Capacity of a channel – Shannon's second theorem

Outline

- 1. Memoryless channels, examples;
- 2. Capacity;
- 3. Symmetric channels;
- 4. Channel Coding;
- 5. Shannon's second theorem, proof.

1. Memoryless channels

Definition A discrete channel is given by

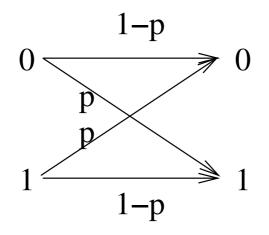
- an input alphabet $X = \{a_1, \ldots, a_K\}$
- an output alphabet $Y = \{b_1, \ldots, b_J\}$
- transition probabilities $P_{Y|X}$, i.e. a stochastic matrix

$$\Pi = \begin{pmatrix} \mathbf{P}(b_1 \mid a_1) & \dots & \mathbf{P}(b_J \mid a_1) \\ \vdots & \ddots & \vdots \\ \mathbf{P}(b_1 \mid a_K) & \dots & \mathbf{P}(b_J \mid a_K) \end{pmatrix}$$

The channel is memoryless if for all transmitted (x_1, \ldots, x_n) and all received (y_1, \ldots, y_n) , we have

$$\mathbf{P}(y_1,\ldots,y_n|x_1,\ldots,x_n)=\mathbf{P}(y_1|x_1)\ldots\mathbf{P}(y_n|x_n).$$

Example – Binary symmetric channel



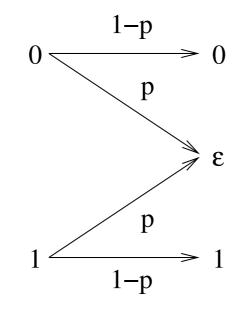
The stochastic matrix is

$$\left(\begin{array}{cc}1-p&p\\p&1-p\end{array}\right).$$

p is called the *crossover probability* of the channel.

Information Theory

Erasure channel



$$\Pi = \left(\begin{array}{ccc} 1-p & p & 0 \\ 0 & p & 1-p \end{array} \right).$$

Information Theory

2. Capacity

The capacity of a channel is defined by the maximum mutual information between a random variable X taking its values on the input alphabet and the corresponding output Y of the channel

$$\begin{array}{lll} C & \stackrel{\mathrm{def}}{=} & \sup_X I(X;Y) \text{ with} \\ \\ X & \stackrel{\mathrm{channel}}{\leadsto} & Y \end{array}$$

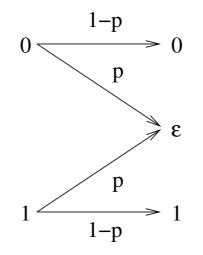
Capacity

It is useful to note that I(X;Y) can be written as follows (using only the input distribution and the transition probabilities)

$$I(X;Y) = \sum_{x,y} \mathbf{P}(y \mid x) \mathbf{P}(x) \log_2 \frac{\mathbf{P}(y \mid x)}{\mathbf{P}(y)}$$

$$\mathbf{P}(y) = \sum_{x} \mathbf{P}(y \mid x) \mathbf{P}(x).$$

Capacity of a binary erasure channel



$$C = \max_{p(x)} I(X;Y) = \max_{p(x)} (H(Y) - H(Y|X))$$

Observe that $H(Y|X) = \mathbf{P}(X = 0)h(p) + \mathbf{P}(X = 1)h(p) = h(p)$ with $h(p) \stackrel{\text{def}}{=} -p \log_2 p - (1-p) \log_2 (1-p).$

Information Theory

Capacity of the binary erasure channel (II) Letting $a \stackrel{\text{def}}{=} \mathbf{P}(X = 1)$, we obtain :

$$P(Y = 1) = a(1 - p)$$

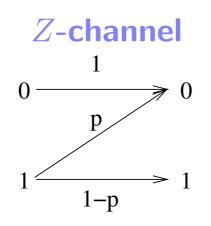
$$P(Y = 0) = (1 - a)(1 - p)$$

$$P(Y = \epsilon) = ap + (1 - a)p = p$$

$$H(Y) = -a(1-p)\log a(1-p) -(1-a)(1-p)\log(1-a)(1-p) - p\log p = (1-p)h(a) + h(p)$$

