Lecture 4 : Adaptive source coding algorithms

January 31, 2020

Information Theory

Outline

1. Motivation;
2. adaptive Huffman encoding;
3. Gallager and Knuth's method;
4. Dictionary methods: Lempel-Ziv 78, Lempel-Ziv-Welsh, Lempel-Ziv 77.

1. Motivation

Huffman/arithmetic encoding needs two passes

1. first pass to compute the source statistics
2. second pass: Huffman/arithmetic encoding

Moreover additional information is needed for the decoder

- either the statistics are known;
- or the encoding table is known.

Universal source coding

Universal source coding : no assumption on the source.
Idea: Compute at each time a dynamic source model that could produce the observed text and use this model to compress the text which has been observed so far.

Illustration:

- adaptive Huffman algorithm (memoryless source model),
- adaptive arithmetic coding algorithm,
- Lempel-Ziv algorithm and its variants (using the dependencies between the symbols).

2. Adaptive Huffman - Outline

Assume that n letters have been read so far, and that they correspond to K distinct letters.

- Let X_{n} be the source over $K+1$ symbols formed by the K letters observed so far with probability proportional to their number of occurrences in the text + void symbold which has probability 0 .
- Compute the Huffman code tree T_{n} of this source,
- the $n+1$-th letter is read and encoded
- with its codeword when it exists,
- with the $K+1$-th codeword + ascii code of the letter otherwise.

Adaptive Huffman - Coding

The initial Huffman tree has a single leaf corresponding to the void symbol. Each time a new letter x is read

- if already seen
- print its codeword,
- update the Huffman tree,
- else
- print the codeword of the void symbol followed by an unencoded version of x (ascii code for instance),
- add a leaf to the Huffman tree,
- update the Huffman tree.

Adaptive Huffman - Decoding

The initial tree is formed by a single leaf corresponding to the void symbol. Until all the encoded text is read, perform a walk in the tree by going down left when ' 0 ' is read and going down right when ' 1 ' is read until a leaf is reached.

- if the leaf is not the void symbol
- print the letter,
- update the tree,
- else
- print the 8 next bits to write the ascii code of the letter
- add a leaf to the tree,
- update the tree.

Adaptive Huffman - preliminary definitions

Prefix code of a d.s. X : binary tree with $|X|$ leaves $=$ letters of X. Definition Consider a prefix code.

- the leaf weight is the probability of the corresponding letter
- the node weight is the sum of the weights of its children.

Definition A Gallager order $u_{1}, \ldots, u_{2 K-1}$ on the nodes of an irreducible code (of a source of cardinality K) verifies

1. the weights of u_{i} are decreasing,
2. $u_{2 i}$ and $u_{2 i+1}$ are brothers for all i such that $1 \leq i<K$.

Example

Example

Adaptive Huffman - Properties

Theorem 1. [Gallager] Let T be a binary tree corresponding to a prefix code of a source $X . T$ is a Huffman tree of X iff there exists a Gallager order on the nodes of T.

Proof

T Huffman $\Longrightarrow T$ admits a Gallager order.

The two codewords of minimum weight are brothers \Rightarrow remove them and keep only their common parent.

The obtained tree is a Huffman tree which admits a Gallager order (induction) $u_{1}^{\prime} \geq \cdots \geq u_{2 K-3}^{\prime}$.

The parent appears somewhere in this sequence. Take its two children and put them at the end. This gives a Gallager order.

$$
u_{1}^{\prime} \geq \cdots \geq u_{2 K-3}^{\prime} \geq u_{2 K-2} \geq u_{2 K-1}
$$

Proof

T admits a Gallager order $\Longrightarrow T$ Huffman.

T has a Gallager order \Longrightarrow nodes are ordered as

$$
u_{1} \geq \cdots \geq u_{2 K-3} \geq u_{2 K-2} \geq u_{2 K-1}
$$

where $u_{2 K-2}$ and $u_{2 K-1}$ are brothers, leaves and are of minimum weight.
Let T^{\prime} be the tree corresponding to $u_{1}, \ldots, u_{2 K-3}$. It has the Gallager order $u_{1} \geq \cdots \geq u_{2 K-3}$. It is a Huffman tree (induction).

By using Huffman's algorithm, we know that the binary tree corresponding to $u_{1}, \ldots, u_{2 K-1}$ is a Huffman tree, since once of its nodes is the merge of $u_{2 K-2}$ and of $u_{2 K-1}$.

Update

Proposition 1. Let X_{n} be the source corresponding to the n-th step and let T_{n} be the corresponding Huffman tree.

Let x be the $n+1$-th letter and let $u_{1}, \ldots, u_{2 K-1}$ be the Gallager order on the nodes of T_{n}.

If $x \in X_{n}$ and if all the nodes $u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{\ell}}$ that are on the path between the root and x are the first ones in the Gallager order with this weight, then T_{n} is a Huffman tree for X_{n+1}.

Proof Take the same Gallager order.

Adaptive Huffman - Updating the tree

Let T_{n} be the Huffman tree at Step n and let $u_{1}, \ldots, u_{2 K-1}$ be its corresponding Gallager order.
Assumption : $x \in T_{n}$ (at node u).
repeat until u is not the root

- let \tilde{u} be the first node in the Gallager order of the same weight as u,
- exchange u and \tilde{u},
- exchange u and \tilde{u} in the Gallager order,
- Increment the weight of $u \quad$ (weight $=n b$ occurrences)
- $u \leftarrow$ parent of u

This algorithm is due to D. Knuth.

