
Coding of memoryless sources

1/35

Outline

1. Morse coding;

2. Definitions : encoding, encoding efficiency;

3. fixed length codes, encoding integers;

4. prefix condition;

5. Kraft and Mac Millan theorems;

6. First Shannon theorem for a discrete memoryless source source;

7. Simulating a random distribution with coin flips.

2/35

1. History

General idea: encoding the most frequent characters with short codewords as in
the Morse code.

A .- N -. 0 -----

B -... O --- 1 .----

C -.-. P .--. 2 ..---

D -.. Q --.- 3 ...--

E . R .-. 4-

F ..-. S ... 5

G --. T - 6 -....

H U ..- 7 --...

I .. V ...- 8 ---..

J .--- W .-- 9 ----.

K -.- X -..- . .-.-.-

L .-.. Y -.-- , --..--

M -- Z --.. ? ..--..

Actually ternary encoding (addi-
tional symbol to separate letters).
Otherwise : impossible to distin-
guish

• ”BAM” → ”-....---”

• ”NIJ” → ”-....---”

Suited to humans, but unsuit-
able for modern communications
techniques.

3/35

Morse Code

The Morse code can be represented by a binary tree. Each node, with the exception
of the root is the encoding of a character.

-·

- -· ·

- - - -· · · ·

- - - - -· · · · · · ·

E

I A

S

H V F

U R

L P

W

J

T

N

D K

B X C Y

M

G O

Z Q

4/35

2. Definitions

Code and Encoding

Let X be a finite alphabet.

Definition: A code over X is a mapping ϕ : X → {0, 1}∗ (the set of all binary words).

Definition: A codeword is an element in ϕ(X).

Definition: An encoding of X is a mapping ψ : X ∗ → {0, 1}∗, that maps any finite sequence of

letters in X to a binary sequence.

An encoding is associated to each code ϕ of X by

(x1, x2, . . . , xL)→ (ϕ(x1) ‖ ϕ(x2) ‖ . . . ‖ ϕ(xL))

5/35

Unambiguous encoding

Definition A code (resp. encoding) is unambiguous iff two distinct letters (resp. distinct sequences

of characters) are encoded by two distinct binary words.

An ambiguous encoding yields information loss. Morse encoding:→ a separator : silence equal to

a dash duration.

A code is uniquely decodable if the associated encoding is unambiguous.

φ1(ak)

a1 0

a2 010

a3 01

a4 10
Decoding 010 with a2, a1a4, or a3a1 ?

6/35

Memoryless Source – Efficiency

A discrete source is a sequence (Xi)i∈N of random variables over X .

Definition : A source X = (X , p) is memoryless iff the Xi’s are i.i.d.and their distribution is given

by p. Its entropy is defined by H(X)
def
= −

∑
x∈X p(x) log2 p(x).

Definition : The average codelength of a code ϕ of a discrete memoryless source X = (X , p) is

defined by

|ϕ|def
=
∑
x∈X

p(x)|ϕ(x)|

Definition: The efficiency of a code ϕ is defined by E(ϕ)
def
=H(X)
|ϕ| .

7/35

Encoding efficiency

Let (x1, . . . , xn) be a finite sequence of letters of X , we denote by p(x1, . . . , xn) its probability.

The average codelength of the encoding ψ is defined by the following limit (when it exists)

L(ψ)
def
= lim

n→∞

1

n

∑
x1,...,xn

p(x1, . . . , xn)|ψ(x1, . . . , xn)|

Definition: Let X be a discrete memoryless source and ψ an encoding of X whose average

codelength is well defined. The efficiency of ψ is equal to

E(ψ)
def
=
H(X)

L(ψ)
.

8/35

3. Fixed length codes

Fixed length codes: codes for which all codewords are of the same length (say n).

Proposition 1. For any unambiguous code of codelength n of a finite alphabet X of cardinality

K, we have

log2K ≤ n

Proof

If 2n < K, the code can not be one-to-one. Therefore n ≥ logK.

The efficiency of such a code is limited by H(X)/ log2K (which is equal to 1 when X uniformly

distributed).

