
Lecture 4 : Adaptive source coding
algorithms

January 31, 2020

Information Theory

Outline

1. Motivation;

2. adaptive Huffman encoding;

3. Gallager and Knuth’s method;

4. Dictionary methods : Lempel-Ziv 78, Lempel-Ziv-Welsh, Lempel-Ziv
77.

Information Theory 1/37

1. Motivation

Huffman/arithmetic encoding needs two passes

1. first pass to compute the source statistics

2. second pass : Huffman/arithmetic encoding

Moreover additional information is needed for the decoder

• either the statistics are known;

• or the encoding table is known.

Information Theory 2/37

Universal source coding
Universal source coding : no assumption on the source.

Idea: Compute at each time a dynamic source model that could produce
the observed text and use this model to compress the text which has
been observed so far.

Illustration:

• adaptive Huffman algorithm (memoryless source model),

• adaptive arithmetic coding algorithm,

• Lempel-Ziv algorithm and its variants (using the dependencies between
the symbols).

Information Theory 3/37

2. Adaptive Huffman – Outline
Assume that n letters have been read so far, and that they correspond
to K distinct letters.

• Let Xn be the source over K + 1 symbols formed by the K letters
observed so far with probability proportional to their number of
occurrences in the text + void symbold which has probability 0.

• Compute the Huffman code tree Tn of this source,

• the n+ 1-th letter is read and encoded

– with its codeword when it exists,
– with the K + 1-th codeword + ascii code of the letter otherwise.

Information Theory 4/37

Adaptive Huffman – Coding
The initial Huffman tree has a single leaf corresponding to the void
symbol. Each time a new letter x is read

• if already seen

– print its codeword,
– update the Huffman tree,

• else

– print the codeword of the void symbol followed by an unencoded
version of x (ascii code for instance),

– add a leaf to the Huffman tree,
– update the Huffman tree.

Information Theory 5/37

Adaptive Huffman – Decoding
The initial tree is formed by a single leaf corresponding to the void
symbol. Until all the encoded text is read, perform a walk in the tree by
going down left when ’0’ is read and going down right when ’1’ is read
until a leaf is reached.
• if the leaf is not the void symbol

– print the letter,
– update the tree,

• else

– print the 8 next bits to write the ascii code of the letter
– add a leaf to the tree,
– update the tree.

Information Theory 6/37

Adaptive Huffman – preliminary definitions

Prefix code of a d.s. X: binary tree with |X| leaves = letters of X.
Definition Consider a prefix code.

• the leaf weight is the probability of the corresponding letter

• the node weight is the sum of the weights of its children.

Definition A Gallager order u1, . . . , u2K−1 on the nodes of an irreducible
code (of a source of cardinality K) verifies

1. the weights of ui are decreasing,

2. u2i and u2i+1 are brothers for all i such that 1 ≤ i < K.

Information Theory 7/37

Example

10

3

32 1

21 2 11

a

e f

6 5

11 4

6 7

3

5 5

b

c

10

d

2 11

98

5

Information Theory 8/37

Example

3

5 5

1110

2111

32

a

b d

c e f

11

1

23

5 4

7566

10

98

2

Information Theory 9/37

Adaptive Huffman – Properties

Theorem 1. [Gallager] Let T be a binary tree corresponding to a prefix
code of a source X. T is a Huffman tree of X iff there exists a Gallager
order on the nodes of T .

Information Theory 10/37

Proof

T Huffman =⇒ T admits a Gallager order.

The two codewords of minimum weight are brothers ⇒ remove them
and keep only their common parent.

The obtained tree is a Huffman tree which admits a Gallager order
(induction) u′1 ≥ · · · ≥ u′2K−3.

The parent appears somewhere in this sequence. Take its two children
and put them at the end. This gives a Gallager order.

u′1 ≥ · · · ≥ u′2K−3 ≥ u2K−2 ≥ u2K−1

Information Theory 11/37

Proof

T admits a Gallager order =⇒ T Huffman.