Example

Example

Adaptive Huffman - Adding a Leaf

When the current letter x does not belong to the tree, the update uses the void symbol. It is replaced by a tree with two leaves, one for the void symbol and one for x.

The two new nodes are added at the end of the sequence $\left(u_{i}\right)$.

Methods based on dictionaries

Idea : maintaining a dictionary (key,string).

The keys are written on the output, rather than the string.
The hope is that the keys are shorter than the strings.

Lempel-Ziv 78 - Outline

The Lempel-Ziv algorithm (1978) reads a text composed of symbols from an alphabet \mathcal{A}. Assume that N symbols have been read and that a dictionary of the words which have been seen has been constructed.

- Read the text by starting from the $(N+1)$-th symbol until a word of length n which is not in the dictionary is found, print the index of the last seen word (it is of length $n-1$) together with the last symbol.
- Add the new word (of length n) to the dictionary and start again at the ($N+n+1$)-th symbol.

Lempel-Ziv 78 - Data Structure

We need an efficient way of representing the dictionary. Useful property: when a word is in the dictionary all its prefixes are also in it.
\Rightarrow the dictionaries that we want to represent are $|\mathcal{A}|$-ary trees. Such a representation gives a simple and efficient implementation for the functions which are needed, namely

- check if a word is in the tree,
- add a new word

Lempel-Ziv 78 - Coding

The dictionary is empty initially. Its size is $K=1$ (empty word). Repeat the following by starting at the root until this is not possible anymore

- walk on the tree by reading the text letters until this is not possible anymore

Let $b_{1}, \ldots, b_{n}, b_{n+1}$ be the read symbols and let $i, 0 \leq i<K$ (K being the size of the dictionary), be the index of the word $\left(b_{1}, \ldots, b_{n}\right)$ in the dictionary,

- $\left(b_{1}, \ldots, b_{n}, b_{n+1}\right)$ is added to the dictionary with index K,
- print the binary representation of i with $\left\lceil\log _{2} K\right\rceil$ bits followed by the symbol b_{n+1}.

Lempel-Ziv 78 - Example								
1	0	01	0		10	00	11	100
Dictionary								
indices			word	(index,symbol)			codeword	
	0		ε					
	1		1		$(0,1)$			1
	2		0		$(0,0)$			00
	3		01		$(2,1)$			01
	4		011		$(3,1)$			11
	5		10		$(1,0)$			10
	6		00		$(2,0)$			00
	7		11		$(1,1)$			11
	8		100		$(5,0)$			10

Lempel-Ziv 78 - Decoding

The dictionary is now a table which contains only the empty word $M_{0}=\emptyset$ and $K=1$. Repeat until the whole encoded text is read

- read the $\left\lceil\log _{2} K\right\rceil$ first bits of the encoded text to obtain index i. Let M_{i} be the word of index i in the dictionary
- read the next symbol b,
- add a K-th entry to the table $M_{K} \leftarrow M_{i} \| b$,
- print M_{K}.

The Welsh variant

- Initially, all words of length 1 are in the dictionary.
- Instead of printing the pair (i, b) print only i.
- Add (i, b) to the dictionary.
- Start reading again from symbol b.
\Rightarrow slightly more efficient.
used in the unix compress command, or for GIF87.
In practice, English text is compressed by a factor of 2 .

Lempel-Ziv-Welsh - Example

$\begin{gathered} 1001 \\ \text { Dictic } \end{gathered}$	1111	000	110	
indices	words	word	index	codeword
0	0			
1	1			
2	10	1	1	1
3	00	0	0	00
4	01	0	0	00
5	101	10	2	010
6	11	1	1	001
7	110	11	6	110
8	000	00	3	011
9	011	01	4	0100
10	1100	110	7	0111
11	010	01	5	0101

Lempel-Ziv-Welsh, encoding

1. Read the text until finding m followed by a letter a such that m is in the dictionary, but not $m \| a$,
2. print the index of m in the dictionary,
3. add $m \| a$ to the dictionary,
4. Continue by starting from letter a.

Lempel-Ziv-Welsh, decoding

1. read index i,
2. print the word m of index i,
3. add at the end of the dictionary $m \| a$ where a is the first letter of the following word (a will be known the next time a word is formed).

Lempel-Ziv 77

This variant appeared before the previous one. More difficult to implement.

Assume that N bits have been read.
Read by starting from the $N+1$-th bit the longest word (of length n) which is in the previously read text (=dictionary) and print (i, n, b), where b is the next bit.

In practice, implemented by a sliding window of fixed size, the dictionary is the set of words in this sliding window.

Used in gzip, zip.

Example

Example

Example

Example

Example

Stationnary Source

Definition A source is stationary if its behavior does not change with a time shift. For all nonnegative integers n and j, and for all $\left(x_{1}, \ldots, x_{n}\right) \in$ \mathcal{X}^{n}

$$
p_{X_{1} \ldots X_{n}}\left(x_{1}, \ldots, x_{n}\right)=p_{X_{1+j} \ldots X_{n+j}}\left(x_{1}, \ldots, x_{n}\right)
$$

Theorem 2. For all stationary sources the following limits exist and are equal

$$
H(\mathcal{X})=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right)=\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) .
$$

the quantity $H(\mathcal{X})$ is called the entropy per symbol.

The fundamental property of Lempel-Ziv

Theorem 3. For all stationary and ergodic sources \mathcal{X} the compression rate goes to $H(\mathcal{X})$ with prob. 1 when the text size goes to ∞.

