Lecture 4 : Adaptive source coding
algorithms

January 31, 2020

Information Theory

1. Motivation;
2. adaptive Huffman encoding;
3. Gallager and Knuth's method;

4. Dictionary methods : Lempel-Ziv 78, Lempel-Ziv-Welsh, Lempel-Ziv
77.

Information Theory 1/37

Huffman/arithmetic encoding needs two passes

1. first pass to compute the source statistics

2. second pass : Huffman/arithmetic encoding
Moreover additional information is needed for the decoder

either the statistics are known;

or the encoding table is known.

Information Theory

2/

37

Universal source coding

. no assumption on the source.

Compute at each time a dynamic source model that could produce
the observed text and use this model to compress the text which has
been observed so far.

adaptive Huffman algorithm (memoryless source model),
adaptive arithmetic coding algorithm,

Lempel-Ziv algorithm and its variants (using the dependencies between
the symbols).

Information Theory 3 37

2. Adaptive Huffman — Qutline

Assume that n letters have been read so far, and that they correspond
to K distinct letters.

Let X,, be the source over K + 1 symbols formed by the K letters
observed so far with probability proportional to their number of
occurrences in the text + void symbold which has probability O.

Compute the Huffman code tree T}, of this source,

the n + 1-th letter is read and encoded

— with its codeword when it exists,
— with the K + 1-th codeword + ascii code of the letter otherwise.

4/37

Information Theory

The initial Huffman tree has a single leaf corresponding to the void
symbol. Each time a new letter x is read

if already seen

— print its codeword,
— update the Huffman tree,

else

— print the codeword of the void symbol followed by an unencoded
version of x (ascii code for instance),

— add a leaf to the Huffman tree,

— update the Huffman tree.

Information Theory 5/37

The initial tree is formed by a single leaf corresponding to the void
symbol. Until all the encoded text is read, perform a walk in the tree by
going down left when "0’ is read and going down right when "1’ is read

until a leaf is reached.
if the leaf is not the void symbol

— print the letter,
— update the tree,

else

— print the 8 next bits to write the ascii code of the letter
— add a leaf to the tree,
— update the tree.

Information Theory 6/37

Adaptive Huffman — preliminary definitions

Prefix code of a d.s. X: binary tree with | X| leaves = letters of X.
Definition Consider a prefix code.

the Is the probability of the corresponding letter
the is the sum of the weights of its children.
Definition A Ui, ...,Usx—1 on the nodes of an irreducible

code (of a source of cardinality K') verifies

1. the weights of u; are decreasing,

2. ug; and ug;11 are brothers for all 7 such that 1 <7 < K.

Information Theory 4 37

Information Theory

Example

37

Information Theory

Example

37

Adaptive Huffman — Properties

Theorem 1. [Gallager| Let T be a binary tree corresponding to a prefix
code of a source X. T' is a Huffman tree of X iff there exists a Gallager
order on the nodes of T'.

Information Theory].O 37

The two codewords of minimum weight are brothers = remove them
and keep only their common parent.

The obtained tree is a Huffman tree which admits a Gallager order
(induction) u} > -+ > ubp 4.

The parent appears somewhere in this sequence. Take its two children
and put them at the end. This gives a Gallager order.

/ /
Uy = " 2 Ugp_3 = UK —2 = UK —1

Information Theory]. 1/37

T has a Gallager order = nodes are ordered as
Up 2 -0 2 UK—3 2 U2K—2 = UK —1

where us i _o and ug g1 are brothers, leaves and are of minimum weight.

Let be the tree corresponding to uq,...,usx_3. It has the Gallager
order u; > -+ - > usk 3. It is a Huffman tree (induction).

By using Huffman’s algorithm, we know that the binary tree correspond-

ing to uq,...,uskx_1 Is a Huffman tree, since once of its nodes is the
merge of usx_o and of usgx_1.

Information Theory 12/37

Proposition 1. Let X,, be the source corresponding to the n-th step
and let T,, be the corresponding Huffman tree.

Let x be the n + 1-th letter and let uq, ..., uskx_1 be the Gallager order
on the nodes of 1},.

It v € X,, and if all the nodes w; ,u;,,...,u;, that are on the path
between the root and x are the first ones in the Gallager order with this
weight, then T,, is a Huffman tree for X, 1.

Proof Take the same Gallager order.

Information Theory 13/37

Let 7,, be the Huffman tree at Step n and let uq,...,us_1 be its
corresponding Gallager order.
Assumption : z € T;, (at node u).

repeat until u is not the root

— let u be the first node in the Gallager order of the same weight as
u,

— exchange u and u,

— exchange u and u in the Gallager order,

— Increment the weight of u (weight = nb occurrences)

— u < parent of u

This algorithm is due to D. Knuth,

Information Theory 14/37

Information Theory

Example

15

37

Information Theory

Example

16

37

Information Theory

Example

17

37

Information Theory

Example

18

37

Adaptive Huffman — Adding a Leaf

When the current letter x does not belong to the tree, the update uses
the void symbol. It is replaced by a tree with two leaves, one for the void
symbol and one for x.

0

Urg @7 Urki1'® 0

The two new nodes are added at the end of the sequence (u;).

