
TD8, Polar Codes

INF563 Introduction to Information Theory

March 5, 2021

The purpose of this TD is to implement a simple polar code.

1 (U + V | V) codes

We will be interested here in binary (U + V | V) codes. A binary (U + V | V)
construction takes two binary codes of a same length n and produces a code of
length 2n as follows (we denote here the concatenation of two vectors x and y
by (x|y))

Definition 1 ((U + V | V) binary code) Let U and V be two binary linear
codes of a same length. We define the (U + V | V)-construction of U and V as
the binary linear code:

(U + V | V) = {(u + v | v); u ∈ U and v ∈ V } .

The dimension of the (U + V | V) code is kU + kV and its minimum distance is
min(2dV , dU) when the dimensions of U and V are kU and kV respectively, the
minimum distance of U is dU and the minimum distance of V is dV .

A polar code is an iterated (U + V | V) code, in the sense that the codes U and
V are themselves (U + V | V) codes and so and so forth up to the point where
the constituent codes are of length 1. Such codes have therefore a length which
is a power of 2. For instance a polar code of length 4 is a (U + V | V) code
of length 4 where U is a code of length 2 which is a (U + V | V) construction
obtained from two codes of length 1. The same applies to the code V of length
2. A polar code of length 2n and dimension k is associated in a natural way
to a binary tree of depth n with k leaves corresponding to the information
bits of the code. It is first asked to show the two properties of a (U + V | V)
code (about their dimension and their minimum distance). Use the property
about the minimum distance and the dimension to find a polar code of length
8, dimension 4 and minimum distance 4.

2 Encoding a polar code

The recursive (U + V | V) structure of a polar code leads in a natural way to
an encoding algorithm for it. We use the following algorithm to encode a polar

1

code. To encode a polar code of length 2n and dimension k we take a binary
vector u with 2n − k positions fixed to 0 and k positions where the information
bits are copied to. Encoding is performed by calling Encode(0, 2n). The vector
u is changed into its encoded version.

function Encode(i, j)
m← (i + j)/2
d← (j − i)/2
if d > 0 then

Encode(i,m)
Encode(m, j)
for l = i to m− 1 do

u[l]← u[l]⊕ u[l + d]

Implement this function in Java and check that it gives the right encoding
of the polar code of length 8 that you have found in the previous question.

3 Decoding a polar code

Assume that we have a decoding algorithm for the U and the V code that uses
the fact that we know for each bit i of the codeword the probability pi that
it is equal to 1. Then this can be used to decode a (U + V | V) code in the
following way again under the assumption that we know for each bit i of the
codeword (u+v,v) that has been sent the probability that it is equal to 1 given
the received symbol yi for it. We number the positions of the (U + V | V) code
from 0 to 2n − 1 and assume that these probabilities are stored in an array
p[0], . . . , p[2n− 1]. We view u and v as arrays of length n. We assume that the
received word is given by the array y[0], . . . , y[2n − 1]. From our assumption,
we know that

prob(u[i] + v[i] = 1|y[i]) = p[i] (1)

prob(v[i] = 1|y[i + n]) = p[i + n] (2)

We can use now the lecture on polar codes to deduce that

prob(u[i] = 1|y[i], y[i + n]) =
1− (1− 2p[i])(1− 2p[i + n])

2

We can decode U by using these probabilities. Once we know u we can use the
lecture on polar codes to deduce that

prob(v[i] = 1|y[i], y[i + n], u[i]) =
p[i]p[i + n]

p[i]p[i + n] + (1− p[i])(1− p[i + n])
if u[i] = 0

prob(v[i] = 1|y[i], y[i + n], u[i]) =
(1− p[i])p[i + n]

(1− p[i])p[i + n] + p[i](1− p[i + n])
if u[i] = 1.

This can be used to decode the (U + V | V) code as follows.

function DecodeUV(p)

2

for i = 0 to n− 1 do
q[i]← 1−(1−2p[i])(1−2p[i+n])

2

u← DecodeU(q)
for i = 0 to n− 1 do

if u[i] = 0 then

r[i]← p[i]p[i+n]
p[i]p[i+n]+(1−p[i])(1−p[i+n])

else
r[i]← (1−p[i])p[i+n]

(1−p[i])p[i+n]+p[i](1−p[i+n])

v← DecodeV(r)
return (u + v,v)

The issue is now: how can we decode U and V ? If U and V were of length 1,
then the answer would be easy. For U there are two cases to consider. Either
U is the constant code, say U = {0} and then DecodeU would just return 0 or
U = {0, 1} and then DecodeU(p) would return 0 if p[0] < 1

2 and 1 otherwise.
The recursive (U + V | V) structure of a polar code leads in a natural way to
a recursive decoding algorithm based on these considerations. One uses here a
table p[0..n−1][0..2n−1] storing all the probabilities that are computed during
the decoding process, where

n = number of layers of the polar code

2n = length of the polar code

p[n][i] = prob(xi = 1|yi)
p[t][i] = probability of the i-th bit at layer t, for t < n

function Decode(i, j, t)
if t = 0 then

DecodeDirectly(i)
else

m← i+j
2

UpdateU(i,m, t− 1)
Decode(i,m, t− 1)
UpdateV(m, j, t− 1)
Decode(m, j, t− 1,)
EncodeUV(i, j, t)

where the auxiliary functions are defined as

• function UpdateU(i, j, t)
for l = i to j − 1 do

p[t][l]← 1−(1−2p[t+1][l])(1−2p[t+1][l+2t])
2

• function UpdateV(i, j, t)
for ` = i to j − 1 do

p1 ← p[t + 1][`− 2t]
p2 ← p[t + 1][`]
if p[t][`− 2t] = 0 then

3

p[t][`]← p1p2

p1p2+(1−p1)(1−p2)

else
p[t][`]← (1−p1)p2

(1−p1)p2+p1(1−p2)

• function EncodeUV(i, j, t)
for ` = i to i+j

2 − 1 do
p[t][`]← p[t− 1][`] + p[t− 1][` + 2t−1]

for ` = i+j
2 to j − 1 do

p[t][`]← p[t− 1][`]

• function DecodeDirectly(i)
if z[i] 6= 0 then

p[0][i] = z[i]
else

if p[0][i] < 1
2 then p[0][i]← 0

else p[0][i]← 1

Here z is a table of length 2n where the 2n − k positions fixed to 0 at the
beginning of the encoding process are also fixed to 0 in z and the other k
positions (where information was fed in during the encoding process) take the
value −1. Decoding is performed by using the following function with the call
Decode(0, 2n, n).

Implement this function in Java and verify that the decoding is succesful
most of the time for the polar code of length 8 that you have found in the
previous question when codewords are sent over a binary symmetric channel of
crossover probability p = 0.06.

4

