
Applications of Information Theory

I Data compression

I Error correcting codes

I Cryptology

I Linguistics

I Statistics

I Computer science: distributed storage systems, caching, . . .

I Network information theory

I Bioinformatics: computational genomics, information flow in neural
systems,. . .

I Machine learning
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Machine Learning

I a large variety of machine learning and data-mining problems are about inferring
global properties on a collection of agents by observing local noisy interactions
of these agents.

I Examples

• community detection in social networks,
• image segmentation
• data classification/clustering and information retrieval
• protein-to protein interactions
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Information Theory?

I L1 and L2 two very large lists.

I Problem: find (x1, x2) ∈ L1 × L2 such that d(x1, x2) is small with time
complexity � |L1| · |L2|.

I Problem: given y, find whether there exists x1 ∈ L1 such that d(y, x1) is small
with time complexity � |L1|.
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Content

I Upper bound on the compression rate of a source and on the information that
passes through a noisy channel,

I algorithms that allow to attain these upper bounds.

I Other applications: distributed data storage.
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Communication System

?

-

��User Decoder

Channel

EncoderSource

� Noise

Source : voice, music, images, text, . . .

Channel : wireless communications, wire, optical fiber, flash drive,

Noise : electromagnetic perturbations, rain, inter-cell interferences, . . .
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Source and Channel Coding

?
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�� �User Source Decoder Channel Decoder

Channel

Channel CodingSource CodingSource

-Noise

Efficiency: Transmit a maximum amount of information to another user by using
a minimum amount of resources.

Reliability: The user should be able to recover the correct information (as much
as possible)
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Source/Channel Coding

Problem:

• Source Coding: compress efficiently a given source at a maximal compression
rate. Ex:

x = x1 . . . xn, Prob(xi = 1) = p.

• Channel Coding : transmit efficiently a maximum amount of information through
a noisy channel. Ex:

x = x1 . . . xn
channel
 y = y1 . . . yn, Prob(yi 6= xi) = p.

A same quantity is used in both cases : entropy.

7/17



Source/Channel Coding
Problem:

• Source coding: compress efficiently a given source at a maximal compression
rate. Ex:

x = x1 . . . xn, Prob(xi = 1) = p.

⇒ compress into a sequence of size ≈ nh(p) bits.

• Channel Coding : transmit efficiently a maximum amount of information through
a noisy channel. Ex:

x = x1 . . . xn
channel
 y = y1 . . . yn, Prob(yi 6= xi) = p.

⇒ transmit ≈ n(1− h(p)) bits of information.

A same quantity is used in both cases : entropy.

h(p)
def
= − p log2 p− (1− p) log2(1− p)
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Entropy and typical sequences
A common principle : focus on typical outputs

{0,1}

n

T

T = {x; |x| ≈ pn}
Prob(x ∈ T ) ≈ 1

|T | ≈ 2nh(p)

log2 |T | ≈ Entropy
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I Source Coding : number with nh(p) bits the elements of T and do nothing for
the others.

I Channel Coding :

2               words that can be transmitted

transmitted word

typical channel outputs

corresponding to the

transmitted word

   size of the balls : 2

{0,1}
n

nh(p)

n(1−h(p))

log (number of words that can be transmitted) = number of bits of information
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Entropy

Formula can be explained by two facts

(i) log transforms a product into a sum,

(ii) concentration of a sum of i.i.d. r.v. around their expectation.

logProb(x)
(i)
= logProb(x1) + · · ·+ logProb(xn)

(ii)
≈ n (p log p+ (1− p) log(1− p)) = −nh(p)(a.s.)

⇒ Prob(x) ≈ 2−nh(p)(a.s.)

More generally for a r.v. X taking its values in A:

Entropy(X)
def
= −

∑
a∈A

Prob(X = a) logProb(X = a).
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Repetition Code

To fight against noise, redundancy is added. For instance with the repetition code
of length 3

0 7→ 000

1 7→ 111

or more generally with a repetition code of length 2m+ 1.

0 7→
2m+1︷ ︸︸ ︷
0 . . . 0

1 7→
2m+1︷ ︸︸ ︷
1 . . . 1
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Repetition Code

For an error probability of the channel p = 0.01, there are 0 or 1 corrupted bits
with probability

(1− p)3 + 3p(1− p)2 ≈ 0.9997

and 2 or 3 errors with probability

3p2(1− p) + p3 ≈ 3× 10−4

Information is badly recovered with probability ≈ 3× 10−4. With a repetition code
of length 5, this probability drops to 10−5.

10p3(1− p)2 + 5p4(1− p) + p5 ≈ 10−5

The rate of this code is 0.2.
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Rate of a code

The repetition code of length 3 has rate 1/3 = 0.33 and corrects one error.

The repetition code of length 5 has rate 1/5 = 0.2 and corrects two errors.

By lowering the rate, one can also lower the error probability after decoding.

Does the best transmission rate have to go to 0 ?

No ! Shannon’s second theorem.

Notion of channel capacity.
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Capacity of a binary symmetric channel

The capacity is the
maximum rate
at which reliable
transmission is still
possible.

For ex. C(0.01) =
0.919. It is therefore
possible to improve
significantly upon the
repetition code.

C = 1 + p log2(p) + (1− p) log2(1− p)
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Fundamental Results of this Course

Shannon’s 1st theorem (Source Coding)

1. Every “reasonable” source can be encoded by using a number of bits per
source symbol which is arbitrarily close to the source entropy.

2. It is impossible to do better...

Shannon’s 2nd theorem (Channel Coding)

1. Information can be transmitted reliably by using an error correcting code with
a rate smaller than the channel capacity.

2. It is impossible to do better.
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TD

Today : exercise session.

Then programming algorithms in Java (4TD’s on source coding, 3 TD’s on channel
coding, 1TD on distributed data storage).
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