Information Theor].9 37
Y

Methods based on dictionaries

ldea : maintaining a dictionary (key,string).

The keys are written on the output, rather than the string.

The hope is that the keys are shorter than the strings.

Information Theory

20

37

The Lempel-Ziv algorithm (1978) reads a text composed of symbols from
an alphabet A. Assume that N symbols have been read and that a
dictionary of the words which have been seen has been constructed.

Read the text by starting from the (N 4+ 1)-th symbol until a word of
length n which is not in the dictionary is found, print the index of the
last seen word (it is of length n — 1) together with the last symbol.

Add the new word (of length n) to the dictionary and start again at
the (N + n + 1)-th symbol.

21/B37

Information Theory

We need an efficient way of representing the dictionary. Useful property:
when a word is in the dictionary all its prefixes are also in it.

= the dictionaries that we want to represent are |.A|-ary trees. Such
a representation gives a simple and efficient implementation for the
functions which are needed, namely

check if a word is in the tree,

add a new word

Information Theory 22/37

The dictionary is empty initially. Its size is K = 1 (empty word). Repeat
the following by starting at the root until this is not possible anymore

walk on the tree by reading the text letters until this is not possible
anymore

Let b1,...,b,,b,41 be the read symbols and let 7z, 0 <1 < K
(K being the size of the dictionary), be the index of the word
(b1,...,b,) in the dictionary,

(b1,...,bn,bny1) is added to the dictionary with index K,

print the binary representation of ¢ with [log, K| bits followed by the
symbol b, 1.

Information Theory 23/37

Information Theory

1((0(/]01({011}{10(|00||11||100
Dictionary pair

indices | word | (index,symbol) | codeword
0 3

1 1 (0,1) 1
2 0 (0,0) 00
3 01 (2,1) 101
4 011 (3,1) 111
5 10 (1,0) 0010
6 00 (2,0) 0100
7 11 (1,1) 0011
8 100 (5,0) 1010

24,

37

The dictionary is now a table which contains only the empty word My = ()
and K = 1. Repeat until the whole encoded text is read

read the [log, K| first bits of the encoded text to obtain index 7. Let
M, be the word of index ¢ in the dictionary

read the next symbol b,

add a K-th entry to the table Mg < M, || b,

print Mg .

Information Theory 25/37

Initially, all words of length 1 are in the dictionary.
Instead of printing the pair (i,b) print only 4.
Add (i, b) to the dictionary.

Start reading again from symbol b.

= slightly more efficient.

used in the unix compress command, or for GIF87.

In practice, English text is compressed by a factor of 2.

Information Theory

26/

37

Information Theory

1001011100011100101...

Dictionary Word

indices | words | word | index | codeword
0 0

1 1

2 10 1 1 1
3 00 0 0 00
4 01 0 0 00
5 101 10 2 010
§ 11 1 1 001
7 110 11 6 110
3 000 00 3 011
0 011 01 4 0100
10 1100 | 110 7 0111
11 010 01 5 0101

27/

37

Lempel-Ziv-Welsh, encoding

1. Read the text until finding m followed by a letter a such that m is in
the dictionary, but not m||a,

2. print the index of m in the dictionary,
3. add m/||a to the dictionary,

4. Continue by starting from letter a.

Information Theory 28 37

Lempel-Ziv-Welsh, decoding

1. read index 1,
2. print the word m of index 1,

3. add at the end of the dictionary m||a where a is the first letter of the
following word (a will be known the next time a word is formed).

29 /37

Information Theory

This variant appeared before the previous one. More difficult to imple-
ment.

Assume that IV bits have been read.

Read by starting from the N 4 1-th bit the longest word (of length
n) which is in the previously read text (=dictionary) and print (i,n,b),
where b is the next bit.

In practice, implemented by a sliding window of fixed size, the dictionary
is the set of words in this sliding window.

Used in gzip, zip.

Information Theory 30/37

Information Theory

1

Example

1

0 0 O

1

1

1

0 O

31

1

37

0
(0,0,0)

Information Theory

01
(1,1,1)

1

Example

1

0 0 O

1

1

1

0 O

32

1

37

0
(0,0,0)

Information Theory

01

011

(1,1,1)

(2,2,1)

Example

1

0 0 O

1

1

1

0 O

33

1

37

0
(0,0,0)

Information Theory

01
(1,1,1)

Example

011

100

(2,2,1)

(3,2,0)

1

1

0 O

34

1

37

0
(0,0,0)

Information Theory

Example

01

011

100

0111001

(1,1,1)

(2,2,1)

(3,2,0)

(4,6,1)

35

37

Definition A source is if its behavior does not change with a

time shift. For all nonnegative integers n and j, and for all (z1,...,x,) €
X’I’L
le...Xn<x17 e 73371) — pX1_|_j...Xn_|_j (ﬂfl, e 73371)

Theorem 2. For all stationary sources the following limits exist and are
equal

1
H(X) = lim —H(X1,...,Xn) = lim H(X, | X1,...,Xn_1).

n—oo N, n— 00

the quantity is called the

Information Theory 36/37

The fundamental property of Lempel-Ziv

Theorem 3. For all stationary and ergodic sources X the compression
rate goes to H(X') with prob. 1 when the text size goes to co.

Information Theory 37 37

