Discrete probability space

The alphabet is \mathcal{X} (\mathcal{X} is discrete).
Random variable X takes its values in \mathcal{X}
Probability distribution $p_{X}(x)=\operatorname{Prob}(X=x), x \in \mathcal{X}$. Generally, this quantity is simply denoted by $p(x)$.

Expectation of the real random variable $V(X)$ (V is a function from \mathcal{X} to \mathbb{R})

$$
\mathbb{E}(V)=\sum_{x \in \mathcal{X}} p(x) V(x)
$$

Joint Probability Distribution

Alphabet $\mathcal{X} \times \mathcal{Y}$ with probability distribution $p(x, y)$.
Random variables X and Y taking their values in \mathcal{X} and \mathcal{Y} respectively.

Marginals

$\operatorname{Prob}(X=x)=p_{X}(x)=\sum_{y} p(x, y)$
$\operatorname{Prob}(Y=y)=p_{Y}(y)=\sum_{x} p(x, y)$

Conditional probability distribution

$\operatorname{Prob}[X=x \mid Y=y]=\frac{p(x, y)}{p_{Y}(y)}$

In general we use the simplified notation $p(x), p(y), p(x \mid y), p(y \mid x)$, for respectively $\operatorname{Prob}(X=x), \operatorname{Prob}(Y=y), \operatorname{Prob}(X=x \mid Y=y)$ and $\operatorname{Prob}(Y=y \mid X=x)$. X and Y are independent iff

$$
\forall(x, y) \in \mathcal{X} \times \mathcal{Y}, p(x, y)=p(x) p(y)
$$

Entropy - Properties

Definition[Entropy]

$$
H(X) \stackrel{\text { def }}{=}-\sum_{x} p(x) \log _{2} p(x)
$$

The entropy of a Bernoulli distribution ($X=0$ with probability $p, X=1$ with probability $1-p$) is equal to

$$
h(p)=-p \log p-(1-p) \log (1-p)
$$

Conditional Entropy, Mutual Information

Definition[entropy of a pair of random variables]

$$
H(X, Y) \stackrel{\text { def }}{=}-\sum_{x, y} p(x, y) \log _{2} p(x, y)
$$

Definition[conditional entropy]

$$
\begin{aligned}
H(X \mid Y=y) & \stackrel{\text { def }}{=}-\sum_{x} p(X=x \mid Y=y) \log _{2} p(X=x \mid Y=y) \\
H(X \mid Y) & \stackrel{\text { def }}{=} \sum_{y} H(X \mid Y=y) p(y)
\end{aligned}
$$

Definition[mutual information]

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

Properties

Theorem 1. 1. $I(X ; Y)=\sum p(x, y) \log \frac{p(x, y)}{p(x) p(y)}$
2. $I(X ; Y)=H(Y)-H(Y \mid X)=H(X)+H(Y)-H(X, Y)=I(Y ; X)$.
3. $I(X ; Y) \geq 0$
4. $I(X ; Y)=0$ iff X et Y are independent.
5. $H(X \mid Y) \leq H(X)$.
6. $H(X) \leq \log |\mathcal{X}|$ for X taking its values in \mathcal{X}.

$$
I(X ; Y)=H(Y)-H(Y \mid X)=H(X)+H(Y)-H(X, Y)=I(Y ; X)
$$

Proof

1.

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =-\sum_{x} p(x) \log p(x)+\sum_{y} p(y) \sum_{x} p(x \mid y) \log p(x \mid y) \\
& =-\sum_{x, y} p(x, y) \log p(x)+\sum_{x, y} p(x, y) \log p(x \mid y) \\
& =\sum_{x, y} p(x, y) \log \frac{p(x \mid y)}{p(x)} \\
& =\sum_{x, y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} .
\end{aligned}
$$

2. By symmetry $I(X ; Y)=I(Y ; X)=H(Y)-H(Y \mid X)$.

$$
\begin{aligned}
I(X ; Y) & =\sum_{x, y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
& =\sum_{x, y} p(x, y) \log p(x, y)-\sum_{x, y} p(x, y) \log p(x)-\sum_{x, y} p(x, y) \log p(y) \\
& =-H(X, Y)+H(X)+H(Y) .
\end{aligned}
$$

3. $I(X ; Y)=D(p(x, y) \| p(x) p(y))$.
4. $D(p(x, y) \| p(x) p(y))=0 \Rightarrow p(x, y)=p(x) p(y)$.
5. $H(X)-H(X \mid Y)=I(X ; Y)$.
6.

$$
\begin{aligned}
-H(X)+\log |\mathcal{X}| & =\sum_{x} p(x) \log p(x)+\sum p(x) \log |\mathcal{X}| \\
& =\sum_{x} p(x) \log \frac{p(x)}{\frac{1}{|\mathcal{X}|}} \\
& =D(p \| u)
\end{aligned}
$$

Kullback Divergence

Definition[Kullback Divergence] For two probability distributions p and q over a same alphabet \mathcal{X} :

$$
D(p \| q)=\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}
$$

Theorem 2.

$$
D(p \| q) \geq 0
$$

with equality iff $p=q$.

Proof

$$
\begin{aligned}
D(p \| q) & =\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} \\
& =\sum_{x \in \mathcal{X}} p(x)\left(-\log \frac{q(x)}{p(x)}\right) \\
& \geq-\log \left(\sum_{x} p(x) \frac{q(x)}{p(x)}\right) \\
& =0 .
\end{aligned}
$$

Entropy of an n-tuple of r.v.

Theorem 3. [Chain Rule for entropy]

$$
H\left(X_{1} X_{2} \ldots X_{N}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\cdots+H\left(X_{N} \mid X_{1} \ldots X_{N-1}\right)
$$

Corollary 1.

$$
H\left(X_{1} X_{2} \ldots X_{N}\right) \leq H\left(X_{1}\right)+H\left(X_{2}\right)+\cdots+H\left(X_{N}\right)
$$

with equality iff the X_{i} 's are independent.

Estimating a r.v. X with another r.v. Y

Theorem 4. [Fano's lemma] Let

- X and Y be two random variables
- X taking its values in an alphabet of size a
- \hat{X} an estimator for X computed from the knowledge of Y
- P_{e} the error probability of the estimator, that is $P_{e}=p(X \neq X)$.

Then

$$
h\left(P_{e}\right)+P_{e} \log _{2}(a-1) \geq H(X \mid Y) .
$$

