Lecture 3 : Algorithms for source coding

1. Huffman code; proof of optimality;
2. Coding with intervals: Shannon-Fano-Elias code and Shannon code;

3. Arithmetic coding.

1/

43

1. Coding and decoding with a prefix code

Coding : Using a table indexed by the letters.

Decoding : Using the associated binary tree

Start at the root.

For each bit turn left or right.

When a leaf is attained, the corresponding letter is output and go back to
the root.

Optimal Code

Corollary of Kraft and Mac Millan theorems:

Corollary 1. [f there exists a uniquely decidable code with K words of length

ni,MNo,...,Ng then there exists a prefix code with the same lengths.
K
1
— < 1.
2"k
k=1
Définition A uniquely decodable code of a source X is if there exists no

other uniquely decodable code with a smaller average length.

Proposition 1. For every source there exists an optimal prefix code.

3 /43

Let X be a discrete source with alphabet with
prob. distr. 1. W.l.o.g. we can assume that p(a1) > ... > plax_1) > plag) > 0.

Let Y be the source with alphabet YV = {a1,...,ax_2,bx_1} and prob. distr.

det plag), k=1....K—2

e plax—1) +plak)

Algorithm (Huffman) We compute recursively a prefix code of X. When K = 2,
the words are given by ¢ (a1) = 0 and pi(az) = 1. If K > 2, let px_1 be a
Huffman code for Y,

vr(ar) = pr_1(ag) fork=1..., K — 2,
vr(ax—1) = orx—1(brx-1) || 0,

vr(arx) = ¢r-1(brx-1) || 1,

4/63

0,17

=
(O8]
\9}

0,15

0,09

0,14

Huffman Code :

a | 043

0,25

d| 0,11

0,05

example

~ O QO QR

P(x) | —logy(P(x))
0.43 1.22

0.17 2.56

0.15 2.74

0.11 3.18

0.09 3.47

0.05 4.32

H = 2.248

E = 98.6%

p(z) | na
1 1
000 | 3
001 3
011 3
0100 | 4
0101 | 4
n = 2.28

43

Huffman code :

0,17

0,15

0,09

example (1)

0,14

a | 0,43

d| 0,11

0,05

43

Huffman code :

0,17

0,15

0,09

example (11)

0,14

a | 0,43

0,25

d| 0,11

0,05

43

Huffman code :

0,17

0,32

0,15

0,09

example (111)

0,14

a | 0,43

0,25

d| 0,11

0,05

43

Huffman code :

0,17

0,15

0,09

0,14

example (1V)

a | 0,43

d| 0,11

0,05

43

Huffman code : example (last step)

/ o Sha

0,32 0,25

b|0,17 0,15]c 0,14 d| 0,11

e | 0,09 f | 0,05

10//43

The Huffman code is optimal

Lemma 1. For every source, there exists an optimal prefix code such that

1. if p(z;) > p(zx) then [¢(z;)| < |d(zk)l.

2. The two longest codewords have the same length and correspond to the least
likely symbols.

3. These two codewords differ only in their last bit.

11 /43

1. If p(z;) > p(zx) then [¢(z;)] < [¢(zk)|.

Let ¢ be an optimal code and assume that |p(x;)| > |p(xk)]|.

¢’ is obtained by swapping the codewords of x; and x. Then

o' — 1ol = Y p@)|¢' (=) - > p)é(x)]

= p(xj)|d(zk)| + p(ar)|@(z5)] — p(x))|P(T5)| — p(2K)| (7))

= (p(z;) = plzr))(lp(zr)] — |o(z;)])

< 0

This contradicts the optimality of ¢.

12/

43

2. The two longest codewords have the same length.

If they do not have the same length then a bit can be removed from the longest
one- the resulting code is still a prefix code.

— a shorter prefix code is obtained in this way.

By the previous point we know that they correspond to the least likely symbols.

13 /43

3. The two longest codewords differ only in their last bit.

Every ¢(x) of maximal length has a brother (otherwise it would be possible to
shorten the code).