Therefore

$$C = \max_{a} (1-p)h(a) = 1-p$$



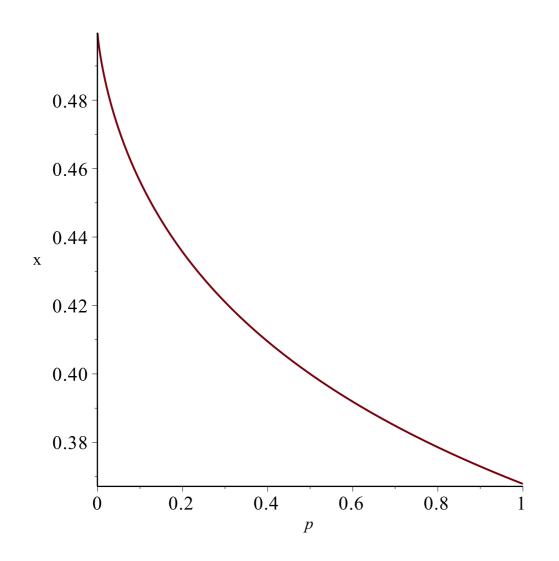
The stochastic matrix is

 $\left(\begin{array}{cc} 1 & 0 \\ p & 1-p \end{array}\right).$

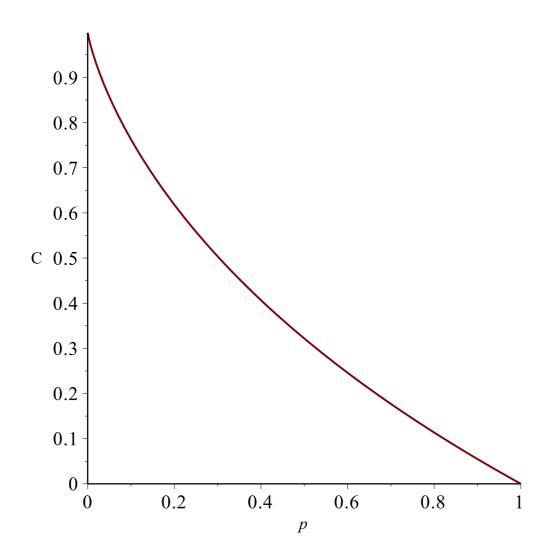
For a distribution $x \stackrel{\text{def}}{=} \mathbf{P}(X = 1)$, we have I(X;Y) = h(x(1-p)) - xh(p)

Maximum attained in
$$x = \left((1-p) \left(1 + 2^{\frac{h(p)}{1-p}} \right) \right)^{-1}$$

Information Theory



Information Theory



Information Theory

Symmetric channels

Definition A discrete memoryless channel is *symmetric* if each row/column is a permutation of the first row/column.

Proposition 1. In a symmetric channel H(Y|X) does not depend on X.

$$H(Y|X) = -\sum_{y} P(y \mid x) \log_2 P(y \mid x).$$

Proof

$$H(Y \mid X) = -\sum_{x} P(x) \sum_{y} P(y \mid x) \log_2 P(y \mid x)$$
$$= -\sum_{x} P(x) H(\Pi) = H(\Pi)$$

where $H(\Pi) = -\sum_{y} P(y \mid x) \log_2 P(y \mid x)$ is independent of x.

Information Theory

Capacity of a symmetric channel

Hence

$$C = \sup_{X} I(X;Y)$$

= $\sup(H(Y) - H(Y \mid X))$
= $\sup(H(Y)) - H(\Pi)$
 $\leq \log_2 |Y| - H(\Pi).$

The entropy is maximised when Y is uniform. Note that Y is uniform when X is uniform for a symmetric channel.

