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1. Memoryless channels

Definition A discrete channel is given by
– an input alphabet X = {a1, . . . , aK}
– an output alphabet Y = {b1, . . . , bJ}
– transition probabilities PY |X, i.e. a stochastic matrix

Π =

 P(b1 | a1) . . . P(bJ | a1)
... . . . ...

P(b1 | aK) . . . P(bJ | aK)


The channel is memoryless if for all transmitted (x1, . . . , xn) and all
received (y1, . . . , yn), we have

P(y1, . . . , yn|x1, . . . , xn) = P(y1|x1) . . .P(yn|xn).
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Example – Binary symmetric channel
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The stochastic matrix is (
1− p p
p 1− p

)
.

p is called the crossover probability of the channel.
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Erasure channel
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Π =
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)
.

Information Theory 5/35



2. Capacity

The capacity of a channel is defined by the maximum mutual information
between a random variable X taking its values on the input alphabet
and the corresponding output Y of the channel

C
def
= sup

X
I(X;Y ) with

X
channel
; Y
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Capacity

It is useful to note that I(X;Y ) can be written as follows (using only
the input distribution and the transition probabilities)

I(X;Y ) =
∑
x,y

P(y | x)P(x) log2

P(y | x)

P(y)

P(y) =
∑
x

P(y | x)P(x).
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Capacity of a binary erasure channel

ε

1
1−p

0 0

1−p

1

p

p

C = max
p(x)

I(X;Y ) = max
p(x)

(H(Y )−H(Y |X))

Observe that H(Y |X) = P(X = 0)h(p) + P(X = 1)h(p) = h(p) with

h(p)
def
= − p log2 p− (1− p) log2(1− p).
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Capacity of the binary erasure channel (II)

Letting a
def
=P(X = 1), we obtain :

P(Y = 1) = a(1− p)
P(Y = 0) = (1− a)(1− p)
P(Y = ε) = ap+ (1− a)p = p

H(Y ) = −a(1− p) log a(1− p)
−(1− a)(1− p) log(1− a)(1− p)− p log p

= (1− p)h(a) + h(p)

Therefore
C = max

a
(1− p)h(a) = 1− p
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Z-channel
1

1 1

0 0

p

1−p

The stochastic matrix is (
1 0
p 1− p

)
.

For a distribution x
def
=P(X = 1), we have

I(X;Y ) = h(x(1− p))− xh(p)

Maximum attained in x =

(
(1− p)

(
1 + 2

h(p)
1−p

))−1
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Symmetric channels

Definition A discrete memoryless channel is symmetric if each
row/column is a permutation of the first row/column.

Proposition 1. In a symmetric channel H(Y |X) does not depend on
X.

H(Y |X) = −
∑
y

P (y | x) log2P (y | x).
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Proof

H(Y | X) = −
∑
x

P (x)
∑
y

P (y | x) log2P (y | x)

= −
∑
x

P (x)H(Π) = H(Π)

where H(Π) = −
∑
y P (y | x) log2P (y | x) is independent of x.
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Capacity of a symmetric channel

Hence

C = sup
X
I(X;Y )

= sup(H(Y )−H(Y | X))

= sup(H(Y ))−H(Π)

≤ log2 |Y | −H(Π).

The entropy is maximised when Y is uniform. Note that Y is uniform
when X is uniform for a symmetric channel.
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Capacity of a symmetric channel (II)

Proposition 2. The capacity of a symmetric channel is attained for
a uniform distribution on the inputs and is equal to

C = log2 |Y | −H(Π)
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Example

Capacity of a binary symmetric channel

C = 1− h(p)

To compar with the capacity of the binary erasure channel :

C = 1− p
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3. Channel coding

Let us consider a discrete memoryless channel T = (X,Y,Π)

Definition A block code of length n and of cardinality M is a set of
M sequences of n symbols of X. It is an (M,n)-code. Its elements are
called codewords. The code rate is equal to

R =
log2M

n

Such a code allows to encode log2M bits per codeword transmission.

R is also equal to the number of transmitted bits per channel use.

An encoder is a procedure that maps a finite binary sequence to a finite
sequence of elements of X.
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Code performance – Decoding

Let C be an (M,n)-block code used over a discrete memoryless channel
(X,Y,Π)

Definition A decoding algorithm for C is a procedure which maps any
block of n symbols of Y to a codeword in C.

The event ”bad decoding” for a decoding algorithm is defined by :

A codeword x ∈ C ⊂ Xn is transmitted through the channel, the
word y ∈ Y n is received and is decoded in x̃ 6= x.

Definition The error rate of C (for a given channel and sent codeword
x) denoted by Pe(C,x) is the probability of bad decoding when x is
transmitted.
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Examples for the binary symmetric channel

Repetition code of length 3

C = {000, 111}

Single Parity-check code of length 4

C = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}
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Hamming code of length 7

C = {0000000, 1101000, 0110100, 0011010,

0001101, 1000110, 0100011, 1010001,

1111111, 0010111, 1001011, 1100101,

1110010, 0111001, 1011100, 0101110}
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Decoding of the Hamming code

The Hamming distance d(x, y) is equal to

d(x, y) = |{i;xi 6= yi}|

It can be verified that all codewords of the Hamming code are at distance
at least 3 from each other. This implies that the balls of radius 1 centered
around each codeword do not intersect.

Moreover any binary word of length 7 is at distance at most 1 from a
Hamming codeword, since

16(1 + 7) = 24 × 23 = 27.