T has a Gallager order =⇒ nodes are ordered as

u1 ≥ · · · ≥ u2K−3 ≥ u2K−2 ≥ u2K−1

where u2K−2 and u2K−1 are brothers, leaves and are of minimum weight.

Let T ′ be the tree corresponding to u1, . . . , u2K−3. It has the Gallager
order u1 ≥ · · · ≥ u2K−3. It is a Huffman tree (induction).

By using Huffman’s algorithm, we know that the binary tree correspond-
ing to u1, . . . , u2K−1 is a Huffman tree, since once of its nodes is the
merge of u2K−2 and of u2K−1.

Information Theory 12/37

Update

Proposition 1. Let Xn be the source corresponding to the n-th step
and let Tn be the corresponding Huffman tree.

Let x be the n+ 1-th letter and let u1, . . . , u2K−1 be the Gallager order
on the nodes of Tn.

If x ∈ Xn and if all the nodes ui1, ui2, . . . , ui` that are on the path
between the root and x are the first ones in the Gallager order with this
weight, then Tn is a Huffman tree for Xn+1.

Proof Take the same Gallager order.

Information Theory 13/37

Adaptive Huffman – Updating the tree

Let Tn be the Huffman tree at Step n and let u1, . . . , u2K−1 be its
corresponding Gallager order.
Assumption : x ∈ Tn (at node u).

repeat until u is not the root

– let ũ be the first node in the Gallager order of the same weight as
u,

– exchange u and ũ,
– exchange u and ũ in the Gallager order,
– Increment the weight of u (weight = nb occurrences)
– u← parent of u

This algorithm is due to D. Knuth.

Information Theory 14/37

Example

3

5 5

1110

2111

32

a

b d

c e f

11

1

23

5 4

7566

10

98

2

Information Theory 15/37

Example

3

5 5

1110

2111

32

a

b d

c e f

11

1

23

5 4

7566

10

98

3

Information Theory 16/37

Example

3

5 5

1110

2111

32

a

b d

c e f

11

1

23

5 4

7566

10

98

3

5

1110

2111

32

a

c e

2

5 4

66
68 9 7

3

b d

1110

f

5

3

1

3

Information Theory 17/37

Example

5

1110

2111

32

a

c e

2

5 4

66
68 9 7

3

b d

1110

f

5

3

1

3

6
5

2

5 5

10

12

33

6 6

3 3

7

9

11

a

21

cfb d

e

3

1

4

81110

Information Theory 18/37

Adaptive Huffman – Adding a Leaf

When the current letter x does not belong to the tree, the update uses
the void symbol. It is replaced by a tree with two leaves, one for the void
symbol and one for x.

������
������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

u
2K−1

u
2K−10

...

u

...

0
u

2K 2K+1

0

x 0

1

1

The two new nodes are added at the end of the sequence (ui).

Information Theory 19/37

Methods based on dictionaries

Idea : maintaining a dictionary (key,string).

The keys are written on the output, rather than the string.

The hope is that the keys are shorter than the strings.

Information Theory 20/37

Lempel-Ziv 78 – Outline

The Lempel-Ziv algorithm (1978) reads a text composed of symbols from
an alphabet A. Assume that N symbols have been read and that a
dictionary of the words which have been seen has been constructed.

• Read the text by starting from the (N + 1)-th symbol until a word of
length n which is not in the dictionary is found, print the index of the
last seen word (it is of length n− 1) together with the last symbol.

• Add the new word (of length n) to the dictionary and start again at
the (N + n+ 1)-th symbol.

Information Theory 21/37

Lempel-Ziv 78 – Data Structure

We need an efficient way of representing the dictionary. Useful property:
when a word is in the dictionary all its prefixes are also in it.

⇒ the dictionaries that we want to represent are |A|-ary trees. Such
a representation gives a simple and efficient implementation for the
functions which are needed, namely

• check if a word is in the tree,

• add a new word

Information Theory 22/37

Lempel-Ziv 78 – Coding
The dictionary is empty initially. Its size is K = 1 (empty word). Repeat
the following by starting at the root until this is not possible anymore

• walk on the tree by reading the text letters until this is not possible
anymore

Let b1, . . . , bn, bn+1 be the read symbols and let i, 0 ≤ i < K
(K being the size of the dictionary), be the index of the word
(b1, . . . , bn) in the dictionary,

• (b1, . . . , bn, bn+1) is added to the dictionary with index K,

• print the binary representation of i with dlog2Ke bits followed by the
symbol bn+1.

