Capacity of a channel — Shannon’s second theorem
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1. Memoryless channels

Definition A is given by
— an X ={ay,...,ax}
— an Y ={b1,...,b;}
— PY|X1 l.e. a

P(bl ‘ al) ce P(bJ ‘ CL1)

Il = : :

P(bl ‘ CLK) P(bJ | CLK)
The channel is if for all transmitted (x1,...,2,) and all
received (y1,-..,¥Yn), We have

P(yi,...,ynlz1,. .., 20) = P(y1|z1) .. . P(yn|zn).
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Example — Binary symmetric channel

The stochastic matrix is

p is called the
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The is defined by the maximum mutual information
between a random variable X taking its values on the input alphabet
and the corresponding output Y of the channel

L supI(X;Y) with
X
X ch/a\rjgel %
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It is useful to note that I(X;Y) can be written as follows (using only
the input distribution and the transition probabilities)
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Capacity of a binary erasure channel

C = maxI(X;Y)=max(H(Y) - H(Y|X))

p(x) p(x)

Observe that H(Y|X) = P(X = 0)h(p) + P(X = 1)h(p) =
def
= —plogyp — (1 —p)logy(1 — p).
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Capacity of the binary erasure channel (I1)

Letting défP(X = 1), we obtain :

PY =1) = a(l-p)

PY=0) = (1-a)(1-p)

PY=¢ = ap+(1l—a)p=p
H(Y) = —a(l-p)loga(l-p)

—(1 —a)(1 —p)log(l —a)(1—p)—plogp
= (1 —-p)h(a) + h(p)

Therefore
C =max(l —p)h(a) =1—0p
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The stochastic matrix is

(v 1%)
p 1=p /)
For a distribution défP(X = 1), we have
I(X;Y) = h(x(1 = p)) — zh(p)

~1
h(p)
Maximum attained in z = ((1 — D) (1 + 21pp>>
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Symmetric channels

Definition A discrete memoryless channel is if each
row/column is a permutation of the first row/column.

Proposition 1. In a symmetric channel H(Y|X) does not depend on

X
H(Y|X) = ZP y | z)log, Py | ).

13/135
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H(Y | X)

where H(IT) = — )
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Y

= =) Px)) P(y|xz)log, P(y| =)
= - P(x)H(I) = H(I)

P(y | z)log, P(y | x) is independent of x.
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Capacity of a symmetric channel

Hence

C = supl(X;Y)
X

sup(H(Y) — H(Y | X))
sup(H(Y)) — H(II)
< logy |V — H(II).

The entropy is maximised when Y is uniform. Note that Y is uniform
when X is uniform for a symmetric channel.
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Capacity of a symmetric channel (11)

Proposition 2. The capacity of a symmetric channel is attained for
a uniform distribution on the inputs and is equal to

C = log, |Y| — H(II)
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Capacity of a binary symmetric channel

To compar with the capacity of the binary erasure channel :
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C=1-nh(p)

C=1-p
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Let us consider a discrete memoryless channel 7 = (X, Y, 1I)

Definition A of n and of M is a set of
M sequences of n symbols of X. It is an (M, n)-code. Its elements are
called . The Is equal to

 logy M

. on

Such a code allows to encode log, M bits per codeword transmission.
R is also equal to the number of transmitted bits per channel use.

An is a procedure that maps a finite binary sequence to a finite
sequence of elements of X.
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Let C be an (M, n)-block code used over a discrete memoryless channel
(X, Y, II)

Definition A for C is a procedure which maps any
block of n symbols of Y to a codeword in C.

The event for a decoding algorithm is defined by :

A codeword x € C C X™ is transmitted through the channel, the
wordy € Y™ is received and is decoded in X # x.

Definition The (for a given channel and sent codeword
x) denoted by P.(C,x) is the probability of bad decoding when x is
transmitted.
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Examples for the binary symmetric channel

Repetition code of length 3

C = {000,111}

Single Parity-check code of length 4

C = {0000,0011,0101, 0110, 1001, 1010, 1100, 1111}
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Hamming code of length 7

Information Theory

C

{0000000, 1101000, 0110100, 0011010,
0001101, 1000110, 0100011, 1010001,
1111111,0010111, 1001011, 1100101,
1110010,0111001, 1011100, 0101110}

21/

35




The Hamming distance d(z,y) is equal to

d(z,y) = {2 # yi}|

It can be verified that all codewords of the Hamming code are at distance
at least 3 from each other. This implies that the balls of radius 1 centered
around each codeword do not intersect.

