
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. Prove that all the states ‘fu,ex,ez> are orthogonal when u ranges over CX/CL,

ex and ey are vectors that are a particular solution of Hyel, = ox, Hze) =

1
. _k k
oz and oy, oz range respectively over F, ™ "X and F,%

. Prove that

n 1 oL 1
|500>® :\/27” Z ‘J>‘J>:\/27 Z ‘gu,ex,ez>{£u,ex,ez>

]6{0,1}n w,ex,ez

. Give an interpretation of Steps 6 and 7 in terms of ]fu,ex,ez>
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When Alice measures the stabilizer generators corresponding to Hx and H
she obtains random values x and z

her final measurement yields u

the remaining qubits are thus left in ‘fu,ex,ez> which is the codeword for u

in CSS,x(Cx,Cz)

Alice measurements yield random qubits encoded in a random code

34 /146




= 1/,

= 2/,

= 4.

. Alice creates random bits ag, ..., a,, qubits |a1),--- ,|a,) and \Boo>®n

. Alice chooses randomly n positions (out of 2n) puts the |a;)'s in them and half

of each EPR pair in the remaining positions

Alice creates random bits ai,...,a,, qubits |ai), - ,|a,), random x, z,
random k bits t and encodes 1 in CSS, «(Cx,Cz)

Alice chooses randomly n positions (out of 2n) puts the |a;)'s in them and
encoded qubits in the remaining positions

Bob ack. the rec. of the qubits, Alice announces b and the n check qubits,
Bob performs H when b =1

Bob ack. the rec. of the qubits, Alice announces b, x, z and the n check
qubits, Bob performs H when b =1
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. Alice creates random check bits a € F%, key bits 1 € F§ ~ u € Cx/C, random
z,x € [F% and encodes |u) in CSS, «(Cx,Cz)

. Alice chooses randomly n positions (out of 2n) puts the check qubits |a;) in
them and the encoded qubits in the remaining positions.

. Alice chooses randomly b € {0,1}*" and performs a Hadamard transform on
the qubit for which b is 1 then sends all the qubits to Bob

. Bob ack. the rec. of the qubits, Alice announces b, x, z and the positions of
the check qubits, Bob performs H when b =1

. Bob performs Hadamards on the qubits where b is 1, measures the check qubits
in |0),]1), shares results, aborts if # disagree. >t

. Bob decodes the remaining n qubits in CSS, «(Cx,Cz)

. Bob measures his qubits to obtain the shared secret key u

36 /46




» The CSS QKD protocol is secure by reduction from the modified Lo-Chau
protocol

» Much simpler protocol : does not use EPR pairs

» Drawbacks

requires quantum computations
Bob needs a quantum memory
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. Explain how we can obtain u+ v + x + e for some error e added by the channel
or Eve and some v € Cx /C5

. how can you recover e and then u+ v 7

. how can you recover u ?
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= 6.

= 7.

. Bob decodes the remaining n qubits in CSS, x(Cx,Cz)

Bob measures the qubits to get u + v + x + e, subtracts x from the result,

correct it with the code Cx to get u+v

. Bob measures his qubits to obtain the shared secret key u

Bob obtain u and then @ by determining in which coset of C in Cz u+v lies.

39/
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1. Notice that in the modified protocol Alice does not need to reveal z. Show that
she can effectively send a mixed state p,x. Give an expression for this mixed

state.

2. Show that

1 1
5;%]&@a®mﬂ=5;§:m+v+xHu+v+M

L
VGCZ

3. How can you create py v ?
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1. mixed state averaged over the values of z: |, ,x) is created with probability
2% = mixed state py v = 2% > éuzx) (Cuzx

2.

Puv — 2% Z |£U,Z,X> <

- ms S ()R vy ) (v x

Vi, VQECJ‘

= — Z lu+ v+ x) (u+ v+ x|
VECL

3. Alice classically chooses v € Cz at random, constructs |u + v + x) using her
randomly determined x and u
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1. Alice creates random check bits a € F%, key bits 1 € F§ ~ u € Cx/C%, random
z,x € F% and encodes |u) in CSS, «(Cx,Cz)

= 1.” Alice creates random check bits a € F}, key bits u € F’Q“ ~u € CX/CL, random
x € F%, random v € C5 and encodes n qubits in |0) and |1) according to the
state |u + v + x)
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» Currently

Alice sends |u + v + x)
Bob receives and measures to obtainu+v +x -+ e
Alice sends x

Bob subtracts to obtain u +v + e

» If Alice chooses u € Cx (as opposed to Cx/C%) then v is unnecessary

» v + x is completely random <

Alice chooses = sends |x)

Bob receives and measures to obtain x 4+ e
Alice sends x — u
Bob subtracts to obtain u + e

= between check and code bits
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Modification IV

» Removing the Hadamard operations by encoding either in the {|0),|1)} basis
or in the {|+),|—)} basis

» Removing quantum memory : Bob measures directly choosing either to measure
in the {|0),|1)} basis or in the {|+),|—)} basis

44 /46




. Alice creates (4 + 6)n random bits

. for each bit she creates a qubit in either the Z or X basis according to random
b and sends them to Bob

. she chooses a random u € Cx /C
. Bob receives the qubits, announces it, measure them in the Z or X basis

. Alice announces b and they discard those bits Bob measure in a basis other
than b

. Alice and Bob publicly compare their check bits. Abort if #disag. > t. Alice is
left with x, Bob with x + e

. Alice announces x — u. Bob subtracts this from his result and correct it in Cx
to get u

. They compute the coset u+ C5 in Cx to get the key u
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secure-BB84

Information reconciliation and privacy amplification

» C» used for information reconciliation

» C, used for privacy amplification
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