Among those, there are two which correspond to the least likely symbols. By

swapping the leaves we can arrange these two symbols so that they become
brothers.

14 /43

The Huffman code is optimal

Proof (Induction on k the alphabet size) Let f be optimal for X with p(a;) >
- > plag—1) > plax), flag—1) = m||0 and f(ax) = m||1l. We derive from f a
codegonY = (ay,...,a5_2,bk_1):

{ gla;) = fla;), j<k—-2
g(bk—l) = m

fl =19 = plax—1)+ plag)
jok] — lok—1| = plag—1) + plag)

Hence || — [ix] = lg] — |01l
Optimality of i1 = [g] — [¢r—1] = 0 = [f[— x| = 0.
Optimality of f and |f| — || > 0 = |f| — |px| = 0 = optimality of .

15 /43

Drawbacks of the Huffman code

» Need to know beforehand the source statistics. If the wrong probability
distribution ¢ instead of the true distribution p :

H(X)+ D(pllg) < |o| < H(X) + D(pllq) + 1.

This can be dealt with by using an adaptative algorithm that computes the
statistics on the fly and updates them during the coding process.

» Based on a memoryless source model.

» It is better to group letters in blocks of large size I: (1) memoryless model
sufficiently realistic
(2) coding efficiency — 1.
But space complexity = O(|X]").

16 /43

2. Interval coding

» Gives a scheme for which we have in a natural way |z;| =~ —logp(x;) bits and
therefore |¢| ~ H(X).

» |dea of arithmetic coding.

17 /43

In the interval [0, 1], they are of the form

Zdﬂ_i, where d; € {0,1}

=1
We write 0.dyd>ds5 . . .

For instance

0.25 — 001 |043 — 0.0110111000...
0.125 — 0.001 | 0.71 — 0.1011010111...

0625 — 0.101 | 1/v/2 — 0.1011010100...

Certain numbers have several different 2-adic representation, for instance 0.25 —
0.01 and 0.25 — 0.00111.... In the last case we choose the finite representation.

18 /43

Shannon-Fano-Elias Code

Let X be a memoryless source with alphabet X', and probability distribution p.

S(x) =) p()

/' <x

L
p(xy)+ - +plry_1) L

p(ry) + -+ p(x;) I

p(z1) + p(z9) I
p(z1) —
L |

The interval width is p(x;). Each x; is encoded by its interval.

]
I

I

19/

43

Shannon-Fano-Elias Coding

Consider the middle of the interval

déf%p(a:) + S(x).

Let o(x) for all z € X be defined as the |—logp(x)| + 1 first bits of the 2-adic
representation of S(x).

Proposition 2. The code ¢ is prefix and its average length |p| verifies

H(X)<|p|< H(X)+2

20/143

A simple explanation

Lemma 2. For all reals w and v in [0,1], and for every integer | > O,if
lu — v| > 27! then the | first bits of the 2-adic representation of u and v are
distinct.

21/43

The Shannon-Fano-Elias code is prefix

Proof W.l.o.g., we may assume y > x

S) - S@) = MYy szq_@_zp(:a

x' <y r<x
x
_ py) _pl@) o
2
r<z'<y
_ pW) p(y) p(x)
= T—'_——i_ Z p >max 5 " 9
r<x'<y

> max (2_[_ logp(f’?ﬂ—17 == logp(yﬂ_l)

Therefore they differ in their min(|—logp(x)|+1,|—logp(y)|+1) first bits: ¢(x)
et ¢(y) can not be prefix of each other.

