TD8, Polar Codes

INF563 Introduction to Information Theory

March 5, 2021

The purpose of this TD is to implement a simple polar code.

$1 \quad(U+V \mid V)$ codes

We will be interested here in binary $(U+V \mid V)$ codes. A binary $(U+V \mid V)$ construction takes two binary codes of a same length n and produces a code of length $2 n$ as follows (we denote here the concatenation of two vectors \mathbf{x} and \mathbf{y} by $(\mathbf{x} \mid \mathbf{y})$)
Definition $1((U+V \mid V)$ binary code) Let U and V be two binary linear codes of a same length. We define the $(U+V \mid V)$-construction of U and V as the binary linear code:

$$
(U+V \mid V)=\{(\mathbf{u}+\mathbf{v} \mid \mathbf{v}) ; \mathbf{u} \in U \text { and } \mathbf{v} \in V\}
$$

The dimension of the $(U+V \mid V)$ code is $k_{U}+k_{V}$ and its minimum distance is $\min \left(2 d_{V}, d_{U}\right)$ when the dimensions of U and V are k_{U} and k_{V} respectively, the minimum distance of U is d_{U} and the minimum distance of V is d_{V}.

A polar code is an iterated $(U+V \mid V)$ code, in the sense that the codes U and V are themselves $(U+V \mid V)$ codes and so and so forth up to the point where the constituent codes are of length 1 . Such codes have therefore a length which is a power of 2. For instance a polar code of length 4 is a $(U+V \mid V)$ code of length 4 where U is a code of length 2 which is a $(U+V \mid V)$ construction obtained from two codes of length 1 . The same applies to the code V of length 2. A polar code of length 2^{n} and dimension k is associated in a natural way to a binary tree of depth n with k leaves corresponding to the information bits of the code. It is first asked to show the two properties of a $(U+V \mid V)$ code (about their dimension and their minimum distance). Use the property about the minimum distance and the dimension to find a polar code of length 8 , dimension 4 and minimum distance 4 .

2 Encoding a polar code

The recursive $(U+V \mid V)$ structure of a polar code leads in a natural way to an encoding algorithm for it. We use the following algorithm to encode a polar
code. To encode a polar code of length 2^{n} and dimension k we take a binary vector \mathbf{u} with $2^{n}-k$ positions fixed to 0 and k positions where the information bits are copied to. Encoding is performed by calling Encode ($0,2^{n}$). The vector \mathbf{u} is changed into its encoded version.

```
function \(\operatorname{Encode}(i, j)\)
    \(m \leftarrow(i+j) / 2\)
    \(d \leftarrow(j-i) / 2\)
    if \(d>0\) then
        \(\operatorname{Encode}(i, m)\)
        Encode \((m, j)\)
        for \(l=i\) to \(m-1\) do
        \(u[l] \leftarrow u[l] \oplus u[l+d]\)
```

Implement this function in Java and check that it gives the right encoding of the polar code of length 8 that you have found in the previous question.

3 Decoding a polar code

Assume that we have a decoding algorithm for the U and the V code that uses the fact that we know for each bit i of the codeword the probability p_{i} that it is equal to 1 . Then this can be used to decode a $(U+V \mid V)$ code in the following way again under the assumption that we know for each bit i of the codeword $(\mathbf{u}+\mathbf{v}, \mathbf{v})$ that has been sent the probability that it is equal to 1 given the received symbol y_{i} for it. We number the positions of the $(U+V \mid V)$ code from 0 to $2 n-1$ and assume that these probabilities are stored in an array $p[0], \ldots, p[2 n-1]$. We view \mathbf{u} and \mathbf{v} as arrays of length n. We assume that the received word is given by the array $y[0], \ldots, y[2 n-1]$. From our assumption, we know that

$$
\begin{align*}
\operatorname{prob}(u[i]+v[i]=1 \mid y[i]) & =p[i] \tag{1}\\
\operatorname{prob}(v[i]=1 \mid y[i+n]) & =p[i+n] \tag{2}
\end{align*}
$$

We can use now the lecture on polar codes to deduce that

$$
\operatorname{prob}(u[i]=1 \mid y[i], y[i+n])=\frac{1-(1-2 p[i])(1-2 p[i+n])}{2}
$$

We can decode U by using these probabilities. Once we know \mathbf{u} we can use the lecture on polar codes to deduce that

$$
\begin{aligned}
\operatorname{prob}(v[i]=1 \mid y[i], y[i+n], u[i]) & =\frac{p[i] p[i+n]}{p[i] p[i+n]+(1-p[i])(1-p[i+n])} \text { if } u[i]=0 \\
\operatorname{prob}(v[i]=1 \mid y[i], y[i+n], u[i]) & =\frac{(1-p[i]) p[i+n]}{(1-p[i]) p[i+n]+p[i](1-p[i+n])} \text { if } u[i]=1
\end{aligned}
$$