9/35

Upper Bound

Proposition 2. For any source X of size K, there exists an unambiguous code of codelength n

such that

log2K ≤ n < 1 + log2K

Proof

Let n be the smallest integer such that 2n ≥ K, then for any symbol ak one can associate the

binary representation of k, over n bits. By definition of n we also have 2n−1 < K, that is

n < 1 + log2K

10/35

Efficiency of fixed length coding

Corollary 1. There exists an unambiguous encoding of X whose efficiency is arbitrarily close to

H(X)/ log2K.

Proof The source is encoded by taking packets of L (in other words the new alphabet is XL).

There exists a code of length n′ for which

L log2K ≤ n
′
< L log2K + 1

The length L per letter is equal to
n′

L
→ log2(K)

Therefore

E = H/L → H/ log2K

11/35

Integer Encoding

Consider a source X = {0, 1, . . . , 9} where the integers are uniformly distributed.

A fixed length code for such a source has length ≥ 4. For instance:

letter codeword letter codeword

0 0000 5 0101

1 0001 6 0110

2 0010 7 0111

3 0011 8 1000

4 0100 9 1001

The efficiency of such a code is equal to H(X)/4 = (log2 10)/4 = 0.83

By taking groups of 3 integers, the cardinality of the alphabet becomes 1000 which can be encoded

with 10 bits. The efficiency becomes

log2(1000)

10
= 0.9965

12/35

4. Variable length codes

Recall that a code is uniquely decodable if the associated encoding is one-to-one.

Prefix condition

No codeword is the prefix of another codeword.

Definition A code is prefix, or instantaneous if the prefix condition is met.

Proposition 3. Any prefix code is uniquely decodable.

There exist uniquely decodable codes which are not prefix.

13/35

Exercise

X φ0(ak)

a1 0
a2 11
a3 11
a4 10

φ1(ak)

0
010
01
10

φ2(ak)

1
10
100
1000

φ3(ak)

0
10
110
111

φ4(ak)

10
00
11
110

Which code are ambiguous, unambiguous, uniquely decodable, instantaneous ?

14/35

Tree associated to a prefix code

For every prefix prefix code there exists a binary tree whose codewords are the leaves of the tree

(necessary and sufficient condition).

d : 111

a

c db

a

b

c d

a : 0

b : 10

c : 110

d : 111

a : 0

b : 100

c : 110

The code is irreducible when every tree node has either 0 or 2 descendants.

The irreducible codes are preferred: they are shorter.

15/35

5. Kraft inequality – Mac Millan’s Theorem

Theorem 1. [(Kraft)] There exists a prefix code with codewords of length n1, n2, . . . , nK if

and only if
K∑
k=1

1

2nk
≤ 1.

Theorem 2. [(Mac Millan)] There exists a uniquely decodable code with codewords of length r

n1, n2, . . . , nK if and only if
K∑
k=1

1

2nk
≤ 1.

16/35

Proof of Kraft’s theorem

=⇒ (If there exists a prefix code, then
∑K

k=1
1

2nk
≤ 1)

Let N = maxnl.

Consider the complete binary tree of depth N . By descending from the root, if codeword ek is

encountered all its descendants are removed.

If nk is the depth of ek, 2N−nk leaves of the complete binary tree are removed. The total number

of leaves in this tree is 2N .

We therefore have ∑
k

2
N−nk ≤ 2

N

which leads to
∑

2−nk ≤ 1.

17/35

Proof of Kraft’s theorem (II)

⇐= (If
∑K

k=1
1

2nk
≤ 1 there exists a prefix code).

Sort the nk’s in increasing order. Let N = maxnk. Consider the binary complete tree of depth

N .

Algorithm : At step k, take the first node (in lexicographic order) at depth nk, and remove its

descendants.

At step k at most
∑

1≤i<k 2nk−ni nodes were removed at depth nk. Note that∑
1≤i<k

2
nk−ni = 2

nk
∑

1≤i<k

2
−ni < 2

nk.

This implies the correctness of the algorithm : it is always possible to find nodes at depth nk at

the k-th step.

18/35

Mac Millan’s Theorem

Theorem 3. (Mac Millan) If there exists a uniquely decodable code then
∑K

k=1
1

2nk
≤ 1.

Let φ be a uniquely decodable and Φ be its associated encoding. We have Φ(x1, . . . , xL) =

φ(x1)|| . . . ||φ(xL). Let m = maxx∈X l(x).