Decoding algorithm : when y is received, return the codeword x at
distance ≤ 1 from y.
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Shannon’s second theorem

Theorem 1. Consider a discrete memoryless channel of capacity C.
For all R < C, there exists a sequence of block codes (Cn(M,n))n>0 of
rate Rn together with a decoding algorithm such that

lim
n→∞

Rn = R and lim
n→∞

sup
x∈Cn

Pe(Cn,x) = 0

Theorem 2. Consider a discrete memoryless channel of capacity C.
Any code C of rate R > C satisfies 1

M

∑
x∈C Pe(C,x) > K(C,R), where

K(C,R) > 0 depends on the channel and the rate but is independent of
the code.
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Error exponent

There is even a stronger version of Shannon’s theorem : there are block
codes of rate R and length n for which

sup
x
Pe(C, x) ≈ e−nE(R)

where E(R) is called the error exponent. It depends on the channel and
the transmission rate and satisfies

E(R) > 0 if R < C
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Jointly typical sequences

Definition [Jointly typical set] Let (X(n), Y (n)) be a pair of r.v. taking
its values in a discrete set An × Bn, p(x,y) be the joint probability
distribution of (X(n), Y (n)), and let p(x) and p(y) be the probability
distribution of X(n) and Y (n) respectively. The set of jointly typical

sequences T (n)
ε is given by

T (n)
ε = {(x,y) ∈ An × Bn :∣∣∣∣1n (− log2 p(x)−H(X(n))

)∣∣∣∣ < ε (1)∣∣∣∣1n (− log2 p(y)−H(Y (n))
)∣∣∣∣ < ε (2)∣∣∣∣1n (− log2 p(x,y)−H(X(n), Y (n))

)∣∣∣∣ < ε

}
(3)
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Theorem 3. Let (Xi, Yi) be a sequence of pairs of i.i.d. r.v. taking their

values in A× B distributed as a fixed pair (X,Y ). We define T (n)
ε from

(X(n), Y (n)) with X(n)def= (X1, X2, . . . , Xn) and Y (n)def= (Y1, Y2, . . . , Yn).
Then

1. Prob(T (n)
ε ) > 1− ε for n sufficiently large.

2. |T (n)
ε | ≤ 2n(H(X,Y )+ε).

3. Let X̃(n) and Ỹ (n) be 2 independent r.v. with X̃(n) ∼ X(n) and
Ỹ (n) ∼ Y (n). Then,

Prob
{(
X̃(n), Ỹ (n)

)
∈ T (n)

ε

}
≤ 2−n(I(X;Y )−3ε).

Moreover, for n sufficiently large

Prob
{(
X̃(n), Ỹ (n)

)
∈ T (n)

ε

}
≥ (1− ε)2−n(I(X;Y )+3ε).
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Proof of Point 3.

p
{(
X̃(n), Ỹ (n)

)
∈ T (n)

ε

}
=

∑
(x,y)∈T (n)

ε

p(x)p(y)

≤ |T (n)
ε |2−n(H(X)−ε)2−n(H(Y )−ε)

≤ 2(nH(X,Y )+ε)2−n(H(X)−ε)2−n(H(Y )−ε)

= 2−n(I(X;Y )−3ε).
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Proof of Point 3. (II)

p
{(
X̃(n), Ỹ (n)

)
∈ T (n)

ε

}
=

∑
(x,y)∈T (n)

ε

p(x)p(y)

≥ |T (n)
ε |2−n(H(X)+ε)2−n(H(Y )+ε)

≥ (1− ε)2n(H(X,Y )−ε)2−n(H(X)+ε)2−n(H(Y )+ε)

= (1− ε)2−n(I(X;Y )+3ε).
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The direct part of Shannon’s theorem

The crucial point : random choice of the code !

We begin by choosing a probability distribution P on the input symbols
of the channel. Then we choose a code of length n and rate R by drawing
2nR words in An randomly according to the distribution P(n) on An
given by

P(n)(x1, x2, . . . , xn) = Πn
i=1P(xi).

Information Theory 29/35



Typical set decoding

x transmitted word, y received word. Let x1,x2, . . . ,x2nR be the 2nR

codewords.

1. compute the 2nR probabilities P(received word = y, transmitted word = xs)
for s ∈ {1, . . . , 2nR}.

2. if more than one pair or no pair (xi,y) is ε-jointly typical→ “decoding
failure”.

3. otherwise output xs such that (xs,y) is jointly typical.
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Analysis of the decoder

This decoder can fail for two reasons
- the right pair (x,y) is not jointly typical (event E0),
- At least one of the 2nR − 1 pairs (xs,y) is jointly typical with xs 6= x,
(event E1).

Prob(decoding failure) = Prob(E0 ∪ E1)
≤ Prob(E0) + Prob(E1)
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The probability of the first event

Prob(E0) = Prob
(

(X(n), Y (n)) is not typical
)

= 1−Prob(T (n)
ε )

By using Point 1. of Theorem 3, we obtain 1−Prob(T (n)
ε ) ≤ ε.
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The probability of the second event

Prob(E1) = Prob (∪s:xs 6=x {(xs,y) is typical})

≤
∑
s:xs 6=x

Prob ((xs,y) is typical)

(X̃(n), Ỹ (n)) where X̃(n) ∼ X(n) Ỹ (n) ∼ Y (n) and (X̃(n), Ỹ (n)) inde-
pendent

Prob ((xs,y) is typical) = Prob
(

(X̃(n), Ỹ (n)) is typical
)
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The probability of the second event (II)

Prob
{(
X̃(n), Ỹ (n)

)
is typical

}
≤ 2−n(I(X;Y )−3ε).

Therefore

Prob(E1) ≤ (2nR − 1)2−n(I(X;Y )−3ε)

≤ 2−n(I(X;Y )−R−3ε).
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End of proof

Prob(decoding failure) ≤ ε+ 2−n(I(X;Y )−R−3ε).

End : choosing X s.t. C = I(X;Y ).
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