22 /43

Shannon-Fano-Elias Code : example
x| p(x) | [—logp(x)] +1 S(x) () Huffman
a | 0.43 3 0.215 | 0.0011011... | 001 0
b | 0.17 4 0.515 | 0.1000001... | 1000 100
c | 0.15 4 0.675 | 0.1010110... | 1010 101
d | 0.11 D 0.805 | 0.1100111... | 11001 110
e | 0.09 D 0.905 | 0.1110011... | 11100 | 1110
f 1 0.05 6 0.975 | 0.1111100... | 111110 | 1111

23/

43

Shannon-Fano-Elias code :

x| p(x) | [—logp(x)] +1 S(x) o(x) | Huffman
a | 0.25 3 0.125 | 0.001 001 10

b | 0.5 2 0.5 0.1 10 0

c | 0.125 4 0.8125 | 0.1101 | 1101 | 110

d | 0.125 4 0.9375 | 0.1111 | 1111 | 111

x| p(x) | [—logp(x)]+1 S(x) ©(x) | Huffman
b | 0.5 2 0.25 0.01 01 0

a | 0.25 3 0.625 | 0.101 101 10

c | 0.125 4 0.8125 | 0.1101 | 1101 | 110

d | 0.125 4 0.9375 | 0.1111 | 1111 | 111

another example

If the last
bit of
IS deleted
the code is
not prefix
anymore.

If the last
bit of ¢ s
deleted the
code is still a
prefix code.

24 /43

The Shannon code is defined in the same way as the Shannon-Fano-Elias code,
with the exception of :

The symbols are ordered by decreasing probability,

The codeword of x is formed by the |—logp(x)| first bits of S(x).

(In particular, the codeword corresponding to the most likely letter is formed by
| —logp(z)] '07)

Proposition 3. The Shannon code is prefix and its average length || verifies

H(X) < o] <H(X)+1

25 /43

The Shannon code is prefix

Proof For all x,y € X such that x <y (therefore [—logp(y)] > [—logp(z)])

S(y) — S(x)

(z) > 2~ [losp(@)]

26

43

Proof for the lengths

Proposition 4. The Shannon-Fano-Elias code p verifies H(X) < ¢ < H(X) + 2

Proof
lo(z)] = [—logp(x)] +1 < —logy p(x) + 2.
The conclusion follows by taking the average.

Proposition 5. The Shannon code ¢ verifies H(X) < p < H(X) + 1

jp(z)] = [—logp(z)]| < —logyp(x) + 1.

The conclusion follows by taking the average.

27 /43

The Shannon code is optimal for a dyadic distribution

In the dyadic case, the probabilities verify p(x) = 271~ logr@)],

In this case the lengths of encoding satisfy

|9(z)| = [—logp(x)] = —logy p(x)

By taking the average

> p(=) = - p(x)logyp(z) = H(X).

As for the Huffman code : average coding length = entropy.

28 /143

For the following source
1. output 1 with probability 1 — 2710;

2. output 0 with probability 27 1V.

1. The Shannon code encodes 1 with a codeword of length [—log(1 — 2710)] =
0.0014] = 1

2. The Shannon code encodes 0 with a codeword of length [—1log2~1%] = [10] =
10

The Huffman code uses 1 and 0, instead which is of course optimal.

20 43

» One of the main drawbacks of the Huffman code is the space complexity when
packets of length | are formed for the alphabet letters (space complexity

=0(|x")). f
= redundancy L - efficiency.

Huffman code on the blocks of size l: r ~ O (%) ~ (10g10).

» Arithmetic coding allows to work on packets of arbitrary sizes with acceptable
algorithmic cost. Here
1
r~0|-|,
(0

but the dependency of the space complexity in | is much better.

30 /43

The fundamental idea

Instead of encoding the symbols of X, work directly on X' where | is the length of
the word which is to encoded. .

To encode 1, ..., x;

1. compute the interval [S(x1,...,x;),S(x1,...,2;) + p(xy,...,27)], with
def
S(xla R 7:El) — Z(yl,...,yl)<(x1,...,xl) p(y17 s 7yl)’

2. encode (x1,...,x;) with an element of the interval whose 2-adic representation
length is [log(p(x1,...,z;))] + 1.

This identifies the interval = deduce x1 ...x; at the decoding step.

31/43

Advantage of arithmetic encoding

codelength(xz1,...,x;) = —logp(zy,...,27) + O(1).

= at most O(1) additional bits are wasted to encode | symbols and not O(l) as
before !