Moreover any binary word of length 7 is at distance at most 1 from a
Hamming codeword, since

16(147) =2* x 2% =27,

Decoding algorithm : when y is received, return the codeword x at
distance < 1 from y.
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Theorem 1. Consider a discrete memoryless channel of capacity C.
For all R < C, there exists a sequence of block codes (C,,(M,n)), , of
rate R,, together with a decoding algorithm such that

lim R,=R and lim sup P.(C,,x) =0

n—oo n—oo XECn

Theorem 2. Consider a discrete memoryless channel of capacity C.
Any code C of rate R > C' satisfies = > . P.(C,x) > K(C, R), where
K(C, R) > 0 depends on the channel and the rate but is independent of
the code.
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There is even a stronger version of Shannon's theorem : there are block
codes of rate R and length n for which

sup P.(C, z) ~ e "EH)

where E(R) is called the error exponent. It depends on the channel and
the transmission rate and satisfies

E(R)>0if R<C
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Definition Let (X (™), Y (") be a pair of r.v. taking
its values in a discrete set A" x B", p(x,y) be the joint probability
distribution of (X (™ Y () and let p(x) and p(y) be the probability
distribution of X (™ and Y (™) respectively. The set of jointly typical
sequences T is given by

+ (- togyp) — HCX™) < ¢ (1
% (— log, p(y) — H(Y(”)))| <e (2)
% (— log, p(x,y) — H(X™, Y(”)))| < 6} (3)
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Theorem 3. Let (X;,Y;) be a sequence of pairs of i.i.d. r.v. taking their
values in A x B distributed as a fixed pair (X,Y). We define TA™ from

(XM V™)) with XMW (X, Xy, ..., X,) and YO (Y1, Vs, ..., Y,).
Then

1. Prob(ﬁ(n)) > 1 — € for n sufficiently large.
2 |7;(n)| < on(H(X,Y)+e)

3. Let X™) and Y pe 2 independent r.v. with Xm) ~ X and
Y ~ Y™ Then,
Prob { ( X, yf«n)) c 7;(”>} < 9 n(I(X;Y)=3¢),

Moreover, for n sufficiently large

Prob { ( X, 17<”>) c 72(”)} > (1 — )2 U (XY)+30),
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Proof of Point 3.

p { (X(TD) }N/(n)) c 7’6(n)} _ Z p(x)p(y)
(cy)eTd"
< |’7;(n)|2—n(H(X)—€)2—n(H(Y)—e)
< 2(nH(X,Y)—|—€)2—n(H(X)—e)2—n(H(Y)_6)

2—n(I(X;Y)—3e) .
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Proof of Point 3. (Il)

D { (X(n)’ f/’(n)) = 7;(7%)} _ Z p(x)p(y)
(xy)eT"
> |’7;(n)|2—n(H(X)+€)2—n(H(Y)-|-e)
> (1 _ 6)zn(H(X,Y)—e)2—n(H(X)—|—E)2—7”L(H(Y)_|_€)

(1 _ E)Q—n(I(X;Y)+3e).
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The direct part of Shannon’s theorem

random choice of the code!

We begin by choosing a probability distribution P on the input symbols
of the channel. Then we choose a code of length n and rate R by drawing
277 \words in LA™ randomly according to the distribution P(™ on A"
given by

P (1, 33, .., ) = T P(z,).
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. . nRk
x transmitted word, y received word. Let x',x2,...,x%> be the 2™%
codewords.

1. compute the 2" probabilities P (received word = y, transmitted word = x?)
for s € {1,..., 278}

2. if more than one pair or no pair (x',y) is e-jointly typical — “decoding
failure”.

3. otherwise output x; such that (x4,y) is jointly typical.
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This decoder can fail for two reasons

- the right pair (x,y) is not jointly typical (event &),

- At least one of the 2™ — 1 pairs (x°,y) is jointly typical with x* # x,
(event &7).

Prob(decoding failure) Prob(& U &)

< Prob(&) + Prob(&)
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The probability of the first event

PI‘Ob(g())

Prob ((X(”), Y (™) is not typical)

1 — Prob(7™)

By using Point 1. of Theorem , we obtain 1 — Prob(ﬁ(n)) < e.
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The probability of the second event

PI‘Ob(gl)

A

w

H
(] 3

U
v
o =
o
= &
Ao
< %
ORI
t —_
< w
-
Q) <
L T
N—" n

L

-

(X, 7)) where X ~ X0 ) ~ y() and (X, ¥®) inde-
pendent

Prob ((x°,y) is typical) = Prob ((X'(”), Y)Y is typical)
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The probability of the second event (Il)

Prob { ()N(("), f/(”)) IS typical} < 9~ nU(X5Y)=3€)

Therefore

PI‘Ob(gl)

IA

(2nR _ 1)2—n(I(X;Y)—3€)

2—n(I(X;Y)—R—3€) .

IA
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End of proof

Prob(decoding failure) < e 4 27U (X3Y)=R=3¢)

End : choosing X s.it. C' = I(X;Y).
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