Capacity of a symmetric channel (II)

Proposition 2. The capacity of a symmetric channel is attained for a uniform distribution on the inputs and is equal to

 $C = \log_2 |Y| - H(\Pi)$

Example

Capacity of a binary symmetric channel

$$C = 1 - h(p)$$

To compar with the capacity of the binary erasure channel :

$$C = 1 - p$$

3. Channel coding

Let us consider a discrete memoryless channel $\mathcal{T} = (X, Y, \Pi)$

Definition A *block code* of *length* n and of *cardinality* M is a set of M sequences of n symbols of X. It is an (M, n)-code. Its elements are called codewords. The *code rate* is equal to

$$\mathbf{R} = \frac{\log_2 M}{n}$$

Such a code allows to encode $\log_2 M$ bits per codeword transmission.

R is also equal to the number of transmitted bits per channel use.

An *encoder* is a procedure that maps a finite binary sequence to a finite sequence of elements of X.

Code performance – Decoding

Let ${\mathcal C}$ be an (M,n)-block code used over a discrete memoryless channel (X,Y,Π)

Definition A *decoding algorithm* for C is a procedure which maps any block of n symbols of Y to a codeword in C.

The event "bad decoding" for a decoding algorithm is defined by :

A codeword $\mathbf{x} \in C \subset X^n$ is transmitted through the channel, the word $\mathbf{y} \in Y^n$ is received and is decoded in $\tilde{\mathbf{x}} \neq \mathbf{x}$.

Definition The error rate of C (for a given channel and sent codeword **x**) denoted by $P_e(C, \mathbf{x})$ is the probability of bad decoding when **x** is transmitted.

Information Theory

Examples for the binary symmetric channel

Repetition code of length 3

 $C = \{000, 111\}$

Single Parity-check code of length 4

 $C = \{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\}$

Information Theory

Hamming code of length 7

$$C = \{0000000, 1101000, 0110100, 0011010, \\0001101, 1000110, 0100011, 1010001, \\1111111, 0010111, 1001011, 1100101, \\1110010, 0111001, 1011100, 0101110\}$$

Decoding of the Hamming code

The Hamming distance d(x, y) is equal to

 $d(x,y) = |\{i; x_i \neq y_i\}|$

It can be verified that all codewords of the Hamming code are at distance at least 3 from each other. This implies that the balls of radius 1 centered around each codeword do not intersect.

Moreover any binary word of length 7 is at distance at most 1 from a Hamming codeword, since

$$16(1+7) = 2^4 \times 2^3 = 2^7.$$

Decoding algorithm : when y is received, return the codeword x at distance ≤ 1 from y.

Information Theory

Shannon's second theorem

Theorem 1. Consider a discrete memoryless channel of capacity C. For all R < C, there exists a sequence of block codes $(C_n(M, n))_{n>0}$ of rate R_n together with a decoding algorithm such that

$$\lim_{n \to \infty} R_n = R \quad \text{and} \quad \lim_{n \to \infty} \sup_{\mathbf{x} \in \mathcal{C}_n} P_e(\mathcal{C}_n, \mathbf{x}) = 0$$

Theorem 2. Consider a discrete memoryless channel of capacity C. Any code C of rate R > C satisfies $\frac{1}{M} \sum_{\mathbf{x} \in C} P_e(C, \mathbf{x}) > K(C, R)$, where K(C, R) > 0 depends on the channel and the rate but is independent of the code.

Error exponent

There is even a stronger version of Shannon's theorem : there are block codes of rate R and length n for which

$$\sup_{x} P_e(\mathcal{C}, x) \approx \mathbf{e}^{-nE(R)}$$

where E(R) is called the *error exponent*. It depends on the channel and the transmission rate and satisfies