Information Theory 23/37

Lempel-Ziv 78 – Example

1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0

Dictionary pair
indices word (index,symbol) codeword
0 ε
1 1 (0,1) 1
2 0 (0,0) 00
3 01 (2,1) 10 1
4 011 (3,1) 11 1
5 10 (1,0) 001 0
6 00 (2,0) 010 0
7 11 (1,1) 001 1
8 100 (5,0) 101 0

Information Theory 24/37

Lempel-Ziv 78 – Decoding

The dictionary is now a table which contains only the empty word M0 = ∅
and K = 1. Repeat until the whole encoded text is read

• read the dlog2Ke first bits of the encoded text to obtain index i. Let
Mi be the word of index i in the dictionary

• read the next symbol b,

• add a K-th entry to the table MK ←Mi ‖ b,

• print MK.

Information Theory 25/37

The Welsh variant

• Initially, all words of length 1 are in the dictionary.

• Instead of printing the pair (i, b) print only i.

• Add (i, b) to the dictionary.

• Start reading again from symbol b.

⇒ slightly more efficient.

used in the unix compress command, or for GIF87.

In practice, English text is compressed by a factor of 2.

Information Theory 26/37

Lempel-Ziv-Welsh – Example

1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0 1 . . .
Dictionary Word

indices words word index codeword
0 0
1 1
2 10 1 1 1
3 00 0 0 00
4 01 0 0 00
5 101 10 2 010
6 11 1 1 001
7 110 11 6 110
8 000 00 3 011
9 011 01 4 0100
10 1100 110 7 0111
11 010 01 5 0101

Information Theory 27/37

Lempel-Ziv-Welsh, encoding

1. Read the text until finding m followed by a letter a such that m is in
the dictionary, but not m||a,

2. print the index of m in the dictionary,

3. add m||a to the dictionary,

4. Continue by starting from letter a.

Information Theory 28/37

Lempel-Ziv-Welsh, decoding

1. read index i,

2. print the word m of index i,

3. add at the end of the dictionary m||a where a is the first letter of the
following word (a will be known the next time a word is formed).

Information Theory 29/37

Lempel-Ziv 77

This variant appeared before the previous one. More difficult to imple-
ment.

Assume that N bits have been read.

Read by starting from the N + 1-th bit the longest word (of length
n) which is in the previously read text (=dictionary) and print (i, n, b),
where b is the next bit.

In practice, implemented by a sliding window of fixed size, the dictionary
is the set of words in this sliding window.

Used in gzip, zip.

Information Theory 30/37

Example

0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1

(0,0,0)

Information Theory 31/37

Example

0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1

(0,0,0) (1,1,1)

Information Theory 32/37

Example

0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1

(0,0,0) (1,1,1) (2,2,1)

Information Theory 33/37

Example

0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1

(0,0,0) (1,1,1) (2,2,1) (3,2,0)

Information Theory 34/37

Example

0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1

(0,0,0) (1,1,1) (2,2,1) (3,2,0) (4,6,1)

Information Theory 35/37

Stationnary Source

Definition A source is stationary if its behavior does not change with a
time shift. For all nonnegative integers n and j, and for all (x1, . . . , xn) ∈
Xn

pX1...Xn(x1, . . . , xn) = pX1+j...Xn+j
(x1, . . . , xn)

Theorem 2. For all stationary sources the following limits exist and are
equal

H(X) = lim
n→∞

1

n
H(X1, . . . , Xn) = lim

n→∞
H(Xn | X1, . . . , Xn−1).

the quantity H(X) is called the entropy per symbol.

Information Theory 36/37

The fundamental property of Lempel-Ziv

Theorem 3. For all stationary and ergodic sources X the compression
rate goes to H(X) with prob. 1 when the text size goes to ∞.

Information Theory 37/37