(
∑
x

2
−|φ(x)|

)
L

=
∑

x1,...,xL

2
−|φ(x1)| · · · 2−|φ(xL)|

=
∑

x1,...,xL

2
−|Φ(x1,....xL)|

=

mL∑
i=1

aL(i)2
−i

with aL(i) = |{(x1, . . . , xL); |Φ(x1, . . . , xL)| = i}|.

19/35

(∑
x

2
−|φ(x)|

)L

=

mL∑
i=1

aL(i)2
−i

We have aL(i) ≤ 2i, otherwise two words would have the same encoding, which is impossible by

assumption on the code.

This implies (∑
x

2
−|φ(x)|

)L

≤ mL

that is (∑
x

2
−|φ(x)|

)
≤ (mL)

1/L → 1, when L→∞.

⇒ Uniquely decodable codes are not better than prefix codes.

20/35

6. 1st Shannon theorem (for discrete memoryless sources)

Theorem 4. 1. For any discrete memoryless source with entropy H encoded by means of a

uniquely decodable code of average codelength n̄, we have n̄ ≥ H.

2. For every discrete memoryless source with entropy H, there exists a prefix code of average

codelength n̄ such that H ≤ n̄ < H + 1.

21/35

Proof of 1.

Let X = (X , p) be a discrete memoryless source with entropy H. Let ϕ be a uniquely decodable

code for X. Let us show that |ϕ| − H ≥ 0. Let S
def
=
∑

x∈X 2−|ϕ(x)| and q be the probability

distribution over X given by q(x)
def
= 2−|ϕ(x)|

S .

|ϕ| −H =
∑
x∈X

p(x)|ϕ(x)|+
∑
x∈X

p(x) log2 p(x)

=
∑
x∈X

p(x)
(

log2 p(x) + log2 2
|ϕ(x)|

)
=

∑
x∈X

p(x) log2

p(x)

2−|ϕ(x)|

= D(p||q) + log2

1

S

≥ 0 (non negativity of D and S ≤ 1)

22/35

Proof of 2.

Let `(x) be the unique integer such that 2−`(x) ≤ p(x) < 2−`(x)+1. We have∑
x∈X

2
−`(x) ≤

∑
x∈X

p(x) = 1,

Kraft =⇒ there exists a prefix code ϕ with |ϕ(x)| = `(x), x ∈ X .

Taking the logarithm gives log2 p(x) < −`(x) + 1, that is

|ϕ(x)| = `(x) < log2

1

p(x)
+ 1.

By averaging, we obtain

|ϕ| =
∑
x

p(x)|ϕ(x)| <
∑
x

p(x)

(
log2

1

p(x)
+ 1

)
= H + 1.

23/35

Dyadic case

Dyadic distribution : pi = 2−li.

Proposition 4. There exists a code such that |φ| = H iff the distribution is dyadic.

First point in the previous proof (when do we have equality?).

24/35

Shannon’s 1st theorem

Theorem (Shannon) For any discrete memoryless source X, there exists an unambiguous encoding

whose efficiency is arbitrarily close to 1.

Proof Consider φi a code for the source Xi obtained by grouping symbols of X in packets of size

i. We have H(Xi) = iH and therefore :

iH ≤ |φi| < iH + 1.

The packet length is fixed to l, and the word x1, . . . , xm, xr, of length L = ml+ r, is encoded

as follows

φl(x1)|| . . . ||φl(xm)||φr(xr)

25/35

Proof (cont’d)

L = ml + r

φl(x1)|| . . . ||φl(xm)||φr(xr)
The average codelength is given by

m|φl|+ |φr| ≤ m(Hl + 1) + rH + 1

= (ml + r)H +m+ 1 = LH +m+ 1

The average codelength per symbol is therefore

L(Φ) =
m|φl|+ |φr|

L
≤ H +

m+ 1

ml + r
≤ H +

1

l
+

1

ml

Therefore

lim
L→∞

L(Φ) ≤ H +
1

l
The upper bound goes to H, when l→∞.

26/35

Exercise : Huffman Questions

Consider a random number X between 1 and n. Let pi be the probability that Xi = i. We are

asked to determine the value of X as quickly as possible by asking questions. Any yes-no question

you can think of is admissible.