E(R) > 0 if R < C

Jointly typical sequences

Definition [Jointly typical set] Let $(X^{(n)}, Y^{(n)})$ be a pair of r.v. taking its values in a discrete set $\mathcal{A}^n \times \mathcal{B}^n$, $p(\mathbf{x}, \mathbf{y})$ be the joint probability distribution of $(X^{(n)}, Y^{(n)})$, and let $p(\mathbf{x})$ and $p(\mathbf{y})$ be the probability distribution of $X^{(n)}$ and $Y^{(n)}$ respectively. The set of jointly typical sequences $\mathcal{T}^{(n)}_{\epsilon}$ is given by

$$\mathcal{T}_{\epsilon}^{(n)} = \{ (\mathbf{x}, \mathbf{y}) \in \mathcal{A}^{n} \times \mathcal{B}^{n} : \\ \left| \frac{1}{n} \left(-\log_{2} p(\mathbf{x}) - H(X^{(n)}) \right) \right| < \epsilon$$

$$\left| \frac{1}{n} \left(-\log_{2} p(\mathbf{y}) - H(Y^{(n)}) \right) \right| < \epsilon$$

$$\left| \frac{1}{n} \left(-\log_{2} p(\mathbf{x}, \mathbf{y}) - H(X^{(n)}, Y^{(n)}) \right) \right| < \epsilon$$

$$(1)$$

Information Theory

Theorem 3. Let (X_i, Y_i) be a sequence of pairs of *i.i.d. r.v.* taking their values in $\mathcal{A} \times \mathcal{B}$ distributed as a fixed pair (X, Y). We define $\mathcal{T}_{\epsilon}^{(n)}$ from $(X^{(n)}, Y^{(n)})$ with $X^{(n)} \stackrel{\text{def}}{=} (X_1, X_2, \dots, X_n)$ and $Y^{(n)} \stackrel{\text{def}}{=} (Y_1, Y_2, \dots, Y_n)$. Then

1. $\operatorname{Prob}(\mathcal{T}_{\epsilon}^{(n)}) > 1 - \epsilon$ for n sufficiently large.

2.
$$|\mathcal{T}_{\epsilon}^{(n)}| \leq 2^{n(H(X,Y)+\epsilon)}.$$

3. Let $\tilde{X}^{(n)}$ and $\tilde{Y}^{(n)}$ be 2 independent r.v. with $\tilde{X}^{(n)} \sim X^{(n)}$ and $\tilde{Y}^{(n)} \sim Y^{(n)}$. Then,

$$\operatorname{Prob}\left\{\left(\tilde{X}^{(n)}, \tilde{Y}^{(n)}\right) \in \mathcal{T}_{\epsilon}^{(n)}\right\} \leq 2^{-n(I(X;Y)-3\epsilon)}.$$

Moreover, for n sufficiently large

$$\operatorname{Prob}\left\{\left(\tilde{X}^{(n)}, \tilde{Y}^{(n)}\right) \in \mathcal{T}_{\epsilon}^{(n)}\right\} \ge (1-\epsilon)2^{-n(I(X;Y)+3\epsilon)}.$$

Proof of Point 3.

$$p\left\{\left(\tilde{X}^{(n)}, \tilde{Y}^{(n)}\right) \in \mathcal{T}_{\epsilon}^{(n)}\right\} = \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{\epsilon}^{(n)}} p(\mathbf{x}) p(\mathbf{y})$$

$$\leq |\mathcal{T}_{\epsilon}^{(n)}| 2^{-n(H(X)-\epsilon)} 2^{-n(H(Y)-\epsilon)}$$

$$\leq 2^{(nH(X,Y)+\epsilon)} 2^{-n(H(X)-\epsilon)} 2^{-n(H(Y)-\epsilon)}$$

$$= 2^{-n(I(X;Y)-3\epsilon)}.$$

Proof of Point 3. (II)

$$p\left\{\left(\tilde{X}^{(n)}, \tilde{Y}^{(n)}\right) \in \mathcal{T}_{\epsilon}^{(n)}\right\} = \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{\epsilon}^{(n)}} p(\mathbf{x}) p(\mathbf{y})$$

$$\geq |\mathcal{T}_{\epsilon}^{(n)}| 2^{-n(H(X)+\epsilon)} 2^{-n(H(Y)+\epsilon)}$$

$$\geq (1-\epsilon) 2^{n(H(X,Y)-\epsilon)} 2^{-n(H(X)+\epsilon)} 2^{-n(H(Y)+\epsilon)}$$

$$= (1-\epsilon) 2^{-n(I(X;Y)+3\epsilon)}.$$

The direct part of Shannon's theorem

The crucial point : random choice of the code!