Very interesting in the previous example where 0's are generated with probability

2719 The average coding length becomes h(271%)] 4+ O(1) =~ 0.0111 instead of I
for the Huffman code !

32/443

The major problem for implementing arithmetic coding

Need to compute S(x1,...,x;) with a precision of [log p(x1, ...

4

perform computations with arbitrary large precision.

,ZEl)_l + 1 bits.

33

43

The key idea which allows to work with packets of size [

Principle : efficient computation of p(x1,...,x;) and S(x1,...,x;).

» Computation of p(x1,...,x;)

p(x1,...,x;) =plxy)...play)

» iterative computation of S(x1,...,x;) : lexicographic order on X*.

def
= > p(y1, .- 1)

(Y1,---y1)<(1,.--,71)

Proposition 6. S(x1,...,x;) = S(x1,...,21-1) + p(x1,...,21-1)S(x7).

34/43

Let m be the smallest element in the alphabet

S(%l,.. .
4«
p &

= A+ B where

Z p(Y1, Y2, - - -

(Y1, Y2, - -

(1, 0x—1,m)<(y1,...,y1) <(x1,...,27)

z) = > p(y1,y2, - -

7yl)

, Y1)

7yl)

35/

43

Proof (cont’d)

> p(y1, Y2, - 1)

(Y1,--y1)<(x1,...,x;_1,m)

Z p(y17y27'-'7yl—1)p(yl)

Y1y Y1 (Y15 Y1—1) <(T1,.-, 77 1)
> p(y1, 2, - yi-1) > p(yi)
(Y15 Y1—1)<(T1,-,21 1) i

Z p(y17y27‘°'7yl—1)

(Y15ey1—1)<(x1,.77—1)

S(ZL’l, ce ,xl_l).

36/

43

Proof (end)

2.

(z1,..,x1-1,m) <(Y1,...,y1) <(x1

Z p(ajlwﬂaxl—layl)

m<y;<x|

.....

Z p(r1, .., x-1)p(yr)

m<y; <z

p(z1, ..

. ,ZIL‘l_l)S(ZIZl)

(Y1, Y2, - - -

7yl)

37/

43

Example :

fractals...

38

43

Example :

fractals

aa

ab

ac

ba bbbc

ca

cb

CcC

39

43

S(ﬂ?l,...,l‘l): §($1,...,$l_12 + P(lea---;xl—lz S(le)

"~

~
beginning of the previous interval length of previous interval

Therefore if the current interval is |a, b|,and if x; is read, then

Upew < a—+ (b—a)S(x;)
bnew < Qpew + (b - a)p(xi)

The width of the interval becomes (b — a)p(x;) = p(x;)...p(x;i_1)p(x;) =
p(azl, R ,.CEZ').

40 /43

Let |a,b| be the current interval

Ifb<1/2, |[a,bl— [2a,2b], output (“0"),

Ifa>1/2, |a,bl— [2a —1,2b— 1], output (“1")

If 1/4 < a<b<3/4, |a,bl— [2a —1/2,2b — 1/2[, no output (underflow
expansion), but keep this in mind (with the help of a counter).

41 /43

Let r = @(x1,...,x;) be the real number whose 2-adic representation encodes
(z1,...,2;) € X'. The letters z1,...,x; are the only ones for which

S(x1) < r < S(z1)+ p(xr)
S(x1,r2) < 7“ < S(x1,x2) + p(a1,x2)

S(x1,...,x) < 1 < S(x1,...,21) +plx1,...,20)

42 /43

S(ml) < r < S($1) —|—p($1)
Suppose that x1 was found. We have

S(z1,22) < T < S(z1, 2) + p(z1, 22)
S(x1) + p(x1)S(z2) < T < S(z1) + p(z1)S(x2) + p(x1)p(22)
p(z1)S(z2) < r—S(z1) < p(x1)(S(z2) + p(z2))
S(wg) < 2L < S(ag) + pla2)

p(z1)

r—S(x1)
p(z1) -

We have therefore to find out in which interval lies r; =

43/

43