This can be used to decode the $(U+V \mid V)$ code as follows.
function DecodeUV(p)

$$
\begin{aligned}
& \text { for } i=0 \text { to } n-1 \text { do } \\
& \quad q[i] \leftarrow \frac{1-(1-2 p[i])(1-2 p[i+n])}{2} \\
& \mathbf{u} \leftarrow \operatorname{DECODEU}(\mathbf{q}) \\
& \text { for } i=0 \text { to } n-1 \text { do } \\
& \quad \text { if } u[i]=0 \text { then } \\
& \quad r[i] \leftarrow \frac{p[i] p[i+n]}{p[i] p[i+n]+(1-p[i])(1-p[i+n])} \\
& \quad \text { else } \\
& \quad r[i] \leftarrow \frac{(1-p[i]) p[i+n]}{(1-p[i]) p[i+n]+p[i](1-p[i+n])} \\
& \mathbf{v} \leftarrow \operatorname{DECODEV}(\mathbf{r}) \\
& \text { return }(\mathbf{u}+\mathbf{v}, \mathbf{v})
\end{aligned}
$$

The issue is now: how can we decode U and V ? If U and V were of length 1 , then the answer would be easy. For U there are two cases to consider. Either U is the constant code, say $U=\{0\}$ and then DecodeU would just return 0 or $U=\{0,1\}$ and then $\operatorname{DecodeU}(\mathbf{p})$ would return 0 if $p[0]<\frac{1}{2}$ and 1 otherwise. The recursive $(U+V \mid V)$ structure of a polar code leads in a natural way to a recursive decoding algorithm based on these considerations. One uses here a table $\mathbf{p}[0 . . n-1]\left[0 . .2^{n}-1\right]$ storing all the probabilities that are computed during the decoding process, where

$$
\begin{aligned}
n & =\text { number of layers of the polar code } \\
2^{n} & =\text { length of the polar code } \\
\mathbf{p}[n][i] & =\mathbf{p r o b}\left(x_{i}=1 \mid y_{i}\right) \\
\mathbf{p}[t][i] & =\text { probability of the } i \text {-th bit at layer } t, \text { for } t<n
\end{aligned}
$$

function $\operatorname{DEcode}(i, j, t)$

if $t=0$ then

DecodeDirectly (i)
else
$m \leftarrow \frac{i+j}{2}$
$\operatorname{UpdateU}(i, m, t-1)$
Decode $(i, m, t-1)$
$\operatorname{UpdateV}(m, j, t-1)$
Decode $(m, j, t-1$,
EncodeUV (i, j, t)
where the auxiliary functions are defined as

- function $\operatorname{UpdateU}(i, j, t)$
for $l=i$ to $j-1$ do
$\mathbf{p}[t][l] \leftarrow \frac{1-(1-2 \mathbf{p}[t+1][l])\left(1-2 \mathbf{p}[t+1]\left[l+2^{t}\right]\right)}{2}$
- function $\operatorname{UpdateV}(i, j, t)$
for $\ell=i$ to $j-1$ do
$p_{1} \leftarrow \mathbf{p}[t+1]\left[\ell-2^{t}\right]$
$p_{2} \leftarrow \mathbf{p}[t+1][\ell]$
if $\mathbf{p}[t]\left[\ell-2^{t}\right]=0$ then

$$
\begin{aligned}
& \mathbf{p}[t][\ell] \leftarrow \frac{p_{1} p_{2}}{p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right)} \\
& \text { else } \\
& \quad \mathbf{p}[t][\ell] \leftarrow \frac{\left(1-p_{1}\right) p_{2}}{\left(1-p_{1}\right) p_{2}+p_{1}\left(1-p_{2}\right)}
\end{aligned}
$$

- function EncodeUV (i, j, t)

$$
\begin{aligned}
& \text { for } \ell=i \text { to } \frac{i+j}{2}-1 \mathbf{d o} \\
& \quad \mathbf{p}[t][\ell] \leftarrow \mathbf{p}[t-1][\ell]+\mathbf{p}[t-1]\left[\ell+2^{t-1}\right] \\
& \text { for } \ell=\frac{i+j}{2} \text { to } j-1 \mathbf{d o} \\
& \quad \mathbf{p}[t][\ell] \leftarrow \mathbf{p}[t-1][\ell]
\end{aligned}
$$

- function DecodeDirectly (i)
if $\mathrm{z}[i] \neq 0$ then
$\mathbf{p}[0][i]=\mathbf{z}[i]$
else
if $\mathbf{p}[0][i]<\frac{1}{2}$ then $\mathbf{p}[0][i] \leftarrow 0$
else $\mathbf{p}[0][i] \leftarrow 1$
Here \mathbf{z} is a table of length 2^{n} where the $2^{n}-k$ positions fixed to 0 at the beginning of the encoding process are also fixed to 0 in \mathbf{z} and the other k positions (where information was fed in during the encoding process) take the value -1 . Decoding is performed by using the following function with the call Decode $\left(0,2^{n}, n\right)$.

Implement this function in Java and verify that the decoding is succesful most of the time for the polar code of length 8 that you have found in the previous question when codewords are sent over a binary symmetric channel of crossover probability $p=0.06$.