We begin by choosing a probability distribution \mathbf{P} on the input symbols of the channel. Then we choose a code of length n and rate R by drawing 2^{nR} words in \mathcal{A}^n randomly according to the distribution $\mathbf{P}^{(n)}$ on \mathcal{A}^n given by

$$\mathbf{P}^{(n)}(x_1, x_2, \dots, x_n) = \prod_{i=1}^n \mathbf{P}(x_i).$$

Typical set decoding

x transmitted word, y received word. Let $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^{2^{nR}}$ be the 2^{nR} codewords.

- 1. compute the 2^{nR} probabilities \mathbf{P} (received word = \mathbf{y} , transmitted word = \mathbf{x}^s) for $s \in \{1, \dots, 2^{nR}\}$.
- 2. if more than one pair or no pair $(\mathbf{x}^i, \mathbf{y})$ is ϵ -jointly typical \rightarrow "decoding failure".
- 3. otherwise output \mathbf{x}_s such that $(\mathbf{x}_s, \mathbf{y})$ is jointly typical.

Analysis of the decoder

This decoder can fail for two reasons

- the right pair (\mathbf{x}, \mathbf{y}) is not jointly typical (event \mathcal{E}_0),

- At least one of the $2^{nR} - 1$ pairs $(\mathbf{x}^s, \mathbf{y})$ is jointly typical with $\mathbf{x}^s \neq \mathbf{x}$, (event \mathcal{E}_1).

 $\mathbf{Prob}(\mathsf{decoding failure}) = \mathbf{Prob}(\mathcal{E}_0 \cup \mathcal{E}_1)$

$$\leq \operatorname{\mathbf{Prob}}(\mathcal{E}_0) + \operatorname{\mathbf{Prob}}(\mathcal{E}_1)$$

The probability of the first event

$$\mathbf{Prob}(\mathcal{E}_0) = \mathbf{Prob}\left((X^{(n)}, Y^{(n)}) \text{ is not typical}\right)$$
$$= 1 - \mathbf{Prob}(\mathcal{T}_{\epsilon}^{(n)})$$

By using Point 1. of Theorem 3, we obtain $1 - \operatorname{Prob}(\mathcal{T}_{\epsilon}^{(n)}) \leq \epsilon$.

The probability of the second event

$$\begin{aligned} \mathbf{Prob}(\mathcal{E}_1) &= \mathbf{Prob}\left(\cup_{s:\mathbf{x}^s\neq\mathbf{x}}\left\{(\mathbf{x}^s,\mathbf{y}) \text{ is typical}\right\}\right) \\ &\leq \sum_{s:\mathbf{x}^s\neq\mathbf{x}}\mathbf{Prob}\left((\mathbf{x}^s,\mathbf{y}) \text{ is typical}\right) \end{aligned}$$

 $(\tilde{X}^{(n)},\tilde{Y}^{(n)})$ where $\tilde{X}^{(n)}\sim X^{(n)}\;\tilde{Y}^{(n)}\sim Y^{(n)}$ and $(\tilde{X}^{(n)},\;\tilde{Y}^{(n)})$ independent

$$\mathbf{Prob}\left((\mathbf{x}^{s}, \mathbf{y}) \text{ is typical}\right) = \mathbf{Prob}\left((\tilde{X}^{(n)}, \tilde{Y}^{(n)}) \text{ is typical}\right)$$

Information Theory

The probability of the second event (II)

$$\operatorname{Prob}\left\{\left(\tilde{X}^{(n)}, \tilde{Y}^{(n)}\right) \text{ is typical}\right\} \le 2^{-n(I(X;Y)-3\epsilon)}.$$

Therefore

$$\operatorname{Prob}(\mathcal{E}_1) \leq (2^{nR} - 1)2^{-n(I(X;Y) - 3\epsilon)} \\ \leq 2^{-n(I(X;Y) - R - 3\epsilon)}.$$

Information Theory

End of proof

Prob(decoding failure) $\leq \epsilon + 2^{-n(I(X;Y)-R-3\epsilon)}$.

End : choosing X s.t. C = I(X;Y).