1. Give a lower bound on the minimum average number of questions required.

2. Give an upper bound (within 1 question) on the minimum average number of questions required.

3. Find an optimal set of questions in the following case.
p1 p2 p3 p4 p5 p6
1
16

1
16

1
8

1
4

1
4

1
4

27/35

7. Simulating a random distribution with coin flips

Let

a1 1/2

a2 1/4

a3 1/4

and a fair coin p(Z = 0) = p(Z = 1) = 1/2.

Two ways to proceed

1. flip the coin twice

• if we obtain 00 or 11 output a1,

• for 01 output a2, and for 10 output a3

average number of coin flips : 2

2. flip the coin once

• if 0 then a1,

• otherwise, flip the coin again, and if 01 output a2 and a3 otherwise.

average number of coin flips: 1/2 + 1/4 · 2 + 1/4 · 2 = 1, 5.

The last method is more efficient, we recover the entropy H = 1/2 log(2) + 1/4 log(4) +

1/4 log(4) = 3/2.

28/35

The problem

We have X = (X , p(x)), and a sequence of r.v. Zi, p(Zi = 0) = p(Zi = 1) = 1/2.

We want to draw x ∈ X with probability p(x) by using the Zi’s.

Drawing z1, . . . , zm, . . . can be viewed as a walk in a binary tree where the leaves have label

x ∈ X .

When a leaf is encountered, output the corresponding letter.

The problem is to construct the optimal tree such that the average walk length is the smallest

possible and such that the leaves are output with the right probability.

29/35

An example

d

a

b c

This tree enables to simulate the source X = {a, b, c, d} with probabilities

x p(x)

a 1/4
b 1/8
c 1/8
d 1/2

By source simulation we mean such a binary tree.

The average number of coin flips is equal to

1/2 · 1 + 1/4 · 2 + 1/8 · 3 + 1/8 · 3 = 1.75 = H(X)

30/35

Infinite tree

For the source X = {a, b}, with p(a) = 2/3 and p(b) = 1/3, we have an infinite tree

b

a

b

a

It is readily checked that

p(a) =
1

2
+

1

8
+ · · ·+

1

22i+1
+ · · · =

2

3

p(b) =
1

4
+

1

16
+ · · ·+

1

22i
+ · · · =

1

3

The average number of coin flips is equal to
∑

i
2i

= 2. Notice that H(X)=h2(1/3)=0.918.

31/35

Average depth

Lemma 1. Let T be a binary tree with a probability distribution p on the leaves such that

each leaf y at depth k(y) has probability 2−k(y).

Then the average number of coin flips to simulate such a distribution is equal to H(Y) where Y

is distributed according to p.

Proof
T̄ =

∑
y∈Y

k(y)2
−k(y)

On the other hand

H(Y) = −
∑
y∈Y

1

2k(y)
log2

1

2k(y)
=
∑
y∈Y

k(y)2
−k(y)

32/35

A first inequality

Proposition 5. The average number of coin tosses for generating a random variable X is

greater than or equal to H(X).

Proof

Such an algorithm is represented by a binary tree : to each leaf y a symbol x is associated. Let

Y be a random variable taking its values among the set of leaves and Prob(Y = y) = 2−k(y)

where k is the depth of leaf y.

Notice that

T̄ = H(Y)

where T̄ is the average number of coin tosses.

On the other hand, X is a function of Y : X = f(Y). Each leaf determines the value that X

should take. Applying a function to a random variable can only reduce its entropy, therefore

H(X) ≤ H(Y) = T̄ .

33/35

Dyadic case

Dyadic distribution : the probabilities satisfy pi = 2−li.

In this case, there exists a prefix code φ such that l(φ(x)) = − log2(p(x)), and |φ| = H.

Theorem 5. Let X be a r.v. with a dyadic distribution. There exists a way to toss fair coins

such that the average number of coin tosses T̄ satisfies T̄ = H(X).

Reminder: There exists a prefix code such that |ϕ(x)| = l(x) = − log2 p(x).

The depth of leaf x is exactly − log2(p(x)), therefore the average depth is equal to∑
x

p(x) (− log2(p(x))) = H(X)

34/35

General case

Theorem 6. The average number of coin tosses T̄ to simulate a r.v. X verifies

H(X) ≤ T̄ < H(X) + 2.

35/35

